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Abstract. We introduce a variant of the system of rank 2 intersec-
tion types with new typing rules for local definitions (let-expressions
and letrec-expressions) and conditional expressions (if-expressions and
case-expressions). These extensions are a further step towards the use of
intersection types in “real” programming languages.

1 Introduction

The Hindley-Milner type system [3] is the core of the type systems of mod-
ern functional programming languages, like ML [11], Miranda, Haskell, and
Clean. The fact that this type system is somewhat inflexible1 has motivated
the search for more expressive, but still decidable, type systems (see, for in-
stance, [10,14,4,2,8,7,9]). The extensions based on intersection types are partic-
ular interesting since they generally have the principal typing property2, whose
advantages w.r.t. the principal type property3 of the ML type system have been
described in [7]. In particular the system of rank 2 intersection types [10,14,15,7]
is able to type all ML programs, has the principal typing property, decidable
type inference, and complexity of type inference which is of the same order as
in ML. The variant of the system of rank 2 intersection types considered by
Jim [7] is particularly interesting since it includes a new rule for typing recur-
sive definitions which allows to type some, but not all, examples of polymorphic
recursion [12].

In this paper we build on Jim’s work [7] and present a new system of rank
2 intersection types, `If,Let,Rec

∧2 , which allows to give more expressive typings to
locally defined identifiers (let-bound and letrec-bound identifiers) and to con-
ditional expressions (we consider only if-expressions, but the technique can be
1 In particular it does not allow to assign different types to different occurrences of a

formal parameter in the body of a function.
2 A type system has the principal typing property if, whenever a term e is typable,

there exist a type environment A and a type v representing all possible typings of e.
3 A type system has the principal type property if, whenever a term e is typable in a

type environment A, there exists a type v representing all possible types of e in A.
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straightforwardly applied to case-expressions). These extensions are a further
step towards the use of intersection types in “real” programming languages.

Better Typings for Local Definitions. The system of simple types [5] assigns
the same type to all the uses of an identifier. To overcome this limitation the
Hindley-Milner type system [3] considers a special rule to type local definitions,
in this way locally defined identifiers (let-bound identifiers) are handled in a
different way from the formal parameters of the functions (λ-bound identifiers).

In practice let-polymorphism is also used to allow polymorphic use of globally
defined identifiers. The key idea is that of handling an expression e which uses
globally defined identifiers x1, . . ., xn like the expression let x1 = e1 in · · · let xn =
en in e, in which the definitions of x1, . . ., xn are local (and therefore available).
This use of let-polymorphism to deal with global definitions has often been de-
scribed as an odd feature, since it does not allow to typecheck global definitions
in isolation. The problem can be identified with the fact that algorithm W re-
quires as necessary inputs the type assumptions for the free identifiers of the
expression being typed. Some solutions to overcome this limitation have been
proposed in the literature (see for instance [1,13]).

Systems with rank 2 intersection types can provide an elegant solution to this
problem by relying on the principal typing property, see [7], and handling let-
expressions “letx = e0 in e” as syntactic sugar for “(λx.e)e0”. In this way both
locally defined and globally defined identifiers are handled as function formal
parameters. However this strategy has a drawback: it forces to assign simple
types to the uses of locally defined identifiers. For instance, the expression

let g = λ f.pair (f 2) (f true) in g(λ y.cons y nil) (1)

cannot be typed, since to type (1) it is necessary to assign the rank 2 type
((int → int list) ∧ (bool → bool list)) → (int list × bool list) to the locally defined
identifier g.

In this paper we present a technique that, while preserving the benefits of
the principal typing property of the system of rank 2 intersection types, allows
to assign rank 2 intersection types to the uses of locally defined identifiers, by
exploiting the fact that their definition is indeed available. As we will see, typing
let-expressions let x = e0 in e by associating to the identifier x the principal
type scheme of e0 (which is a formula ∀−→α .v0, where v0 is a rank 2 type and−→α are some of the type variables of v0) is not a good solution, since, when e0

contains free identifies, it may happen that replacing a subexpression (λx.e)e0

with letx = e0 in e does not preserve typability. To avoid this problem we will
associate to x the principal pair scheme of e0 (which is a formula ∀−→α .〈A0, v0〉,
where A0 is a type environment, v0 is a rank 2 type, and −→α are all the type
variables of A0 and v0).

Better Typings for Conditional Expressions. The ML type system handles
an if-expression “if e then e1 else e2” like the application “ifc e e1 e2”, where ifc is
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a special constant of principal type scheme ∀α.bool → α → α → α. If we apply
this strategy to a system with rank 2 intersection types we are forced to assign
simple types to the conditional expression and to its branches, e1 and e2, and so
the additional type information provided by intersection is lost.

In this paper we present a technique that allows to overcome this limitation
and to assign rank 2 intersection types to conditional expressions. For simplicity
we consider only if-expressions, but the technique can be straightforwardly
applied to case-expressions and functions defined by cases. As we will see,
allowing to assign to an if-expression if e then e1 else e2 any rank 2 type v that
can be assigned to both e1 and e2 will destroy the principal typing (and type)
property of the rank 2 intersection type system. So, to preserve the principal
typing property, we will introduce a condition that limits the use of intersection
in the type v assigned to the branches e1 and e2 of the if-expression.

