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Abstract. In the compositional verification of a concurrent system, one
seeks to deduce properties of the system from properties of its constituent
modules. This paper supplements our previous work on the same sub-
ject to provide a comprehensive compositional framework in linear-time
temporal logic. It has been shown by many that specifying properties
of a module in the assumption-guarantee style is effective in achieving
compositionality. We consider two forms of temporal formulas that cor-
respond to two interpretations of an assumption-guarantee specification
and investigate how they can be applied in compositional verification.
We argue by examples that the two forms complement each other and
both are needed to facilitate the compositional approach. We also show
how to handle assumption-guarantee specifications where the assumption
contains a liveness property.

1 Introduction

A concurrent system typically is or can be decomposed as the parallel composi-
tion of several modules. In the compositional verification of a system, one seeks
to deduce properties of the system from properties of its constituent modules.
We assume that the system to be verified is closed, i.e., the system is meant to
be executed in isolation (without any interferences, except perhaps part of the
initialization, from the environment). Nonetheless, we provide sufficient details
showing how the results of this paper can be extended straightforwardly to the
compositional verification of an open system, which is essentially a module.
Properties of a system are represented by assertions on computations of the
system and so are properties of a module. Computations of a system are the
sequences of states produced when the system is executed in isolation. In con-
trast, computations of a module are the sequences of states produced when the
module is executed in parallel with an arbitrary but (syntactically) compati-
ble environment, i.e., the computations of an imaginary system obtained from
composing the module with the arbitrary environment. A system or module
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satisfies a certain property if the corresponding assertion holds for each of its
computations.

A module will behave properly only if its environment does. When specify-
ing properties of a module, one should therefore include (1) assumed proper-
ties about its environment and (2) guaranteed properties of the module if the
environment obeys the assumption. This type of specification is essentially a
generalization of pre and post-conditions for sequential programs [14]. The gen-
eralization was adopted in the early 1980’s by Misra and Chandy [23], Jones [15],
and Lamport [19] and became the so-called assumption-guarantee (also known
as rely-guarantee or assumption-commitment) paradigm.

Consider an assumption-guarantee specification with assumption A and guar-
antee G. There are at least two possible interpretations of the specification over
a sequence of states. Informally, one interpretation states that G holds at least
one step longer than A does. The other states that G holds as long as A does,
which is a weaker interpretation than the first. A third even weaker interpreta-
tion is the ordinary implication from A to G; however, it is practically equivalent
to the second interpretation, as a module should not have the ability to predict
the future behavior of its environment and hence the future violation of A by
its environment. We refer to properties according to the first interpretation as
strong assumption-guarantee properties and those according to the second as
weak assumption-guarantee properties. As has been pointed out by Abadi and
Lamport [2], if A and G cannot be falsified simultaneously by any step of the
module or its environment, then the two interpretations are equivalent.

In this paper, we intend to further advance the use of temporal logic in speci-
fying and reasoning about assumption-guarantee properties and investigate how
this kind of properties can be applied in compositional verification. Temporal
logic is one convenient formalism for specifying the behavior of a concurrent
system. The idea of representing concurrent systems and their specifications as
formulas in temporal logic was first proposed by Pnueli [24].

We have proposed in [16] to formulate assumption-guarantee specifications
using the linear-time temporal logic (LTL) of Manna and Pnueli [2I]. We showed
how to specify and reason about strong assumption-guarantee properties in the
full set of LTL. Our formulation of assumption-guarantee specifications as well
as the derived composition rules are syntactic and entirely within LTL. This pa-
per complements and differs from our previous work in three aspects: First, we
consider both strong and weak (not just strong) assumption-guarantee properties
in this paper. Second, we emphasize the use of assumption-guarantee specifica-
tions in compositional verification rather than hierarchical development. Last, we
extend the previous work to include composition rules that permit assumptions
with liveness properties. Hiding (of local variables) is not treated here for a more
focused exposition; it can be handled syntactically in the same way as in our pre-
vious work. Together this paper and the previous work provide a comprehensive
compositional framework in LTL.

