
Type Inference for First-Order Logic

Aleksy Schubert?

Institute of Informatics
Warsaw University

ul. Banacha 2
02–097 Warsaw

Poland
alx@mimuw.edu.pl

Abstract. Although type inference for dependent types is in general
undecidable, people experience that the algorithms for type inference in
Elf programming language stop in common cases. The present paper is
a partial explanation of this behaviour. It shows that for a wide range
of terms — terms that correspond to first-order logic proofs — the for-
malism of dependent types gives decidable type inference. We remark
also that imposing that the context and the type of a judgement are
first-order is not sufficient for obtaining decidability.

1 Introduction

Lambda calculus with dependent types is a formalism defined in [HHP87] in or-
der to provide a means for defining logics. For example, one can define first-order
logic within the formalism. This definition leads to a restriction on dependent
types which constitutes by itself an interesting type system for λ-terms.

Dependent types formalism has also been used as a base for the programming
language Elf [Pfe91]. The clauses of Elf are expressions of dependent types. This
allows to reason about properties of programs inside the language. Although the
problem of inferring types in the language is undecidable, as shown in [Dow93], it
comes out that for many practical programs the algorithm used in the framework
halts. This paper is a partial explanation for the phenomenon. The type inference
for a wide range of terms: terms that correspond to proofs in first-order logic, is
decidable.

Interestingly enough, the border-line between decidability and undecidability
is very slight here. The problem of type inference for the first-order logic inside
dependent types is defined as follows: given a first-order context Γ and a Curry-
term M , check if there exists a first-order type such that Γ ` M : τ is the
end of some first-order derivation (i.e. a derivation that can be translated into
first-order logic). If the condition that Γ ` M : τ is the end of some first-order
derivation is relaxed so that Γ ` M : τ may be the end of any derivation in

? This work was supported by Polish national research funding agency KBN grant no.
8 T11C 035 14.

J. Tiuryn (Ed.): FOSSACS 2000, LNCS 1784, pp. 297–313, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

298 Aleksy Schubert

dependent types, then the problem becomes undecidable. This holds even for
a class of terms M that fall within an extension of the first-order logic where
quantification over first-order function symbols is allowed.

The techniques used in this paper are based on the old idea that typing prob-
lems correspond to problems of solving appropriate equations. We reduce type
inference for first-order logic to special kind of equations with explicit substi-
tutions. These equations are subject to a further reduction that is very similar
to usual Robinson’s unification. So obtained equations are translated in turn to
second-order unification equations. As it is proved in [Gol81], second-order uni-
fication is undecidable, so in general it cannot serve as a method for providing
decidability. In the present study, we get a particular form of equations which
allows us to design a procedure to solve them. We deal only with equations of
the three forms

F1(t1, . . . , tn) = F2(s1, . . . , sm); F1(t1, . . . , tn) = f(s1, . . . , sm);
f1(t1, . . . , tn) = f2(s1, . . . , sm)

where none of second-order variables may occur in terms t1, . . . , tn, s1, . . . sn.
The latter condition is very important here as when we drop it the problem
becomes undecidable. In [Sch98], it is shown that already solving equations f the
form F1(t1, . . . , tn) = f(s1, . . . , sm), where second-order variables may occur in
s1, . . . , sn, is undecidable.

The paper is organised as follows: Section 2 contains basic definitions and
formulation of problems we deal with; Section 3 presents a sketch of the undecid-
ability result for type inference with relaxed first-order constraints, and Section 4
contains a sketch of the decidability result for the first-order type inference.

2 Basic Definitions

We introduce the definition of the system λP . The basic insight behind this
system is that types of terms may depend on terms. ¿From the perspective of
programming language this corresponds to providing devices for defining types
such as list(n) that represent lists of length n. From the point of view off
logic, this allows to implement rules of substitution. We follow hereafter the
presentation in [SU98].

2.1 Language of λP

The set of pure λ-terms is defined according to the following grammar:

M ::= x | (λx.M) | (MM)

Contexts are used in the typing system as well. These are sequences of pairs:
(α : κ) or (x : τ), where α is a kind variable, κ a kind, x is an object variable
and τ a type.