Organization of the Paper. In Section 2 of this paper we describe a simple
programming language, that we call mini-ML, which can be considered the ker-
nel of functional programming languages like ML, Miranda, Haskell, and Clean
(the evaluation mechanism, call-by-name or call-by-value, is not relevant for the
purpose of typechecking). Section 3 introduces the syntax of our rank 2 inter-
section types, together with other basic definitions. Section 4 presents the `Rec

∧2

type system, which is essentially the extension to mini-ML of the type system
`PR

2
of [7]. In Sections 5 and 6 we describe two new type systems for mini-ML:

`Let,Rec
∧2 , which extends the system `Rec

∧2
with more powerful rules for typing local

definitions (let-expressions and letrec-expressions), and `If,Let,Rec
∧2 , which extends

the system `Let,Rec
∧2 with a more powerful rule for typing if-expressions.

2 The Language Mini-ML

We consider two classes of constants: constructors for denoting base values (in-
teger, booleans) and building data structures, and base functions for denoting
operations on base values and for inspecting and decomposing data structures.
The base functions include some arithmetic operators, and the functions for de-
composing pairs (prj1 and prj2) and for decomposing and inspecting lists (hd, tl,
and null). The constructors include the unique element of type unit, the booleans,
the integer numbers, and the constructors for pairs and lists. Let bf range over
base functions (all unary) and cs range over constructors. The syntax of con-
stants (ranged over by c) is as follows

c ::= bf | cs
bf ::= not | and | or | + | − | ∗ | / | = | · · · | prj1 | prj2 | hd | tl | null
cs ::= () | true | false | · · · | −1 | 0 | 1 | · · · | nil | pair | cons

Expressions (ranged over by e) have the following syntax

e ::= x | c | λx.e | e1e2 | if e then e1 else e2

| letx = e1 in e2 | letrec {x1 = e1, . . . , xn = en} in e
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where x, x1, . . ., xn range over identifiers. The construct letrec allows mutually
recursive expression definitions. Let FV(e) denote the set of free identifiers of the
expression e. Expressions are considered syntactically equal modulo renaming
of the bound identifiers. In order to simplify the presentation we assume that,
in every expression, different bound identifiers have different names and that
the names of bound identifiers cannot occur free in the expression (this can be
always enforced by suitable renaming of bound identifiers).

3 Types, Schemes, and Environments

In this section we introduce the syntax of our rank 2 intersection types, together
with other basic definitions that will be used in the rest of the paper.

Types and Schemes. The language of simple types (T0), ranged over by u,
is defined by the grammar: u ::= α | unit | bool | int | u → u | u × u | u list.
We have type variables (ranged over by α) and a selection of ground types and
composite types. The ground types are unit (the singleton type), bool (the set
of booleans), and int (the set of integers). The composite types are product and
list types.

The language of rank 1 intersection types (T1), ranged over by ui , the lan-
guage of rank 2 intersection types (T2), ranged over by v , and the language of
rank 2 intersection schemes (T∀2), ranged over by vs , are defined as follows

ui ::= u1 ∧ · · · ∧ un (rank 1 types, i.e. intersections of simple types)
v ::= u | ui → v (rank 2 types)
vs ::= ∀−→α .v (rank 2 schemes)

where u ranges over the set of simple types T0, n ≥ 1, and −→α is a finite (possibly
empty) sequence of type variables α1 · · ·αm (m ≥ 0). Note that T0 = T1 ∩T2.
Let ε denote the empty sequence. We consider ∀ε.v 6= v , so T2 ∩T∀2 = ∅.

Free and bound type variables are defined as usual. For every type t ∈ T1 ∪
T2 ∪ T∀2 let FTV(t) denote the set of free type variables of t . We say that a
scheme vs is closed if FTV(vs) = ∅.

To simplify the presentation we adopt the following syntactic convention:
we consider ∧ to be associative, commutative, and idempotent. Modulo this
convention any type in T1 can be considered as a set of types in T0. We also
assume that for every scheme ∀−→α .v we have that {−→α } ⊆ FTV(v).

A substitution s is a mapping from type variables to simple types which is
the identity on all but a finite number of type variables. The domain, Dom(s),
of a substitution s is the set of type variables {α | s(α) 6= α}. We use s{−→α }
to range over substitutions whose domain is a subset of {−→α }. Note that, since
substitutions replace free variables by simple types, we have that T0, T1, T2,
and T∀2 are closed under substitution.

The following definition are fairly standard. Note that we keep a clear dis-
tinction between subtyping and instantiation relations, and we do not introduce
a subtyping relation between rank 2 schemes.
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Definition 1 (Subtyping relations ≤1 and ≤2). The subtyping relations ≤1

(⊆ T1 ×T1) and ≤2 (⊆ T2 ×T2) are inductively defined as follows

– u ≤2 u, if u ∈ T0

– u1 ∧ · · · ∧ un ≤1 u ′1 ∧ · · · ∧ u ′m, if {u1, . . . , un} ⊇ {u ′1, . . . , u ′m}
– ui → v ≤2 ui ′ → v ′, if ui ′ ≤1 ui and v ≤2 v ′.

Definition 2 (Instantiation relations ≤∀2,0, ≤∀2,1 and ≤∀2,2). The instan-
tiation relations ≤∀2,0 (⊆ T∀2×T0), ≤∀2,1 (⊆ T∀2×T1), and ≤∀2,2 (⊆ T∀2×T2)
are defined as follows. For every scheme ∀−→α .v ∈ T∀2 and for every type

0. u ∈ T0, we write ∀−→α .v ≤∀2,0 u if u = s{−→α }(v), for some substitution s{−→α };
1. u1 ∧ · · · ∧ un ∈ T1, we write ∀−→α .v ≤∀2,1 u1 ∧ · · · ∧ un if ∀−→α .v ≤∀2,0 ui, for

every i ∈ {1, . . . , n};
2. v ′ ∈ T2, we say that v ′ is an instance of ∀−→α .v, and write ∀−→α .v ≤∀2,2 v ′, if

s{−→α }(v) ≤2 v ′, for some substitution s{−→α }.

