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Abstract. In this paper we study 3-dimensional visibility representa-
tions of complete graphs. The vertices are represented by equal regular
polygons lying in planes parallel to the xy-plane. Two vertices are ad-
jacent if and only if the two corresponding polygons see each other -
i.e. it is possible to construct an abscissa perpendicular to the xy-plane
connecting the two polygons and avoiding all the others.
We give the bounds for the maximal size f(k) of a clique represented
by regular k-gons:

⌊
k+1
2

⌋
+ 2 ≤ f(k) ≤ 22k

and we present a particular
result for triangles: f(3) ≥ 14.

1 Introduction

Consider a finite number of equal regular k-gons located in parallel planes so
that their corresponding edges are parallel (we can only shift each polygon in its
plane). We say that two polygons can see each other if there is a line segment
perpendicular to the planes, which connects the two polygons and does not
intersect any other. Let f(k) denote the maximum number of k-gons which can
be placed so that each pair of them can see each other.

Recently the result is known for squares (maximum clique represented by
squares is K7) and for discs (a clique of arbitrary size can be represented by
discs). Both these result were shown by Fekete, Houle and Whitesides in [FHW].

We can assume that the planes are perpendicular to the z-axis, and we con-
sider the projection of the polygons into the xy-plane. Clearly, only the z-order
of the polygons is important, not the exact z-coordinates. We number the poly-
gons according to the ordering on z-coordinate. We encode the position of each
polygon by k coordinates (which are not independent); each of them is measured
in the direction perpendicular to one of the edges. (For example, we have 3 co-
ordinates for a triangle, but only two of them are independent.) The basic idea
is that the ordering of the polygons in these coordinates captures the geometric
properties of our configuration completely. Note that although the exact values
of two coordinates determine the location of the triangle uniquely, the ordering
in two coordinates is not sufficient to describe the configuration. In Figure 1, the
ordering in coordinates π and ρ is the same, but the σ-ordering of the triangles
differ and the two configurations are not equivalent.
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Fig. 1.

Without loss of generality we can assume that no two coordinates are equal,
thus for any pair i 6= j of k-gons we have π(i) 6= π(j) on any axes.

From now on we use the expression configuration for a system of k-gons such
that every k-gon sees all the others.

2 General properties

Lemma 1 If we allow rotation (i.e. we do not insist on parallelism of the corre-
sponding edges) we can construct the arbitrarily large configuration of half-planes
(and k-gons for arbitrary k).

Proof. Consider a point A and a half-plane ρ such that A lies in the interior
of ρ. First construct a half-plane ρ1. Rotate it by the angle α1 = 45◦ with the
center in A and we obtain half-plane ρ2. Every other half-plane we obtain as a
rotated copy of the previously constructed half-plane, where αi = αi−1/2. And
we have a configuration of arbitrary number of half-planes. See Figure 2. The
bounding line of ρi is crossing the boundaries of ρ1, ρ2, . . . , ρi−1 and therefore
ρi sees ρj , j < i. 2

Claim 2 For every natural k, f(k) ≥ ⌊
k+1
2

⌋
+ 2.

Proof. Consider the system of
⌊

k+1
2

⌋
half-planes seeing each other such that

their angles with the horizontal x-coordinate are 0, 2π
k , 2 2π

k , 3 2π
k , . . . ,

⌊
k−1
2

⌋ 2π
k .

This can be done by taking the horizontal line p1 with an orientation from the left
to the right side and choosing a point A not lying on p1 as a center point of the
rotation. Every next line pi+1 arises from the previous pi through the counter-
clockwise rotation by the angle 2π

k and shifting by δ along the z-coordinate. The
half-planes are determined by the lines pi and the point A which lies on them.

Now take sufficiently large k-gons Pi (so that every Pi contains all the in-
tersection points of pi and all the other pj) and align them to the boundaries
of the corresponding half-planes. In such a way we obtain

⌊
k+1
2

⌋
k-gons seeing

each other.
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Fig. 2. Half-planes, if we allow rotation.

Moreover, we can add two more k-gons, one to the top and the second to the
bottom of the configuration, centers of them lying not far from the intersection
point of the first (p1) and the last (pb k+1

2 c) line. These new k-gons see each other
(because the intersection of complements of the first and the last half-plane is
not empty) and also see all the reminding k-gons.

There are together (for each k) at least
⌊

k+1
2

⌋
+ 2 k-gons seeing each other.

The example for the case k = 6 is shown in Figure 3. We have three half-
planes (lines), three hexagons adjacent to the respective lines (2, 3 and 4), one
hexagon on the top (1) and one hexagon on the bottom (5). There are together⌊ 6+1

2

⌋
+ 2 = 5 hexagons. 2

Corollary 3
lim

k→∞
f(k) = ∞.

Proof. Immediately follows from the lower bound of f(k).
Furthermore if we take the limit as k → ∞ the k-gon approaches the shape

of a disc. For discs we can use the same construction as we used in the proof
of Lemma 1. The boundary lines of the half-planes are the touching lines of the
corresponding discs and |ρi, A| < r. We have the same result as shown in [FHW]
- every complete graph can be represented by discs. 2

Claim 4 For every natural k, f(k) ≤ 22k

.

Lemma 5 If there is a sequence of three polygons which is monotone in each
ordering, then there are two polygons such that one of them does not see the
other one.
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Fig. 3. f(6) ≥ 5

Proof. If we have a sequence of three polygons monotone in each ordering, the
middle one (in z-order) is the middle one in the ordering on each coordinate.
Hence the common area of the first and the third one is contained in the second
one. So they cannot see each other. (See Fig. 4.) 2

Proof of Claim 4. We use the Erdős-Szekeres theorem, which says that any
sequence of (a−1)(a−1)+1 distinct numbers contains a monotone subsequence
of the length a. We have a sequence {(x1, x2, . . . , xk)i}n

i=1 ∈ INk and we want
to find a subsequence of the length 3 monotone in each coordinate. We proceed
by induction on k.

