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Abstract. DES and triple-DES are two well-known and popular encryp-
tion algorithms, but they both have the same drawback: their block size
is limited to 64 bits. While the cryptographic community is working hard
to select and evaluate candidates and finalists for the AES (Advanced
Encryption Standard) contest launched by NIST in 1997, it might be of
interest to propose a secure and simple double block-length encryption
algorithm. More than in terms of key length and block size, our Uni-
versal Encryption Standard is a new construction that remains totally
compliant with DES and triple-DES specifications as well as with AES
requirements.

1 Introduction

For many years, DES [B] has been used as a worldwide encryption standard. But
as technology improved for specialized key-search machines [ZH], its 56-bit key
size became too short, and a replacement was needed. 2-key triple-DES has since
become the traditional block cipher used both by the cryptographic community
as well as industry. However, there is a second drawback to DES which is also
the case for triple-DES: its 64-bit block size. Therefore NIST launched a contest
to select and evaluate candidates for a new encryption standard, the AES, in late
1997 []. The basic requirements for this new algorithm were that it be at least
as secure and fast as triple-DES, but that its block size be of 128 bits instead of
64, and that its key size take possible values of 128, 192 and 256 bits.

Meanwhile, people are still using DES and triple-DES, and may want to start
developping applications where these two as well as the new AES may indepen-
dently be used as the encryption components. In order to be compliant with DES
and triple-DES, we propose a new construction which is based on these building
blocks, but which can take AES specifications as a requirement for its key and
block sizes. Therefore, when AES is finally selected, it will come as a natural
plug-in replacement of the actual structure whithout anybody being forced to
change input and output interfaces.

We notice that double block-length encryption primitives based on DES already
exist: as an example, take DEAL, which uses DES as the round function in
a traditional 6-round Feistel scheme []. One can also think of multiple modes
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with two blocks, where DES is the underlying cipher [E], but except for two-key
triple DES in outer CBC mode which is vulnerable to dictionary and matching
ciphertext attacks, none of these constructions are backward compliant with
DES and triple-DES, nore do they make use of the full strength of a 128-bit
block size (the second half of the plaintext never influences the first half of the
ciphertext). Furthermore, multiple modes are either insecure [EEEE] or require
confidentiality or integrity protected initial values [EEICN]. We are also aware of
the attacks by Lucks on 3-key triple DES [i3] and DEAL [E9].

The rest of the paper is organized as follows: section 2 presents our new en-
cryption standard. Sections 3 and 4 provide details on collision attacks when
some of the components of our UES are cut out. Section 5 provides additional
security arguments on our construction and evaluates its strength based on the
FX construction. Finally, we argue why we believe our construction is sound.

2 A Universal Encryption Standard

In this section we give the specifications of our new double block-length en-
cryption algorithm. It basically runs two triple-DES encryptions in parallel and
exchanges some of the bits of both halves inbetween each of the three encryption
layers. Note that Outerbridge proposed a similar idea [Z1]. We investigated sev-
eral related constructions and decided to add pre and post-whitening with extra
keys, as well as an additional layer where bits of the left and the right half of
the scheme are swapped under control of the extended secret key. Justification
for these final choices will be given throughout this paper. The key schedule is
considered to be the same as DEAL’s.

2.1 Notations

We use the following notations for our scheme as well as for the attacks presented
in the next sections (all operations are on bitstrings):

alb : concatenation of a and b

a @b : bitwise “exclusive or” of a and b

a Ab : bitwise “and” of a and b

a : bitwise 1-complement of a

001110100111y, : bitstring in binary notation

3aT7y : bitstring in hexadecimal notation with implicit length (multiple of four)

In addition we let DESy(x) denote the DES encryption of a 64-bit block x
by using a 56-bit key k, and we let 3DESy, i, () denote the 2-key triple-DES
encryption of x in EDE mode (Encryption followed by Decryption followed by
Encryption), i.e.