For example, for vs = ∀α1α2α3.((α1 → α3) ∧ (α2 → α3)) → α3, we have
(remember that ∧ is idempotent) vs ≤∀2,0 (int → int) → int (by using the
substitution s1 = [α1, α2, α3 := int]) and vs ≤∀2,1 ((int → int) → int) ∧ ((bool →
bool) → bool) (by s1 as above, and s2 = [α1, α2, α3 := bool]). We also have
∀α.α → α ≤∀2,2 (α1 ∧ α2) → α1 (by s = [α := α1] and ≤2).

Type Environments. A type environment T is a set {x1 : t1, . . . , xn : tn} of
type assumptions for identifiers such that every identifier x can occur at most
once in T . We write Dom(T ) for {x1, . . . , xn} and T, x : t for the environment
T ∪ {x : t} where it is assumed that x 6∈ Dom(T ). In particular:

– a rank 1 type environment A is an environment {x1 : ui1, . . . , xn : uin} of
rank 1 type assumptions for identifiers, and

– a rank 2 scheme environment B is an environment {x1 : vs1, . . . , xn : vsn}
of closed rank 2 schemes assumptions for identifiers.

For every type v ∈ T2 and type environment T we write Gen(T, v) for the
∀-closure of v in T , i.e. for the scheme ∀−→α .v where {−→α } = FTV(v)− FTV(T ).

Given two rank 1 environments A1 and A2 we write A1 + A2 to denote the
rank 1 environment

{x : ui1 ∧ ui2 | x : ui1 ∈ A1 and x : ui2 ∈ A2}
∪{x : ui1 ∈ A1 | x 6∈ Dom(A2)} ∪ {x : ui2 ∈ A2 | x 6∈ Dom(A1)} ,

and write A1 ≤1 A2 to mean that Dom(A1) = Dom(A2) and for every assump-
tion x : ui2 ∈ A2 there is an assumption x : ui1 ∈ A1 such that ui1 ≤1 ui2.
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4 System `Rec
^2

: Jim’s `PR
2

Type System Revised

In this section we introduce the `Rec∧2
type system for mini-ML. System `Rec∧2

is essentially an extension to mini-ML of the type system `PR
2

of [7] (the lan-
guage considered in [7] is a λ-calculus without constants enriched with letrec-
expressions). Then, in Sections 5 and 6, we will extend `Rec

∧2
with new typing

rules for local definitions and conditional expressions.

The Type Inference Rules. The type inference system `Rec
∧2

has judgements of
the form A; B `Rec

∧2
e : v , where B is a rank 2 environment specifying closed T∀2

types for library identifiers4, and A is a rank 1 environment containing the type
assumptions for the remaining free identifiers of e. So FV(e) ⊆ Dom(A ∪ B),
Dom(A) ∩ Dom(B) = ∅, and Dom(A) = FV(e) − Dom(B)5. Note that (by
definition of rank 2 scheme environment) FTV(B) = ∅.

We say that e is typable in `Rec
∧2

w.r.t. the library environment B if there
exist a typing A; B `Rec∧2

e : v , for some A and v .
The type inference rules are presented in Fig. 2. The rule for typing constants

uses the function Typeof (tabulated in Fig. 1) which assigns a closed scheme to
each constant. Since, by definition, Dom(A) contains exactly the assumptions
for the free non-library identifiers of the expression e being typed, we have two
rules for typing an abstraction λx.e, corresponding to the two cases x ∈ FV(e)
and x 6∈ FV(e). The rule for typing function application, (App), allows to use a
different typing for each expected type of the argument. The rule for typing if-
expressions handles an expression if e then e1 else e2 like the application ifc e e1 e2,
where ifc is a special constant of type ∀α.bool → α → α → α. A let-expression,
let x = e0 in e, is considered as syntactic sugar for the application (λx.e)e0.

The rule for typing letrec-expressions, letrec {x1 = e1, . . . , xn = en} in e,
introduces auxiliary expressions of the form reci {x1 = e1, . . . , xn = en}, for
1 ≤ i ≤ n. These auxiliary expressions are introduced just for convenience in
presenting the type system (reci {x1 = e1, . . . , xn = en} is simply a short for
letrec {x1 = e1, . . . , xn = en} inxi).

The only non-structural rule is (Sub), which allows to assume less specific
types for the free non-library identifiers and to assign more specific types to ex-
pressions (for instance, without rule (Sub) it would not be possible to assign type
(α1 ∧α2) → α1 to the identity function λx.x). The operations of ∀-introduction
and ∀-elimination are embedded in the structural rules.