Let us have a sequence {xi}n
i=1, xi ∈ IN. Hence by Erdős-Szekeres theorem if

n1 = (3−1)(3−1)+1 = 5 = 221
+1 for k = 1 we can find a monotone subsequence

of the length 3. For nk = (nk−1−1)(nk−1−1)+1 =
(
22k−1

) (
22k−1

)
+1 = 22k

+1

there is a subsequence of the length
(
22k−1

+ 1
)

monotone in the first coordinate.
By induction this subsequence contains a 3-element subsequence monotone in all
coordinates except the first one. But the whole subsequence is monotone in the
first coordinate. So we have 3-element subsequence monotone in each coordinate.
Hence by the previous lemma there are two k-gons such that one of them does
not see the other one. 2

If k is even we have a better estimate, as it is necessary to use only k/2
coordinates. Hence we can get f(2k) ≤ 22k

. The same proof can be used to
prove the theorem for polygons of different sizes with parallel edges.
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Fig. 4. Sequence of three polygons i < j < k monotone in each coordinate

Conjecture 1 For every natural k > 4, we conjecture f(k) ≤ f(k + 2).

Conjecture 2 For every natural k > 4, we conjecture f(k) ≤ f(2k).

Conjecture 3 For every even k it is possible to draw up an algorithm, which
tells the maximum size of a configuration of k-gons, if we additionally require
that the intersection of every pair of k-gons is a k-gon again.

The algorithm is similar to the one used in [FHW] for enumerating the ma-
ximum size of configuration of squares. If the k-gons lying in between i and j
cover all k vertices of the intersection i ∩ j, then i cannot see j. Thus all k-gons
in the configuration see the others if and only if the following holds for every
pair i < j: ∣∣∣∣∣∣

⋃
i<m<j

⋂
1≤l≤k

Pl(m)

∣∣∣∣∣∣
< k,

where Pl(m) is the set of vertices of the intersection i ∩ j, which can be covered
by m in the direction of the πl-coordinate.

3 Triangles

Claim 6
f(3) ≥ 14.

Proof. An example of configuration of fourteen triangles, which see each other
is given in Figure 6. The orderings on the π, ρ and σ coordinates are given in
the following table.
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π 5 4 10 8 7 2 6 1 3 14 13 12 11 9
ρ 9 4 13 11 14 12 7 3 1 6 2 10 8 5
σ 12 14 9 11 5 1 13 8 10 2 3 6 7 4

2

We have developed a functional implementation of an algorithm which enu-
merates the upper bound for f(3). It is based on the following three conditions
the orderings on the three coordinates π, ρ a σ must satisfy, otherwise there is
a pair of triangles not seeing each other.

Lemma 7 Every configuration of k-gons, has the following two properties:

1 There is no pair of k-gons i 6= j such that

∀n = 1, .., k : πn(i) < πn(j),

2 there is no triple i < j < l such that

∀n = 1, .., k : ((πn(i) < πn(j) < πn(l)) ∨ (πn(i) > πn(j) > πn(l)) .

Remark: For even k we use only π1, . . . ,πk/2- axis to describe the configuration;
configuration satisfies 1 automatically.
First property follows from the fact that we have equal k-gons and therefore no
k-gon can be smaller that any other in every coordinate. The second property is
only a re-formulation of Lemma 5, which says that there cannot be a subsequence
monotone in all of the three coordinates, otherwise there is a pair of triangles
not seeing each other. 2

Lemma 8 Every configuration of triangles has the following property:

3 If there is a subsequence monotone in the two coordinates, then the middle
triangle must have the highest order in the third one.

i

j

l
i

j

l

i \ l i \ l

area, where i sees j

(a) (b)

Fig. 5. Illustration to the property 3.
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Fig. 6. Fourteen triangles seeing each other.
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Thus there is no triple i < j < l such that

((π(i) < π(j) < π(l)) ∨ (π(i) > π(j) > π(l)))

∧ ((ρ(i) < ρ(j) < ρ(l)) ∨ (ρ(i) > ρ(j) > ρ(l)))

∧ ((σ(j) < σ(i) < σ(l)) ∨ (σ(j) < σ(l) < σ(i))) .

Proof. See Figure 5. We have three triangles i < j < l. In both figures is
(ρ(i) < ρ(j) < ρ(l)) and (σ(l) < σ(j) < σ(i)) - a subsequence monotone in
the two coordinates. In Figure 5(a) is (π(j) < π(i) < π(l)) and j covers the
intersection i ∩ j entirely, but in Figure 5(b), where (π(i) < π(l) < π(j)), there
is an area, where i can see j. 2

We have stated two conjectures in connection with triangles.

Conjecture 4 Configuration is realizable (with no regard to the visibility) if and
only if the orderings satisfy the property 1.

Conjecture 5 It is possible to construct a configuration of triangles seeing each
other if and only if the three orderings satisfy the properties 1, 2 and 3.

The result we obtain from the computer is a triple of sequences satisfying
the necessary conditions - the upper bound. We have to give an example of the
corresponding number of triangles each seeing all the others. We would not need
that once we have proved Conjecture 5.

After searching through approximately one third of all possibilities, we have
the lower bound f(3) ≤ 14 and we conjecture that it is the final result.

4 Open problems

1 To prove or refute the conjectures mentioned in the previous.

2 We want to draw all combinatorially distinct configurations of triangles into
a triangle net. How fine this net has to be ?

3 What can be said about the function f(k)/k ? Does the limit limk→∞
f(k)

k
exist ?
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