3DESk, .k, (x) = DESy, (DES, (DES, (2))) .
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2.2 Basic Building Blocks

We already mentioned that we use parallel 3DES as well as a kind of keyed swap.
In order to further formalize our proposal, let us define the following three basic
building blocks which refer to operations on 128-bit strings. For convenience, we
split a 128-bit string = into two 64-bit halves x; and z;.

1. Keyed Translation. Let k = kp|k; be a 128-bit string. We define
Tie(x) =2 ® k.
2. Keyed Swap. Let k be a 64-bit string. We define
Sk(@) = (zn ® u)|(z ® u)

where u = (zp, ® x;) A k. This actually consists of exchanging the bits which
are masked by k in the two halves.

3. Parallel Encryption. Let k& = kp|k; be two concatenated keys for two
keyed algorithms C' and C’. We define

Py.c.c/(x) = Cr, (x1)|Cy, (21).

Our algorithm is a combination of three rounds of products of these transfor-
mations with additional operations before the first and after the last encryption
layer.

2.3 Our New DES and 3DES-Compliant Construction

Having defined the above components, let m = 00000000ffffffff,, and let
k' = k1|ke|ks|ka and m’ = mq|ma|ms|m4 be respectively two 256-bit extended
keys derived from k by the key schedule.

Definition 1.
*
UES}, = Px, |ks,DES,DES © Sm. © Piyjiy DES-1,DES 1 © Sm © Phy|ks,DES,DES

See figure 1. Then the precise formula to encrypt a plaintext under key k
using UES reads as follows:

Definition 2.
UES) = Sy © Ty jmg © UESE 0 Ty © Sy

See figure 2. This algorithm has two interesting properties. Namely if we set
m’ =0 and k¥’ = k, we have

Property 1.
UESk, ks k1 ks (T1]71) = UESE 1, 1k |1, (2]71) = 3DES, i, (21)[3DESk, i, (1)

and
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Fig. 1. UES": Double-block length parallel triple DES

Property 2.
UESy, ke ey 11 (@1]20) = UESE 111 11y 1y (T0|20) = DESk, (1) [DESy, (21).

In addition it operates on 128-bit block messages. This makes the algorithm
compatible with the forthcoming AES, and usable in DES or triple-DES mode.
Finally, if we set m = 0, we can even run two full DES or 3DES encryptions in
parallel, which doubles the encryption speed (two blocks are encrypted applying
UES™ only once).

Note that this scheme enables to construct double block-length encryption algo-
rithms no matter what the underlying cipher is. For simplicity throughout this
paper we will consider DES, but any other secure 64-bit block cipher could do
the job. We will also focus on generic attacks that do not exploit the internal
structure of the component encryption algorithm. Specific attacks such as dif-
ferential [@ or linear cryptanalysis [, truncated or higher order differentials
5] do not apply in this context as at least three layers of basic encryption are
applied. We also believe that the best way to attack the scheme by a generic
method is to try to create inner collisions.
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Fig. 2. Encryption with UES.



6 Helena Handschuh and Serge Vaudenay

2.4 The Key-Schedule

In Table 1 below, we summarize in which different modes UES may be used.

Mode DES 3DES AES
Key size 56 112 128/192/256
Block size|| & = KIk|k[E | K = k|k B

64 bits m =0,m=0m' =0, m=0
Block size|| & = Kk[k[E | K =k[k W =K1 [kalkaka
128 bits [|m' = 0,z = x|m’ = 0,2, = x1||m’ = ma|ma|ms|ma

Table 1. Key-schedule for DES, 3DES and AES modes

The four subkeys and the four submasks used in AES-mode are derived from
the user key using DEAL’s key-schedule (for a 256-bit key). The user key is
first divided into s subkeys of 64 bits each for s = 2,3,4.Then expand these s
keys to 8 keys by repetition and exor the keys with a new constant for every
repetition. Encrypt the expanded list of keys using DES in CBC mode with a
fixed key K = 0123456789abcdef, and with the initial value set to zero. In
order to partially allow on the fly key generation, start by deriving m; and my,
next derive the four DES keys forming &', and finally derive m3 and my.