Comparison with the System `PR
2
. Besides the presence of constants, if-

expressions, and let-expressions, the main differences between `Rec
∧2

and `PR
2

are
the presence of the library environment B (which is not present in `PR

2
, although

its use has been suggested in [7]) and the improved typing rules for recursive
4 I.e. for the identifiers defined in the libraries available to the programmer.
5 The fact that the environment A is relevant (i.e., x ∈ Dom(A) implies x ∈ FV(e)) is

used in rule (Rec) of Fig. 2 (as explained at the end of Section 4).
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c Typeof(c)

() ∀ε.unit
true, false ∀ε.bool
not ∀ε.bool → bool
and, or ∀ε.bool× bool → bool
· · · −1, 0, 1, · · · ∀ε.int
+, −, ∗, / ∀ε.int× int → int
=, <, · · · ∀ε.int× int → bool

c Typeof(c)

pair ∀α1α2.α1 → α2 → (α1 × α2)
prji ∀α1α2.(α1 × α2) → αi

nil ∀α.α list
cons ∀α.α → α list → α list
hd ∀α.α list → α
tl ∀α.α list → α list
null ∀α.α list → bool

Fig. 1. Types for constants

definitions. For instance we have that rec1 {x1 = λ y.yy} can be typed in `Rec
∧2

:
∅; ∅ `Rec∧2

rec1 {x1 = λ y.yy} : ((α1 → α2) ∧ α1) → α2, while it is not typable in
`PR

2
. This is due to the fact that, when typing a (possibly mutually) recursive

definition reci0 {x1 = e1, . . . , xn = en}, the rules of `PR
2

require that (also for
those i ∈ {1, . . . , n} such that xi 6∈ ∪j∈{1,...,n}FV(ej)) the rank two type vi

assigned to ei must be such that Gen(A, vi) ≤∀2,1 ui, for some simple type ui.
This anomaly has been pointed out in [6] where it is also described a solution to
the problem in the case of a single recursive definition (rec1{x1 = e1}): if x1 6∈
FV(e1) then do not require that Gen(A, v1) ≤∀2,1 u1. System `Rec

∧2
generalizes

this idea to mutually recursive definitions: the constraint Gen(A, vi) ≤∀2,1 ui i

is enforced only for those i such that xi ∈ ∪j∈{1,...,n}FV(ej).

Principal Typings for `Rec
^2

. The type system `Rec
∧2

has the principal typing
property. The following definition and theorem are a formulation for `Rec

∧2
(keep-

ing in account the presence of the library environment B) of an analogous result
for `PR

2
presented in [7].

Definition 3 (Principal typings for `Rec
∧2

). A typing A′; B `Rec
∧2

e : v ′ is
an instance of a typing A; B `Rec

∧2
e : v if there is a substitution s such that

Dom(s) = FTV(A) ∪ FTV(v), s(v) ≤2 v ′ and A′ ≤1 s(A).
A typing A; B `Rec

∧2
e : v is a principal typing for e w.r.t. B if any other typing

of e w.r.t. B is an instance of it.

Theorem 1 (Principal typing property for `Rec
∧2

). If e is typable in `Rec
∧2

w.r.t. B, then it has a principal typing w.r.t. B.

5 The System `Let;Rec
^2

: Better Typings for Local
Definitions

Rule (LetSugar) of `Rec∧2
prevents us to assign rank 2 types to the uses of local

definitions. The following rule, which allows to store the rank 2 type schemes
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(Id1) {x : u}; B ` x : u x 6∈ Dom(B) (Id2) ∅; B, x : ∀−→α .v ` x : s{−→α }(v)

(Con) ∅; B ` c : s{−→α }(v) Typeof(c) = ∀−→α .v

(Abs)
A, x : ui ; B ` e : v

A; B ` λ x.e : ui → v
(AbsVac)

A;B ` e : v
A; B ` λ x.e : u → v

x 6∈ Dom(A ∪B)

(App)
A; B ` e : u1 ∧· · ·∧ un→v (∀i∈{1,. . ., n}) Ai; B ` e0 : vi Gen(Ai, vi)≤∀2,0 ui

A + A1 + · · ·+ An; B ` ee0 : v

(IfSimple)
A; B ` e : bool A1; B ` e1 : u A2; B ` e2 : u

A + A1 + A2; B ` if e then e1 else e2 : u

(LetSugar)
A; B ` (λ x.e)e0 : v

A; B ` let x = e0 in e : v

(Letrec)
A;B ` (λx1. · · · .λ xn.e)e ′1 · · · e ′n : v

A;B ` letrec {x1 = e1, . . . , xn = en} in e : v
where, for i ∈ {1, . . . , n}, e ′i = reci {x1 = e1, . . . , xn = en}

(Rec)
(∀i ∈ {1, . . . , n}) Ai; B ` ei : vi (∀j ∈ {j1, . . . , jm}) Gen(A, vj) ≤∀2,1 uij

A0; B ` reci0 {x1 = e1, . . . , xn = en} : vi0

where {xj1 , . . . , xjm} = {x1, . . . , xn} ∩ (∪1≤i≤nFV(ei)),
A = A0, xj1 : uij1 , . . . , xjm : uijm = A1 + · · ·+ An, and i0 ∈ {1, . . . , n}

(Sub)
A1; B ` e : v1 A2 ≤1 A1 v1 ≤2 v2

A2; B ` e : v2

Fig. 2. Type assignment rules (system `Rec
∧2

)

inferred for local definitions in the environment B, has been suggested in [7] to
overcome this limitation.

(LetWeak) A0; B ` e0 : v0 A; B, x : Gen(A0 ∪B, v0) ` e ′ : v
A0 + A; B ` letx = e0 in e : v

However the system `LetWeak∧2
which uses such a rule to type let-expressions6

has an unpleasant feature: for some e0 and e such that FV(e0) 6= ∅, replacing
(λx.e)e0 with letx = e0 in e may not preserve typability, as the following example
shows.