Related works on assumption-guarantee specifications, including [23] [15] 19|
12) [T, B 2 9] 10, [27], typically reason about relevant properties at the semantic
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level or define a special-purpose logic. In [I], Abadi and Lamport gave a compre-
hensive treatment of compositionality in a general semantic setting with agents
(which are used essentially for identifying a module). Their semantic composition
rule used the notion of the “realizable part” of a specification which in general
cannot be extracted by simpler operations on the specification. Xu, Cau, and
Collette [27] provided an explanation of the difference between two well-known
composition rules respectively for message-passing and shared-variable models.
They show that the two rules can be derived from a more general one. In [4],
Alur and Henzinger suggested the notion of local liveness in place of the weaker
notion of receptiveness involved in the compositionality issue. They argue that
receptiveness is unnecessarily weak and computationally hard to check, while
local liveness on the other hand is satisfied by most existing models and is easier
to check. A collection of survey papers on the general subject of compositional
verification has recently been published as [T1].

Barringer and Kuiper [6] are, to our knowledge, the first to formulate
assumption-guarantee specifications in temporal logic. They used the notion of
an agent and considered only strong assumption-guarantee properties. Manna
and Pnueli proposed a compositional verification rule using weak assumption-
guarantee properties in their recent book [22]. Using the Temporal Logic of
Actions (TLA, a variant of temporal logic) [20], the work of Abadi and Lam-
port [2] is an improvement over earlier temporal logic-based works in handling
hiding and liveness properties. They focused on assumption-guarantee specifica-
tions where the assumption and the guarantee cannot be falsified simultaneously.
With a limited set of temporal operators in TLA, they had to work mostly at
the semantic level. Abadi and Lamport’s formulation of an assumption-guarantee
specification allows liveness properties in the assumption part. However, their
composition rule only works for safety assumptions. Collette [10], adapting the
work of [2], proposed a UNITY-like [7] logic for assumption-guarantee specifica-
tions with restricted forms of assumption and guarantee.

Assumption-guarantee specifications have also found applications in the area
of model checking [§]. They are useful for compositional (or modular) model
checking, which provides one possible way to tackle the state-explosion problem.
Virtually all existing works on modular model checking are for branching-time
temporal logic or a combination of linear-time and branching-time logics. Grum-
berg and Long [13] considered a subset of CTL (Computation Tree Logic, a
branching-time temporal logic) for which satisfaction is preserved under parallel
composition. In their work, the assumption of the specification of a module is
represented by another abstract module; the composition of the two modules is
then checked against the desired property. In [5], Aziz et. al. proposed to reduce
the size of each module of a system via an equivalence so that the given specifi-
cation is preserved. Their method handles full CTL. The complexity of modular
model checking of CTL formulas has been shown to be at least as high as that
of (propositional) LTL formulas by Kupferman and Vardi [26, [17, [18].
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2 Preliminaries

2.1 Temporal Logic

Linear-time temporal logic (LTL) is a logic for expressing assertions on infinite
sequences of states, where each state is an assignment to a predefined universe
of variables. An LTL formula is interpreted with respect to a position i > 0 in a
sequence of states. State formulas are the basic type of LTL formula built only
from variables, constants, functions, and predicates using the usual first-order
logic connectives. The interpretation of a state formula in position ¢ is performed
as usual using the particular interpretation of variables in state 7 (plus the fixed
interpretations of constants, functions, and predicates). General LTL formulas
also contain temporal operators; in this paper, we will use only the following:

— O means “in the next state”. The formula Oy is true in position i of a
sequence o (denoted (o,i) = Ogp) iff ¢ is true in position i + 1 of o (i.e.,
(0,0 +1) ).

— O means “always in the future (including the present)”; (o,i) = O¢ iff
Vk >1i:(0,k) E .

— © means “in the previous state, if there is any”; (0,1) | ©¢ iff (i > 0) —
((o,1 — 1) E ¢). © is a weaker version of ©, which means “in the previous
state”; (0,1) |E O iff (i > 0) A ((0,i — 1) = ¢). It follows that (0,i) E ©¢
iff (0,7) = —mo—p.

— B means “always in the past (including the present)”; (o0,4) = B¢ iff Vk :
0<k<i:(ok)kEe¢

— For a variable u, the interpretation of u~ (the previous value of ) in position
1 is the same as the interpretation of variable v in position ¢ — 1; by conven-
tion, the interpretation of u~ in position 0 is the same as the interpretation
of u in position ol

— first is an abbreviation for ©false, which is true only in position 0.