We are aware of Kelsey and Schneier’s [ key-schedule cryptanalysis of
DEAL. It turns out UES may have a very small class of equivalent keys in the
192-bit key case, because of the use of 56-bit keys for the inner DES blocks,
whereas 64 bit subkeys are generated by the key-schedule. We also worked out
a similar related-key attack with John Kelsey, which recovers the keys in com-
plexity 264 using 233 related keys. However, these attacks apply in a very limited
number of practical settings. Developpers should still make sure an attacker is
not allowed to choose the keys in such a way.

3 Collision Attacks on Parallel DES
In this section, we consider the variant of UES previously defined as:

*
UES}, = Pk, |ks,DES,DES © Sm © Ppyjk, DES—! DES—! © Sm © Phy|ks,DES, DES

We will show that this straightforward way of doubling the block size is not
secure because a collision attack can be mounted against it (this phenomenon
has been independently observed by Knudsen [E]). This is due to the fact that
the construction is not a multipermutation. In other words, it may very well
happen that if half of the input bits have a fixed value, half of the output bits
also have, which would not be the case if the multipermutation property had
been satisfied [B4. However, our intention is to prove that we can nevertheless
use the structure if the input and output bits to this variant are unknown to
the attacker. Therefore we begin by showing where the problem comes from,
and justify our additional layers of swapping and masking in the final version of
UES.



A Universal Encryption Standard 7

3.1 Public Intermediate Swapping

We first show how to break UES* by recovering the secret key with about 234

chosen plaintexts, 259 DES operations, and a memory of 16GB. The attack
consists in the following steps.

Step 1. First fix x5 = a to a constant and try many x; = u; values for ¢ =
1,...,n. Request y;|z; = UES™(a]u;).

Step 2. For any collision y; = y;, guess that this comes from collisions on
the two inputs of the second and third internal DES higher permutations
(these are called “good collisions”). The expected number of good collisions
is n2.2795 and the expected number of “natural” (bad) collisions is the same.
Try all possible k3 until there is a collision on both

DESy, (z;) A m = DESy, (z;) Am

and
DES;;(Zi) Am = DESE;(ZJ') Am.

Note that a single (good) collision will always suggest the good ks value and
an expected number of 278 random ones, and a bad collision will suggest
278 random values on average. It is thus likely that we get the ks key once
a k3 value is suggested twice (namely with a confidence of 272 : 1). We thus
need only two good collisions. This requires n =~ 233.

Step 3. Perform a similar attack on k.

Step 4. Recover ks, then k4 by exhaustive search.

This shows that this algorithm is just a little more secure than DES, and far
less secure than triple-DES. We add that Bart Preneel pointed out to us that
in Step 1, a collision on the other half of the ciphertext occurs with the same
probability, therefore we get an extra condition satisfied by k3 as well as k; from
the same number of chosen plaintexts. This slightly decreases the number of
required chosen plaintexts.

As a matter of fact, the previous attack holds whenever m is any other public
value. Namely let w denote the Hamming weight of m. Without loss of generality,
let us assume that w < 32 (otherwise, let us consider the lower DES™! opera-
tion). In the attack above, the number of expected good collisions is n2.272% =1
and the number of bad collisions is n2.27%5. The attack thus still holds but with
a complexity of n &~ 2%+, In general, the complexity is thus n ~ 233-[32-wl,
Actually, the complexity is the highest for UES*, because m has a balanced
Hamming weight. (Note that this analysis does not hold if m = 0 or m = (0¢=64
for which we have two triple-DES in parallel, and no possible collision.)

3.2 Keyed Intermediate Swapping

At first sight, one might think that introducing a keyed inner swap significantly
increases the complexity of the attack. However this is not the case. Let us show
why.
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If m is a part of the key, we cannot exhaustively search for k3 because we
do not know m. In the worst case (w = 32) we have 2 good collisions and 2 bad
ones. Let us assume we have guesses which are the good ones (this may lead
to an overhead factor of 16). For each possible ks we can look on which bits
DESy, (z;) and DESy, (z;) collide, as well as DES];;(Zi) and DES];;(ZJ'). For the
good ks we will find w + GAQT’“’ bits on average with a standard deviation of

(64 — w)+%. For a random k3 we will find 16+ 21/3 bits (which means that 16

is the average and 2v/3 the standard deviation). In order to simplify the analysis,
let us consider the worst case where w = 32. So for the right key k3 and for a
good collision, the number of colliding bits is 40 4 /6.