Example 1. We have that {y : (α1 → α2)∧α1}; ∅ `LetWeak
∧2

(λx.xx)y : α2 and so
∅; ∅ `LetWeak∧2

λ y.((λx.xx)y) : ((α1 → α2) ∧ α1) → α2.
Instead λ y.(let x = y inxx) cannot be typed in `LetWeak

∧2
.

6 The rank 2 type v0 may contain free type variables (which are not allowed to occur
in the library environment in the judgements of `Rec

∧2 ). So, if we want to use rule
(LetWeak) instead of (LetSugar), we have to replace, in the type inference rules
of Fig. 2, every occurrence of Gen(A, v) by Gen(A ∪B, v).



90 Ferruccio Damiani

This problem is due to the fact that, like the ML type system does, rule
(LetWeak) associates to each let-bound identifier a type scheme which, in gen-
eral, cannot express the principal typing of the body, e0, of the local definition.
To overcome this limitation we introduce the notions of pair scheme and pair
environment.

Definition 4 (Pair schemes and pair environments). A pair scheme p is
a formula ∀−→α .〈A, v〉 where A is a rank 1 environment, v is a rank 2 type, and−→α = FTV(A) ∪ FTV(v).
A pair environment L is an environment {x1 : ∀−→α 1.〈A1, v1〉, . . . , xn :
∀−→α n.〈An, vn〉} of pair scheme assumptions for identifiers.

The New Typing Rules. The new typing rules for local definitions allow to as-
sociate to each locally defined identifier a pair scheme representing the principal
typing of its definition. The new type system uses an additional pair environment
for locally defined identifiers (let-bound and letrec-bound identifiers), i.e. it has
judgements of the form A; B; L `Let,Rec

∧2 e : v , where FV(e) ⊆ Dom(A ∪B ∪ L),
the domains of the three environments A, B, L, are pairwise disjoint, and
Dom(A) = FV(e) −Dom(B ∪ L).

We say that e is typable in `Let,Rec
∧2 w.r.t. the library environment B and the

local environment L if there exist a typing A; B; L `Let,Rec
∧2 e : v , for some A and

v .
The type inference rules for system `Let,Rec

∧2 are in Fig. 3. There are two
rules for typing a let-expression, letx = e0 in e, corresponding to the two cases
x ∈ FV(e) and x 6∈ FV(e). The key rule is the first one, (LetNew), which uses
the local environment L to store a pair scheme (∀−→α .〈A0, v0〉) representing the
typings of the local definition x = e0. Then the rule (Id3) allows to associate a
new typing to each use of a locally defined identifier. The new rule for typing
letrec-expressions, (LetrecNew), simply relies on rule (LetNew). All the re-
maining rules ignore the local environment L and behave as the corresponding
rules of system `Rec

∧2
.

The system `Let,Rec
∧2 extends both `Rec

∧2
and `LetWeak

∧2
, and is such that

A; B; L `Let,Rec
∧2 (λx.e)e0 : v implies A; B; L `Let,Rec

∧2 letx = e0 in e : v , for
all expressions e0 and e. For instance (considering the expression in Example 1)
we have

1. {y : α}; ∅; ∅ `Let,Rec
∧2 y : α, by rule (Id1),

2. {y : α1 → α2}; ∅; {x : ∀α.〈{y : α}, α〉} `Let,Rec
∧2 x : α1 → α2, by rule (Id3),

with s = [α := α1 → α2],
3. {y : α1}; ∅; {x : ∀α.〈{y : α}, α〉} `Let,Rec

∧2 x : α1, by rule (Id3), with s = [α :=
α1],

4. {y : (α1 → α2) ∧ α1}; ∅; {x : ∀α.〈{y : α}, α〉} `Let,Rec
∧2 xx : α2, from hypothe-

ses (2) and (3), by rule (App),
5. {y : (α1 → α2) ∧ α1}; ∅; ∅ `Let,Rec

∧2 (let x = y in xx) : α2, from hypotheses (1)
and (4), by rule (LetNew),
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(Id1) {x : u}; B; L ` x : u where x 6∈ Dom(B ∪ L) and Dom(B) ∩Dom(L) = ∅

(Id2) ∅; B, x : ∀−→α .v ; L ` x : s{−→α }(v) where (Dom(B) ∪ {x}) ∩Dom(L) = ∅

(Id3) s{−→α }(A);B; L, x : ∀−→α .〈A, v〉 ` x : s{−→α }(v) where Dom(B)∩(Dom(L)∪{x})=∅

(Con) ∅; B; L ` c : s{−→α }(v) where Dom(B) ∩Dom(L) = ∅ and Typeof(c) = ∀−→α .v

(Abs)
A, x : ui ; B; L ` e : v

A; B; L ` λx.e : ui → v
(AbsVac)

A;B; L ` e : v
A; B; L ` λx.e : u → v

x 6∈ Dom(A ∪ B)

(App)
A;B;L` e : u1 ∧· · ·∧ un→v (∀i∈{1,. . ., n}) Ai;B;L`e0 : vi Gen(Ai, vi)≤∀2,0 ui

A + A1 + · · ·+ An; B; L ` ee0 : v

(IfSimple)
A; B; L ` e : bool A1; B; L ` e1 : u A2; B; L ` e2 : u

A + A1 + A2; B; L ` if e then e1 else e2 : u

(LetNew)
A0; B; L ` e0 : v0 A; B; L, x : ∀−→α .〈A0, v0〉 ` e : v

A;B; L ` let x = e0 in e : v
x ∈ FV(e)

where {−→α } = FTV(A0) ∪ FTV(v0)