We say that a sequence o satisfies a formula ¢ (or ¢ holds for o) if (o,0) | ¢.
A formula ¢ is valid, denoted |= ¢ or simply ¢ when it is clear that validity is
intended, if ¢ is satisfied by every sequence.

A formula without temporal operators but possibly with “~”-superscribed
variables is called a transition formula; this definition is slightly different from
that in [2I], where a transition formula always contains —first as a conjunct. A
formula without any future operator O, O, or & (though liveness is considered,
¢ is not explicitly used in this paper) is called a past formula; in particular,
a transition formula is a past formula. A safety formula is one that specifies a
safety property and a liveness formula is one that specifies a liveness property. Of

! In contrast to Lamport and others who use “*”-superscribed (or primed) variables

to denote their values in the next state, we use “~”-superscribed variables to denote
their values in the previous state. The reason is that (for conformity) we wish to use
only past operators, except the outmost 0, in the safety part of a specification. The
introduction of “~”-superscribed variables is convenient but not essential, since they
can be encoded by the © operator.
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local a,b : integer where a =b=0

loop forever do

Fas g =b41]

1Pt 1y 1]

loop forever do]

Fig. 1. Program KEEP-AHEAD.

particular importance, formulas of the form OH, where H is a past formula, are
for certain safety formulas; they will be referred to as canonical safety formulas.
Specific forms of liveness formulas are not important for our purposes. Formulas
of the form OH A L, where H is a past formula and L a liveness formula, will
be referred to as canonical formulas.

2.2 Specifying Concurrent Systems

A concurrent system consists of a set of variables, an initial condition on the
variables, and a set of transitions that specify how the system may change the
values of its variables in an execution step. Semantically, a concurrent system is
associated with a set of computations or sequences of states, each of which rep-
resents a possible execution of the system. We will mostly concentrate on safety
properties of a system. For our purpose, we distinguish two kinds of specification:
system specification and requirement specification.

System specifications are basically programs in the form of a temporal for-
mula. Consider Program KEEP-AHEAD in Figure [Il The system specification of
KEEP-AHEAD is given by Pkgrp-AHEAD as defined below.

) (@a=b=+1)A(b=b")
PkEEP-AHEAD = (a=0)A(b=0AO0|V(b=a +1)A(a=a")
Vie=a")A(b=b")

The formula ®krrp-aHEAD states that the values of a and b are initially 0.
It also states via the disjunction of three transition formulas that, in each step
of an execution, either the value of a becomes b + 1 (while the value of b is
unchanged), the value of b becomes a + 1, or nothing is changed. The transition
formula (@ = a=) A (b =1b7) is called a stuttering transition and is included to
make the specification invariant under stuttering.

We regard system specifications as formal definitions of concurrent systems
so that we can do without a formal semantics of the programming language;
programs are informal notations for readability. To take fairness into account,
one may conjoin an appropriate liveness formula to the system specification.
The safety formula in a system specification can be put in the canonical form
of OH, specifically in the form of O((first A Init) V (=first A N)), where Init is
a state formula and N the disjunction of several transition formulas. As N will
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module M, module M,

in b :integer in a :integer

own out a :integer where a =0 | own out b :integer where b =0
loop forever do loop forever do
[a::b—i—l] [b::a+1]

Fig. 2. Program KEEP-AHEAD as the parallel composition of two modules.

always contain a stuttering transition, O((first A Init) V (—first A N)) simplifies
to O((first A Init) V N).

Requirement specification is the usual type of temporal-logic specification.
A property is represented by a temporal formula. A system (program) S is said
to satisfy a formula ¢ if every computation of S satisfies ¢. Let &g denote the
system specification of S. We will regard &g — ¢ as the formal definition of the
fact that S satisfies ¢, denoted as S = ¢. The safety formula in a requirement
specification can usually be put in the canonical form.

2.3 Parallel Composition as Conjunction

Program KEEP-AHEAD can be decomposed as the parallel composition of two
modules as shown in Figure Bl A module may read but not change the value of
an in (input) variable. A compatible environment of a module may read but not
change the value of an own out (owned output) variable of the module. In the
system M, || My, M, is the environment of M, and M, is the environment of
My; both are clearly compatible with each other.