Pure λ-terms and contexts form a base for Curry style λ-calculus, λP , the
expressions of which are inferred according to the following rules:

Type Inference for First-Order Logic 299

2.2 Rules of λP

Kind formation rules:

(type) ` ∗ : 2 (kind-abs)
Γ, x : τ ` κ : 2

Γ ` (Πx : τ)κ : 2

Kinding rules:

(kind-var)
Γ ` κ : 2

Γ, α : κ ` α : κ
(α 6∈ Dom(Γ))

(kind-app)
Γ ` φ : (Πx : τ)κ Γ `M : τ

Γ ` φM : κ[x := M]
(kind-abs)

Γ, x : τ ` σ : ∗
Γ ` (∀x : τ)σ : ∗

Typing rules:

(var)
Γ ` τ : ∗

Γ, x : τ ` x : τ
(α 6∈ Dom(Γ))

(app)
Γ ` N : (∀x : τ)σ Γ `M : τ

Γ ` NM : σ[x := M]
(abs)

Γ, x : τ `M : σ
Γ ` λx.M : (∀x : τ)σ

Weakening rules:

(trm− kd)
Γ ` τ : ∗ Γ ` κ : 2
Γ, x : τ ` κ : 2

(x 6∈ Dom(Γ))

(typ − kd)
Γ ` κ : 2 Γ ` κ′ : 2

Γ, α : κ ` κ′ : 2
(α 6∈ Dom(Γ))

(trm− typ)
Γ ` τ : ∗ Γ ` φ : κ

Γ, x : τ ` φ : κ
(x 6∈ Dom(Γ))

(typ − typ)
Γ ` κ : 2 Γ ` φ : κ′

Γ, α : κ ` φ : κ′
(α 6∈ Dom(Γ))

(trm− trm)
Γ ` τ : ∗ Γ `M : σ
Γ, x : τ `M : σ

(x 6∈ Dom(Γ))

(typ − trm)
Γ ` κ : 2 Γ `M : σ

Γ, α : κ `M : σ
(α 6∈ Dom(Γ))

Conversion rules:

(kd− conv)
Γ ` φ : κ κ =β κ′

Γ ` φ : κ′
(typ − conv)

Γ `M : σ σ =β σ
′

Γ `M : σ′

300 Aleksy Schubert

The definitions in Subsection 2.2 and 2.1 allow to infer types for Curry-style
terms. The system λP is usually defined in the Church version as follows. First,
raw expressions are described according to the following grammar:

Γ ::= {} | Γ, (x : φ) | Γ, (α : κ);
κ ::= ∗ | (Πx : φ)κ;
φ ::= α | (∀x : φ)φ | (φ(M);
M ::= x | (MM) | (λx : φ.M)

Some of these expressions, designated by inference rules, are called Church terms.
The inference rules have exactly the same form in most cases as the rules for
inferring Curry types. The exception is the rule (abs) which looks as follows

(abs)
Γ, x : τ `M : σ

Γ ` λx : τ.M : (∀x : τ)σ

Note that the definition of types for the Church version also changes — the
definition depends on the definition of terms which is different in Curry and
Church styles. These versions are essentially equivalent as shown in [vBLRU97].

In this document, we use the word ‘subtype’ to mean subexpression. We do
not employ any other kind of ‘subtyping’ relation here.
Definition 1 (type assignment)
A derivation is a tree labelled with rules of λP so that for each node its label
premises are in bijection with conclusions in labels of its sons. Derivations are
usually denoted by letters like P ,Q . . .

We say that a derivation P assigns a type τ to a term M iff the derivation
ends with the assertion Γ `M : τ for some Γ .

Except where stated explicitly otherwise, we write (∀x : σ)τ as σ → τ pro-
vided that x does not occur free in τ .

We shall be using extensively the notation l((∀x : σ1)σ2) and l(σ1 → σ2) to
denote σ1 together with r((∀x : σ1)σ2) and r(σ1 → σ2) to denote σ2.

We denote the α-conversion relation, applied for both types or λ-terms by
≡α.

We have to formulate the exact problem we should solve. The notion of
signature is central in the syntactic part in any presentation of the first-order
logic. Thus, we have to determine what part of λP syntax corresponds to the
notion.
Definition 2 (signature first-order context)
The signature first-order context is a λP context such that:

1. There is only one type variable 0 (which should be regarded as a type con-
stant), representing the type individuals;

2. All kinds are of the form 0 ⇒ · · · ⇒ 0 ⇒ ∗;
3. There is a finite number of distinguished constructor variables, represent-

ing relation symbols in the signature (they must be of appropriate kinds,
depending on arity);

Type Inference for First-Order Logic 301

4. Function symbols in the signature are represented by distinguished object
variables of types 0 → · · · → 0 → 0, depending on arity;

5. Constant symbols are represented by distinguished object variables of type 0.

A λP context obtained from a signature Σ is denoted by ΓΣ .