(LetVac)
A0; B; L ` e0 : v0 A; B; L ` e : v
A0 + A;B; L ` let x = e0 in e : v

x 6∈ FV(e)

(LetrecNew)
A; B; L ` let x1 = e ′1 in · · · let xn = e ′n in e : v
A;B; L ` letrec {x1 = e1, . . . , xn = en} in e : v

where, for i ∈ {1, . . . , n}, e ′i = reci {x1 = e1, . . . , xn = en}

(Rec)
(∀i ∈ {1, . . . , n}) Ai; B; L ` ei : vi (∀j ∈ {j1, . . . , jm}) Gen(A, vj) ≤∀2,1 uij

A0; B; L ` reci0 {x1 = e1, . . . , xn = en} : vi0

where {xj1 , . . . , xjm} = {x1, . . . , xn} ∩ (∪1≤i≤nFV(ei)),
A = A0, xj1 : uij1 , . . . , xjm : uijm = A1 + · · ·+ An, and i0 ∈ {1, . . . , n}

(Sub)
A1; B; L ` e : v1 A2 ≤1 A1 v1 ≤2 v2

A2; B; L ` e : v2

Fig. 3. Type assignment rules (system `Let,Rec
∧2 )

6. ∅; ∅; ∅ `Let,Rec
∧2 λ y.(let x = y in xx) : ((α1 → α2) ∧ α1) → α2, from hypothesis

(5), by rule (Abs).

The following example shows another application of rule (LetNew).

Example 2. The expression e = ( let g = λ f x.f(fx) in g(λ y.cons y nil) )
cannot be typed neither in ML nor by system `Rec∧2

. With system `Let,Rec
∧2 , in-

stead, we have

1. ∅; ∅; ∅ `Let,Rec
∧2 λ f x.f(fx) : ((α1 → α2) ∧ (α2 → α3)) → α1 → α3,

2. ∅; ∅; ∅ `Let,Rec
∧2 λ y.cons y nil : α → (α list),
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3. ∅; ∅; {g : ∀α1α2α3.〈∅, ((α1 → α2) ∧ (α2 → α3)) → α1 → α3〉} `Let,Rec
∧2 g :

((α′ → (α′ list))∧ ((α′ list) → (α′ list list))) → α′ → (α′ list list), by rule (Id3),
with s = [α1 := α′, α2 := α′ list, α3 := α′ list list],

4. ∅; ∅; {g : ∀α1α2α3.〈∅, ((α1 → α2) ∧ (α2 → α3)) → α1 → α3〉} `Let,Rec
∧2

g(λ y.cons y nil) : α′ → (α′ list list), from hypotheses (2) and (3), by rule
(App),

5. ∅; ∅; ∅ `Let,Rec
∧2 e : α′ → (α′ list list), from hypotheses (1) and (4), by rule

(LetNew).

Also the expression (1) of Section 1 can be typed with `Let,Rec
∧2 .

Principal Typings for `Let;Rec
^2

. The following definition and theorem gener-
alize the corresponding result of Section 5 by keeping in account the presence of
the local environment L.

Definition 5 (Principal typings for `Let,Rec
∧2 ). A typing A′; B; L `Let,Rec

∧2 e :
v ′ is an instance of a typing A; B; L `Let,Rec

∧2 e : v if there is a substitution s
such that Dom(s) = FTV(A) ∪ FTV(v), s(v) ≤2 v ′ and A′ ≤1 s(A).
A typing A; B; L `Let,Rec

∧2 e : v is a principal typing for e w.r.t. B and L if any
other typing of e w.r.t. B and L is an instance of it. When L = ∅ we say that
A; B; ∅ `Let,Rec

∧2 : v is a principal typing for e w.r.t. B.

Theorem 2 (Principal typing property for `Let,Rec
∧2 ). If e is typable in

`Let,Rec
∧2 w.r.t. B and L, then it has a principal typing w.r.t. B and L.

6 The System `If ;Let;Rec
^2

: Better Typings for if-Expressions

The rule (IfSimple) of `Rec∧2
and `Let,Rec

∧2 seems overly restrictive: it does not
allow to assign rank 2 types to the branches of if-expressions. We may think to
replace that rule by the following rule

(IfStrong)
A; B; L ` e : bool A1; B; L ` e1 : v A2; B; L ` e2 : v

A + A1 + A2; B; L ` if e then e1 else e2 : v

which allows to assign a rank 2 type to the branches of an if-expression. How-
ever the resulting system, `IfStrong

∧2 , does not have neither the principal typing
property nor the principal type property, as the following example shows.

Example 3. Take the expressions e1 = λ f .f3, e2 = λ g .prj1(g(pair 1 4)), and
e0 = if z then e1 else e2. We have

– ∅; ∅; ∅ `Let,Rec
∧2 e1 : v1, where v1 = (int → int) → int, and

– ∅; ∅; ∅ `Let,Rec
∧2 e2 : v2, where v2 = ((int× int) → (int× int)) → int,
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but the expression e0 cannot be typed by using `Let,Rec
∧2 . Instead with system

`IfStrong
∧2 we have: {z : bool}; ∅; ∅ `IfStrong

∧2 e0 : v0, where v0 = ((int → int) ∧
((int× int) → (int× int))) → int is the least upper bound of v1 and v2 w.r.t. ≤2.
Also the expressions e ′0e2 and e ′′0 e1e2, where e ′0 = λx.if z then e1 else x and e ′′0 =
λx1 x2.if z then x1 elsex2, are not typable by `Let,Rec

∧2 and typable by `IfStrong
∧2 .