The system specifications @, and @y, of modules M, and M, respectively
are defined as follows:

N e
Par, = <b:0>m<vggzz)+1m(a:a)>

It is perhaps more accurate to say that @, is the system specification of an
imaginary system composed of M, and an arbitrary but compatible environment;
analogously, for @,y,. A little calculation shows that

E Oy, NPy, < PKEEP-AHEAD-

This formally confirms that M, || M} is equivalent to Program KEEP-AHEAD.
A module M is said to satisfy a formula ¢ if every computation of M satisfies
. Let @); denote the system specification of M. Like in the case of specifying
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properties of a concurrent system, we will regard @5, — ¢ as the formal definition
of the fact that M satisfies ¢, denoted as M = ¢. Since parallel composition is
conjunction, it follows that, if M is a module of system S, then M |= ¢ implies

S E .

3 Assumption-Guarantee Specifications

We shall concentrate on assumption-guarantee specifications where both the
assumption and the guarantee are safety properties; liveness will be treated in
Section [B. We assume that safety properties are expressed as canonical safety
formulas of the form OH, where H is a past formula.

3.1 Strong Assumption-Guarantee Formulas

Strong assumption-guarantee formulas specify strong assumption-guarantee prop-
erties. A strong assumption-guarantee property of a module with assumption A
and guarantee G asserts the following:

For every computation of the module, G holds initially and, for every
i > 1, if A holds for the prefix of length i — 1 (i.e., with ¢ — 1 states),
then G also holds for the prefix of length .

Notice that, if a safety property does not hold for a prefix of a computa-
tion, then the property will not hold for any longer prefix. The above assertion
therefore says that G holds at least one step longer than A does.

As A and G are given respectively as OH 4 and OHg, where H4 and Hg
are past formulas, the strong assumption-guarantee property can be expressed
as O(©@H, — BHg)H which is equivalent to O(©BH4 — He). Note that
O(eBaH4 — Hg) implies that Hg holds initially, since © BH 4 always holds in
position 0 of a sequence. To summarize, we define strong assumption-guarantee
formulas of the form A > G as follows:

a

Ap G (i.e.,DHA > DHg) D(@EHA — Hg)

Note that A > G is also a canonical safety formula.
Theorem 1. Suppose that Hg, and Hg, are past formulas. Then,
E (OHg, > OHg,) AN(OHg, > OHg,) — OHg, AOHg,.

The above theorem is essentially the composition principle formulated by
Misra and Chandy [23]. This small result shows that strong assumption-guarantee
formulas have a mutual induction mechanism built in and hence permit “circular

2 Since Ha and Hg are past formulas, “0H 4 holds for the prefix of length ¢ — 1 of
0” can be formally stated as “(c,i) = © BH4” and “OH¢ holds for the prefix of
length i of 0”7 as “(0,7) = BHe”.
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reasoning” (there is of course no real cycle if one looks at the semantic models
and reasons state by state from the initial one), i.e., deducing new properties
from mutually dependent properties.

We now state a general rule for composing strong assumption-guarantee prop-
erties; this rule has been proven in [16].

Theorem 2. Suppose that A; = 0Ha4,, G; = 0OHg,, A=0Ha, and G = 0Hg,
all in the canonical form. Then,

L 0(BHANB A Ho, — Ha,) for 1< j<n
i=1

2. ): D(@EHA/\ = /\ Hg, —>HG)
i=1

= Ai>G) — (4> 0)

Intuitively, Premise 1 of the above composition rule says that the assumption
about the environment of a module should follow from the guarantees of other
modules and the assumption about the environment of the entire (open) system,
while Premise 2 says that the guarantee of the entire system should follow from
the guarantees of individual modules and the assumption about its environment.
For closed systems, we take A to be true and simplify the rule as follows:

Theorem 3. Suppose that A; = OHa,, G; = OHg,, and G = OHg, all in the

canonical form. Then,

Lk o(a A He, — Ha,) for 1< j<n
i=1

=

2. D(Ei/i\lHGi —>HG>

- Z\(A»Gi) e

Theorem [I] stated earlier, follows immediately from this theorem.

3.2 Weak Assumption-Guarantee Formulas

Weak assumption-guarantee formulas specify weak assumption-guarantee prop-
erties. A weak assumption-guarantee property of a module with assumption A
and guarantee G asserts the following:

For every computation of the module, if A holds for some prefix of the
computation, then GG also holds for the same prefix.