Now for each possible k3 count the collisions that have say more than ¢ = 30
bits as they will much more likely result from the right key value rather than from
a random key value. Then the key guess associated to the most such collisions
will be the right one with high probability.

Let ) N
o(z) = E[m e~z dt. (1)

Then as a matter of fact, the average number C; of collisions on more than
t bits is
Cy =n2.27%(1 — ) £n.27325 /(1 — @) (2)

where ¢ = @1 = ¢ (%) ~ 1—107%% for t = 30 in case of a random key

value, and ¢ = @3 = @ (%) ~ 27158 for the correct key guess.

So for n = 234 the average number of such collisions is 2756 for a wrong
guess, whereas it is about 4 for the right key.

As a result of this enhaced collision attack, we chose not to use any keyed
inner swapping as it unnecessarily complicates the design (also more key materiel
is needed) without significantly increasing its security. Instead of this, we chose
to add the features described hereafter.

4 Introducing Pre- and Post-whitening

The scheme of the previous section is compliant with DES and 3DES, but is not
secure enough against key recovery attacks. So the next most straightforward
idea is to protect against the exhaustive key search (once a collision is found)
by adding whitening keys before and after the current structure. This consid-
erably increases the work factor and derives from a principle discussed in the
construction of DESX [[E2].

Let us define this new variant of UES by:

Definition 3.

UES** = ng‘mg ] UESZ @) ng\mg



A Universal Encryption Standard 9

The complexity of exhaustive key search increases to about 296164 = 2120 of
fline encryptions given one single collision due to the DESX phenomenon (other
trade-offs can be achieved if more than one collision is available). However, this
variant can still be distinguished from a random permutation by the previous
attack because collisions are far more likely in this setting (they occur twice more
often). Note that a collision on one half of the output of UES* leads to a collision
on the same half of the ciphertext because the value ms is kept constant. There-
fore with the same complexity as the collision attack, this second variant may
be distinguished from a random permutation, which is not a desirable feature.

5 On the Importance of Pre- and Post-swapping

Having solved the key recovery problem, we still face the distinguisher problem.
Therefore the next and last step towards our final UES is to add yet another
layer of swapping, but this time under control of the secret key. We will first
show how the addition of m4 increases the complexity of the collision attack,
and next which additional workfactor is introduced by m;.

5.1 Keyed Swap of the Output

Adding a keyed post-swapping, our current structure becomes:

Definition 4.
UESZ** = Sy 0 UES™ = S, 0 ng\mg o UES* o Tmz\mz

In order to build the same attack as the distinguisher of the previous section
(key recovery is hopeless by now), we need to create collisions on one half of
the ouput. However, this time these collisions are much harder to spot, as we do
not know which output bits correspond say to the left half of the output of the
butterfly structure.

Nevertheless, we can still use a property of S,,,. Namely, if z;, = z},, we let
A= Sp,(z)® Sp, (2') and it holds that:

1. ALANA; =0
2. (An)i < (ma);
3. (A1) < ()

for any bit ¢ =1,...,64.

Proof. Let yn = (Smy (%)), 41 = (Sma (€)1, Y, = (Sms (27)), and yp = (S, (2));-
Then we have the following results:

1. When z;, = x},, the following relations hold:
yh B Y, = (x1 Ama) & (z) Ama) = (1 B x)) Ay
ydy =@ Amsy) @ (@) Amy) Say @)= (v ) ANTg
Thus
A NA = (@ x) Ama) A((z @ x)) ANTg) =0
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2. Ay = (21 @ x)) Amyg so when (my); = 0, (A); = 0 and when (m4), = 1,
(Ap); =0 or 1. The result follows.
3. The third point is symmetric to the second.