For instance we have

– {z : bool}; ∅; ∅ `IfStrong
∧2 e ′0 : v ′0, where v ′0 = (α → int) → ((int → int) ∧

α) → int (and also {z : bool}; ∅; ∅ `IfStrong
∧2 e ′0 : v1 → v2 → v0, so {z :

bool}; ∅; ∅ `IfStrong
∧2 e ′0e2 : v0), and

– {z : bool}; ∅; ∅ `IfStrong
∧2 e ′′0 : v1 → v2 → v0, (so {x : bool}; ∅; ∅ `IfStrong

∧2

e ′′0 e1 e2 : v0).

Note that in `IfStrong
∧2 there is no principal type for e ′′0 (the “natural candidate”

is u = α → α → α, but there exists no substitution s such that s(u) ≤2

v1 → v2 → v0). This problem is due to the fact that the rank 2 schemes cannot
express the fact that, because of rules (Sub) and (IfStrong), a type v can
be assigned to an if-expression if e then e1 else e2 if and only if it is the upper
bound w.r.t. ≤2 of a pair of types v1 and v2 that can be inferred for e1 and e2,
respectively.

In order to preserve the principal typing property of `Let,Rec
∧2 we restrict

rule (IfStrong) by limiting the use of intersection in the type assigned to
the branches of an if-expression. The condition that we will use to restrict rule
(IfStrong) is based on the notions of ∧-index and →-index of a type and of
index of an expression.

Definition 6 (∧-index and →-index of a type). For every type v ∈ T2 the
∧-index of v, Ind∧(v), and the →-index of v, Ind→(v), are the natural numbers
defined in Fig. 4 (note that Ind∧(v) ≤ Ind→(v)).

The fundamental properties of the metrics Ind∧ and Ind→ are expressed by the
following proposition7.

Proposition 1. 1. If Ind∧(v) = p and Ind→(v) = p + q (p, q ≥ 0), then v
is of the form v = ui1 → · · · → uip → u1 → · · · → uq → u for some
ui1, · · · , uip ∈ T1, u1, · · · , uq, u ∈ T0, uip 6∈ T0, and u not of the form
u ′ → u ′′.

2. For every substitution s, Ind∧(v) ≥ Ind∧(s(v)) and Ind→(v) ≤
Ind→(s(v)).

3. If v ≤2 v ′ then Ind∧(v) ≤ Ind∧(v ′) and Ind→(v) = Ind→(v ′).

Definition 7 (Index of an expression). An index environment I is an envi-
ronment {x1 : i1, . . . , xn : in} of natural number (index) assumptions for identi-
fiers. For every expression e and index environment I such that FV(e) ⊆ Dom(I),
the index of e in I, Ind(e, I), is the natural number defined by the clauses in
Fig. 5.
7 Remember that ∧ is idempotent, so, for any u ∈ T0, the type u ∧ u is considered to

be an element of T0 .
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Ind∧(u) = 0, for u ∈ T0

Ind∧(ui → v) = 1 + Ind∧(v), for ui → v ∈ T1 −T0

Ind→(unit) = Ind→(bool) = Ind→(int) = Ind→(u1 × u2) = Ind→(u list) = 0
Ind→(ui → v) = 1 + Ind→(v)

Fig. 4. The functions Ind∧(v) and Ind→(v)

The fundamental property of the metric Ind is given by the following proposition
(the proof is by structural induction on e, the only non-trivial case is the com-
putation of the index of the auxiliary expressions reci {x1 = e1, . . . , xn = en}).

Proposition 2. If A; B; L `Let,Rec
∧2 e : v then Ind(e, {x : 0 | x ∈ FV(e)}) ≤

Ind→(v).

This implies that every `Let,Rec
∧2 -typable expressions e has an index and, if

Ind(e, {x : 0 | x ∈ FV(e)}) = i, then e is a function that can accept at least
i arguments8. The indexes of the open subexpressions of a closed expression e
are computed by associating index 0 to formal parameters of functions, and
the index of the corresponding definition to locally defined identifiers. For in-
stance: Ind(y, {y : 0}) = 0, Ind(λ y.y, ∅) = 1, and Ind(g, {g : 1}) = 1, so
Ind(let g = (λ y.y) in g, ∅) = 1. For an example involving mutually recursive
definitions, take the auxiliary expression e = rec1 {x1 = λw.x2(w + 1), x2 =
λ yz.if (y > z) then 1 else z ∗ (x1yz). We have Ind(e, ∅) = 2 (note that this re-
quires two iterations of the while-loop in Fig. 5). We remark that the clauses
in Fig. 5 are just a specification, and do not represent an efficient algorithm for
computing the index of an expression.

The New Typing Rules. Let (IfNew) be the restriction of rule (IfStrong)
requiring that the rank 2 type, say v , assigned to the branches of an if-expression,
if e then e1 else e2, must satisfy the condition

Ind∧(v) ≤ Ind(if e then e1 else e2, {x : 0 | x ∈ FV(if e then e1 else e2)}).
By using rule (IfNew) instead of (IfSimple), it is possible to assign types v0, v ′

and v0 to the expressions e0, e ′0 and e ′0e2 of Example 3, respectively. Instead, it is
not possible to assign type v1 → v2 → v0 to the expression e ′′0 , so the expression
e ′′0 e1 e2 cannot be typed.

In order to compute more accurate indexes for expressions involving free
library and local identifiers we introduce indexed environments, which allow to
store the indexes of library and local definitions.
8 This does not hold for non-`Let,Rec

∧2 -typable expressions (unless we restrict to expres-
sions not containing conditionals). Take for instance e = λx .if x then 0 else λ y .y. We
have Ind(e, ∅) = 2, but e true is not a function.