Notice again that, if a safety property does not hold for a prefix of a compu-
tation, then the property will not hold for any longer prefix. The above assertion
therefore says that G holds as long as A does.

With A and G given respectively as OH4 and OHg, the weak assumption-
guarantee property can be expressed as O( BH4 — BHg), which is equivalent
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to O(BH4s — Hg). Hence, we define weak assumption-guarantee formulas of
the form A > G as follows:

AD> G (ie,0Hs > OHg) 2 0(@Ha— Hg)

Weak assumption-guarantee formulas lack the kind of mutual induction mech-
anism built into strong assumption-guarantee formulas and cannot be readily
composed.

A Quick Comparison between Strong and Weak Assumption-Guarantee Formu-
las: For a property OH 4 > OH¢ to hold for the computations of a module M,
no step of an environment compatible with M should be able to falsify both H 4
and Hg. On the other hand, OH4 > OH¢g does not have this constraint. This
distinction is further elaborated in Section [

4 Compositional Verification
We present two compositional verification rules: one using strong assumption-
guarantee formulas and the other using weak assumption-guarantee formulas.

Theorem 4 (Rule MOD-S). Suppose that A;, G;, and G are canonical safety
formulas. Then,
M, EA; > G, for1<i<n

= 7\(Az‘ > Gi) — G
=1

Il Mk G

The first premise may be established by applying a verification rule for canon-
ical safety formulas from [22] Chapter 4] (recall that (4; > G;) = O(©BH4, —
Hg,) is a canonical safety formula), while the second premise may be established
by applying the composition rule from Theorem [3 or the simpler Theorem [1 If
all the modules are finite, then both of the two premises may be established by a
suitable model checker. Nonetheless, Theorem Blmay still be useful for reducing
the complexity of checking validity.
Regarding compositional verification using weak assumption-guarantee for-
mulas, Manna and Pnueli have proposed in [22, Page 337] a compositional ver-
ification rule where the property of a module is exactly in the form of a weak
n

assumption-guarantee formula. Consider a system S that is equivalent to || M.
i=1

Translated into our notation, the compositional verification rule reads as follows.

Theorem 5 (Rule MOD-W). Suppose that S is a system equivalent to | M;
i=1

and A and G are canonical safety formulas. Then, -
SEA
M; = A> G for some j
SEG
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As pointed out in [22], Rule MOD-W is normally applied in an incremental
manner. One typically starts with A replaced by ¢rue and proves some property
OH; of a module; one then uses OH; in place of A to prove another property
OH> of another module; and so on.

The rule could have been formulated as:

S )ZDHA
M; = 0H4 — OHg for some j
S)ZDHG

The new rule seems to look simpler. However, to establish M; = 0H4 — OHg,
it is inevitable in practice to face the proof obligation of M; = 0O(8HA — Hg);
this is due to the inability of a module to predict the future of its environment.
Rule MOD-W makes this clearer.

5 Examples

We consider two examples. The examples are very simple and are intended to
contrast the respective strengths of strong and weak assumption-guarantee spec-
ifications, demonstrating their complementary roles in compositional verification
(rather than their abilities in tackling large systems). In each example, a system
is decomposed as the parallel composition of two modules and a property of the
system is proven compositionally. We argue that Rule MOD-S is more effective
for the first example, while Rule MOD-W is more effective for the second.

5.1 Example 1

Consider again Program KEEP-AHEAD that appeared in Section 2 It is easy to
see that the values of a and b are monotonically (but not strictly) increasing in
KEEP-AHEAD, i.e., KEEP-AHEAD = O((a > a~ ) A (b > b7)). Can the property be
verified compositionally?

Theorem [ suggests that we decompose O((a > a~) A (b > b)) as the con-
junction of (b >b7) > O(a > a™) and O(a > a~) > O(b > b~ ). Unfortunately,
neither M, Ea(>b") > O(a>a )nor M, E0O(a>a”) > 0O >b"). For
Module M,, the assumption O(b > b~) says nothing about the initial value of
b (permitting b to be an arbitrary negative integer initially), it therefore cannot
guarantee that the value of a is monotonically increasing in the very first step
(a is 0 initially and may become b + 1 in the first step). An analogy applies to
Module M.