Given the above properties, the attack consists in the following steps.

Step 1. First fix x5 = a to a constant and try many x; = u; values for ¢ =
1,...,n. Request y; = UES™*" (a]u;).

Step 2. For all (4, j) pairs, let y; & y; = 2|t. If we have z At = 0, guess that we
have a collision as in the above attack. Guess that my4 is an intermediate mask
between z and t. (If z; = 1, then (m4); = 1, and if ¢; = 1, then (my4); = 0.)
Thus the expected number of good events (the signal) is n2.272%~! and the
number of bad events (the noise) is %2 (%)64 ~ n2.27275. One good event
suggests 2/3 of the bits of m4 on average. One bad event also suggests 2/3
of the bits of my4 on average, but in a random way so that we can check
for consistency. It is thus likely that we recover the right mask my within
four good events (mask bits suggested by bad events will happen to be
inconsistent with the good ones with high probability).

Step 3. From m4 and the above collisions, apply the same attack as before to

distinguish UES™* from a random permutation.

Since we need four good events to occur, in the worst case (w = 32) we need n ~
233:5 and considering all (i, j) pairs in Step 2 leads to a complexity of 267. (These
are however very simple tests, so this complexity can actually be compared to an

exhaustive search for DES.) We can expect to get %2 (%)64 ~ 2394 bad events
on average. Each event suggests a pattern for my4 with determined bits (0 or 1),

and undetermined ones. A pair of events may thus be consistent with probability

(%)64 ~ 27232 We can thus expect to find 277-8.2723:2 = 2546 consistent pairs
of bad events. More generally speaking, we are looking for multiple events in
which each pair is consistent with a unique mask my4. This is the same problem as
seeking k-cliques in the consistency graph of the bad events. Any k-clique will be
2kt _q
3k:
Therefore, when k gets larger (kK > 11), no k-clique in the consistency graph
will survive this filtering process. The complexity of this algorithm is subject to
combinatorial optimizations, and we believe that the bottleneck complexity will

actually come from the exhaustive search of DES keys.

consistent with probability ( . And there are exactly Z—l,c such cliques.

5.2 Keyed Swap of the Input

Taking into account what we just saw, our final construction must make it as
hard as possible for the attacker to find the required 234 different values entering
say the right half of the structure. Therefore all we have to do is make it hard to
find 34 bits entering the right half (else the attacker tries all the values of these
34 bits and keeps the rest constant which leads to the above result.

Adding a final extra layer of keyed swapping on input to the structure will
lead to this result. The attacker now has to guess 34 bits that enter one half
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in order to subsequently attack m4 and then be able to distinguish UES from
a random permutation. The extra work factor is thus (13248) / (gi) which is 243.
Then the total complexity is 243135 = 278,

We believe this security level is acceptable.

5.3 Other Alternatives

If the security level is still a concern to some people, one might also consider
replacing the keyed outer swapping by a keyed permutation at the bit level.
This will add a bit more complexity again. The attacker will have yet a harder
time finding which 35 bits enter say the left part of the structure. However, bit
permutations are very costly in terms of speed, therefore this alternative shall
only be considered if execution time is not that much an issue.

We also considered byte permutations, but these are far too trivial to attack.
The overhead complexity is only about 212.

Our final construction is therefore UES with keyed outer swapping and
whitening ”a la DESX”.

6 Conclusion

We have investigated several variants of a double-block length encryption scheme
based on DES which is compliant with DES, 3DES as well as with AES spec-
ifications. This may be useful for applications where DES or 3DES are still in
use, but where people start to think about double block length and key sizes.
Once the final AES is chosen and becomes a standard, it can be plugged into
applications in place of our scheme with ease. Among several variants, we se-
lected the best one in terms of security and simplicity, and showed that there is
no practical attack that can endanger our scheme. Key recovery does not seem
possible and in order to distinguish this new cipher from a random permutation,
the workload is basically very high.
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