Typing Local Definitions and Conditional Expressions 95

Ind(c, I) = Ind→(Typeof(c))
Ind(x, I) = i if x : i ∈ I

Ind(λ x.e, I) = Ind(e, I ∪ {x : 0}) + 1

Ind(e1e2, I) =

{
0 if Ind(e1, I) = 0
Ind(e1, I)− 1 if Ind(e1, I) ≥ 1

Ind(if e then e1 else e2, I) = Max(Ind(e1, I), Ind(e2, I))
Ind(let x = e0 in e, I) = Ind(e, I ∪ {x : Ind(e0, I)})

Ind(letrec {x1 =e1,. . ., xn =en} in e, I) = Ind(e, I ∪ {x1 :Ind(e ′1, I),. . ., xn :Ind(e ′n, I)})
where, for i ∈ {1, . . . , n}, e ′i = reci {x1 = e1, . . . , xn = en}

Ind(reci {x1 = e1, . . . , xn = en}, I) = begin
(k1, . . . , kn) := (0, . . . , 0);
(j1, . . . , jn) := (Ind(e1, I), . . . , Ind(en, I));
while (j1, . . . , jn) 6= (k1, . . . , kn) do begin

(k1, . . . , kn) := (j1, . . . , jn);
I′ := I ∪ {x1 : j1, . . . , xn : jn};
(j1, . . . , jn) :=
(Ind(e1, I

′), . . . , Ind(en, I′)) end
return ji

end

Fig. 5. The function Ind(e, I)

Definition 8 (Indexed environments). An indexed rank 2 scheme envi-
ronment B is an environment {x1 : (i1, ∀−→α 1.v1), . . . , xn : (in, ∀−→α n.vn)} of
index and closed rank 2 scheme assumptions for identifiers such that, for every
j ∈ {1, . . . , n}, ij ≤ Ind→(vj).
An indexed pair environment L is an environment {x1 :
(i1, ∀−→α 1.〈A1, v1〉), . . . , xn : (in, ∀−→α n.〈An, vn〉)} of index and pair scheme
assumptions for identifiers such that, for every j ∈ {1, . . . , n}, ij ≤ Ind→(vj).

For every environment T containing rank 1, indexed rank 2, and indexed pair
assumptions define Ind(T ) = {x : 0 | x : ui ∈ T } ∪ {x : i | x : (i, v) ∈ T } ∪ {x :
i | x : (i, p) ∈ T }. Let `If,Let,Rec

∧2 be the extension of `Let,Rec
∧2 which uses (in

the typing judgements of Fig. 3) library indexed environments and local indexed
environments, uses (see Fig. 6) rule (IfNew′) instead of (IfSimple) and rules
(LetNew′), (Id′2), and (Id′3) instead of the corresponding rules of `Let,Rec

∧2 . Rule
(LetNew′) computes and stores the indexes of local definitions in the local
environment in order to allow to compute more accurate indexes, while rules
(Id′2) and (Id′3) simply ignore the indexes and behave as the corresponding rules
of `Let,Rec

∧2 . Rephrase of Proposition 2 holds also for system `If,Let,Rec
∧2 .

Proposition 3. If A; B; L `If,Let,Rec
∧2 e : v then Ind(e, Ind(A ∪ B ∪ L)) ≤

Ind→(v).

This guarantees that the indexes required in rules (IfNew′) and (LetNew′) in
Fig. 6 (which involve only typable expressions) are always defined.



96 Ferruccio Damiani

(IfNew′)

A; B;L ` e : bool A1; B; L ` e1 : v A2; B; L ` e2 : v
Ind∧(v) ≤ Ind(if e then e1 else e2, Ind((A + A1 + A2) ∪B ∪ L))

A + A1 + A2; B; L ` if e then e1 else e2 : v

(LetNew′) A0; B; L ` e0 : v0 A; B; L, x : (i0,∀−→α .〈A0, v0〉) ` e : v
A; B; L ` let x = e0 in e : v

x ∈ FV(e)

where i0 = Ind(e0, Ind(A0 ∪ B ∪ L)) and {−→α } = FTV(A0) ∪ FTV(v0)

(Id′2) ∅; B, x : (i,∀−→α .v); L ` x : s{−→α }(v) where (Dom(B) ∪ {x}) ∩ Dom(L) = ∅

(Id′3) s{−→α }(A);B;L,x : (i,∀−→α .〈A,v〉)`x :s{−→α }(v) where Dom(B)∩(Dom(L)∪{x})=∅

Fig. 6. Typing rules for if-expressions and indexes manipulation
(system `If,Let,Rec

∧2 )

Principal Typings and Type Inference for `If ;Let;Rec
^2

. Principal typings
w.r.t. a library environment B and a local environment L are defined as for
`Let,Rec
∧2 (see Definition 5). The following result holds.

Theorem 3 (Principal typing property for `If,Let,Rec
∧2 ). If e is typable in

`If,Let,Rec
∧2 w.r.t. B and L, then it has a principal typing w.r.t. B and L.

System `If,Let,Rec
∧2 admits a complete inference algorithm (not included in this

paper) that, for any expression e, library environment B, and local environment
L such that Dom(B) ∩Dom(L) = ∅, computes a principal typing for e w.r.t. B
and L.

Acknowledgements. I thank Mario Coppo, Paola Giannini, and the referees of earlier
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