A simple remedy is to first strengthen the proof obligation as KEEP-AHEAD =
O((first = a>0)A(a>a")A(first > b>0)A(b>0b")). Again, Theorem [I]
suggests that we decompose

O((first =a>0)A(a>a" ) A(first =b>0)A(b>07))
as the conjunction of

O((first = b>0)Ab>b") > O((first = a>0)Aa>a")
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local z,y : integer where x =y =0

loop forever do loop forever do
P, : li:await z <y +1 | Py :: mi :await y < x + 1
lr:x:=x+1 ma:y:=y+1

Fig. 3. Program KEEP-UP.

and
O((first =a>0)Aa>a") > O((first =b>0)Ab>b").

It turns out that M, = O((first — b > 0)Ab > b~ ) > O((first — a > 0)Aa > a™)
and My = 0O((first = a>0)Aa>a") > O((first —b>0)Ab>b"). Applying
Rule MOD-S, we successfully prove KEEP-AHEAD = O((first — a > 0) A (a >
a”) A (first = b>0)A(b>b")) and hence KEEP-AHEAD = O((a > a~ ) A (b >
b7)) in a compositional way.

It would be inconvenient, if not impossible, to achieve compositionality for
the example using Rule MOD-W. With this rule, one somehow has to first es-
tablish either KEEP-AHEAD = O(a > @~ ) or KEEP-AHEAD = 0O(b > b7). To
establish KEEP-AHEAD | O(a > a7) first, for example, one may attempt to
prove KEEP-AHEAD = O(b > b7) and M, = 0O(b > b7) > O(a > a™). But,
KEEP-AHEAD = O(b > b™) then has to be established first, leading to a cycle.

5.2 Example 2

For the second example, we take Program KEEP-UP from [22, Chapter 4], which is
recreated in Figure Bl The program is decomposed as the composition of modules
M, and M, as shown in Figure @] The system specifications of KEEP-UP, My,
and M, are omitted for brevity. Note that in M, the input variable y is explicitly
given an initial value 0 and similarly in M, the input variable x is given an initial
value 0.

It can be shown that KEEP-UP = O(|lz —y| < 1). In [22], the property
O(|z —y| < 1) is proven compositionally by repeated applications of Rule MOD-
W. Note that O(|z — y| < 1) is equivalent to O((z < y+ 1) A (y <z + 1)), or
O(x <y+1)A0(y <z +1). Briefly, the compositional verification proceeds as
follows:

1. Prove KEEP-UP = O(x > a7 ) by applying Rule MOD-W with A replaced by
true and establishing the premise M, |= true™> O(x > x7); prove KEEP-UP |=
O(y > y~) in an analogous way. These two proofs are independent of each
other.

2. Prove KEEP-UP = O(z < y + 1) by applying Rule MOD-W with A replaced
by O(y > y~), which was proven in the previous step, and establishing the
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module M, module M,
in y :integer where y =0 in z :integer where x =0
own out z :integer where z =0 own out y :integer where y =0
loop forever do | loop forever do
l1await z <y +1 my :await y < x + 1
lr:x:=x+1 me:y:=y+1

Fig. 4. Program KEEP-UP as the parallel composition of two modules.

premise M, = 0O(y > y~) > O(z <y + 1); prove KEEP-UP = 0O(y < x + 1)
in an analogous way. Again, these two proofs are independent of each other.

An attempt to use Rule MOD-S would fail. The property O(z < y+1)A0(y <
2 + 1) indeed follows from the conjunction of O(z <y +1) > O(y <z +1) and
Oy < z+1) > O < y+ 1) like in the first example. However, it is not
possible to establish either M, E Oz < y+1) > Oy < z+1) or M,
Oy <z +1) > 0O( < y+1). This is due to the fact that both (x <y + 1)
and (y <z + 1) are state formulas that may be falsified by a transition of some
environment compatible with M, (the environment is allowed to change y in
an arbitrary way); a module cannot possibly satisfy an assumption-guarantee
property if the guarantee part can be falsified by its environment. Analogous
arguments applies for M,,.

6 Liveness

To allow liveness properties, we simply strengthen an assumption-guarantee
specification by conjoining it with the ordinary implication between the as-
sumption and the guarantee. We consider the extension of a strong assumption-
guarantee formula; the extension of a weak one can be done analogously. We will
present just one inference rule for composing such properties.

As the generalized definition of a strong assumption-guarantee formula with
assumption A = OH AL 4 (in the canonical form) and guarantee G = OHgA L,
we define A > G as follows:

A> G 2 (OH4 > OHg) A (A— G)

where the > on the right hand side is as defined in Section Bl This generalized
definition is consistent with the definition of > for safety assumptions and
guarantees, since if A and G are safety formulas, the implication A — G, i.e.,
OH4 — OHg, will be subsumed by OH 4 > OHg.

Now that the assumptions may contain liveness properties, we no longer have
symmetric composition rules like that in Theorem B, as mutual dependency
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on liveness properties leads to unsound rules. Theorem [ was generalized in
our previous work [16] to permit liveness in the guarantee parts. Below is an
asymmetric composition rule for two modules; its proof can be found in the full
paper [25].

Theorem 6. Suppose that Ay = OHa,, Gi =0Hg, AN Lag,, Ao =0H4, N La,,
Go =0Hg, N Lg,, A=0HA ALy, and G = OHg A Lg, all in the canonical
form. Then,

1. (a) = D(EHA A B(Heg, ANHea,) — Ha, AHAz)
(b) = AAGy — A

2. (a) E D(@ BHA N B(Hg, NHg,) — HG)

(b)) = AAGIAGy — G

E (4> G)AN(A2D> Ga) — (AD> Q)

Again, take A to be true for a closed system.

This composition rule looks unsophisticated and may seem not to be very
useful. As a matter of fact, many practical systems exhibit the type of depen-
dency treated by the rule. Take network protocols as an example. An upper-layer
protocol relies on the liveness properties of a lower-layer one to ensure liveness in
the service that it provides, but the lower-layer protocol does not assume liveness
about the upper-layer one. We believe that two modules with more complicated
dependency on liveness should be verified as one single module.

7 Discussion: Guidelines of Usage

We give a few guidelines for using the proposed compositional approach.

— What type of systems can be treated with the compositional approach?
Our approach works for a system where each shared variable is owned and
can be modified by exactly one of its modules. This is partly due to the fact
that only this type of systems allow parallel composition to be conveniently
modeled as conjunction in LTL. There certainly are ways to circumvent this
limitation; introducing the notion of agents is one possibility [I]. However,
we do not think that compositional verification should be applied to two
modules that may change a same shared variable. Sharing variables in such
a manner indicates that the two modules are tightly coupled and are best
treated as one single module.

— How does one decide which form of assumption-guarantee specification should
be used?
The desired property of a system gives much hint on what the guarantee
parts should look like, as seen from the examples in Section Bl Here is the
first thing to check: does the guarantee part involve a variable owned by the
environment? For instance, in Example 1 the guarantee part in each of the
two assumption-guarantee properties does not involve a variable owned by
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the environment. A module M cannot possibly satisfy a property A > G
if some environment compatible with M is capable of falsifying G, which is
more likely to happen when G involves a variable owned by the environment.
If the environment is capable of falsifying G, then one may try to find a
suitable A’ such that in falsifying G the environment also has to pay the
price of falsifying A’. A’ > G could turn out to be a property of M useful
for proving the desired property of the system.

What changes are needed to the approach if one prefers using “+”-super-
scribed (or primed) rather than “—”-superscribed variables in expressing
transitions of a system (like in TLA)?

We have opted for using “—”-superscribed variables, as it leads to a more
succinct formulation of assumption-guarantee specifications and rules for
composing such specifications. The required changes are quite straightfor-
ward. If A = Inita ANONs and G = Initg A ONg, where N4 and Ng are
transition formulas using primed variables, then A > G translates into

Initg A (Init4 — Ng) AO(8((first — Inita) A Na) — ONg).

Note that O(B((first — Inita) A Na) — ONg) is a safety formula, though
not in the canonical form. The composition rules can be changed accordingly.

We have omitted the treatment of hiding, i.e., assumptions and guarantees

with existentially quantified variables, to focus on showing the complementary
roles of strong and weak assumption-guarantee specifications. Hiding is a pow-
erful means of expressiveness. The formulation of strong assumption-guarantee
specifications with hiding have been considered in our previous work [16]; the
same technique applies to weak assumption-guarantee specifications.
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