The proof theory for first-order logic introduces a notion of a context (en-
vironment) in which a formula is interpreted. This context is reflected by the
following notion (this notion is in the spirit of [SU98]):
Definition 3 (first-order context)
A first-order context over a signature context ΓΣ is a context in dependent types
of the form ΓΣ ∪ {x1 : φ1, . . . , xn : φn} where each φi is either first-order type
or 0.

The notion of an algebraic term is crucial in the presentation of the first-
order logic. These terms have their counterparts in λP . The most straightforward
definition of such terms looks as follows:
Definition 4 (homogeneous first-order term)
We say that t is a homogeneous first-order term in a first-order context Γ iff

– t = x where Γ (x) = 0 (i.e. x is a constant symbol or a first-order variable),
– t = ft1 . . . tn where Γ (f) = 0 → · · · → 0

︸ ︷︷ ︸

n−times

→ 0 and each ti is a homogeneous

first-order term in Γ .

The next step in our presentation is to define what is the equivalent of the
first-order formula.
Definition 5 (first-order type)
We say that a type φ is a first-order type in the context Γ iff it is of the form

– P (t1, . . . , tn) where Γ (P) = 0 ⇒ · · · ⇒ 0
︸ ︷︷ ︸

n−times

⇒ ∗, P 6= 0 and each ti is homoge-

neous first-order term in Γ , or
– (∀x1 : 0) · · · (∀xn : 0).φ1 → · · · → φm where each φi is a first-order type in
Γ ∪ {x1 : 0, . . . , xn : 0}.

At last, we have to define which derivations of λP may be regarded as first-
order derivations.
Definition 6 (first-order derivations)
We say that a derivation P in dependent types is a first-order derivation iff each
judgement Γ ` M : τ in the derivation is such that Γ is a first-order context
over a fixed signature first-order context ΓΣ and τ is either a first-order type or
a type of the form 0 → · · · → 0

︸ ︷︷ ︸

n−times

→ 0 where n ≥ 0.

This definition of derivation allows to introduce one-to-one correspondence be-
tween derivations in λP and some first-order logic proofs. We do not present
details due to limited space.

We can now describe precisely the set of problems we deal with.

302 Aleksy Schubert

Problem 1. The problem of type inference with a first-order context is defined
as follows:
Given: A Curry-style term M and a first-order context Γ .
Question: Does there exist a derivation in λP that ends with Γ ` M : τ for a
first-order type τ?

Problem 2. The problem of first-order type inference is defined as follows:
Given: A Curry-style term M and a first-order context Γ .
Question: Does there exist a first-order derivation that ends with Γ `M : τ for
a first-order type τ?

Note that in all the above-mentioned questions we assume that a context Γ is
a first-order context. This is not standard for type inference problems as usually
these are formulated with arbitrary contexts. We may assume that contexts from
the Given parts in definitions of problems are first-order contexts as procedure
checking if the context has the property is easy.

3 Undecidability of Type Inference with a First-Order
Context

Our undecidability proof is almost identical to the proof presented in [Dow93].

Theorem 1. undecidability of Problem 1 The problem of type inference with a
first-order context is undecidable.

Proof. We present a description of changes that should be made in Dowek’s
proof in order to get our claim. The context Γ

[0 : Type; a : 0 → 0; b : 0 → 0; c : 0; d : 0;P : 0 → Type;F : (∀x : 0)(Px) → 0]

used in [Dow93] should be replaced by

[0 : Type; a : 0 → 0; b : 0 → 0; c : 0; d : 0;P : 0 → Type;F : (∀x : 0)(Px) → (Pc)].

The replacement enforces only a little change in types used in the proof (some
occurrences should be replaced by P (c)), but this does not harm reasonings in
Dowek’s proof.

The undecidability is essentially obtained because we can quantify over first-
order function symbols here. The type ∀x1 : 0 → 0 · · · ∀xn : 0 → 0.(βx1 · · ·xn)
used in the proof is the only element that goes beyond first-order logic.

4 First-Order Type Inference

This material presents a proof for decidability of first-order type inference where
signatures have at least one constant symbol. Such signatures give rise to a very
wide class of instances and the restriction does not seem to be significant. In
fact, the construction mentioned here requires only some minor modifications in
order to provide a solution for the full problem. We lay aside the most general
presentation for the sake of simplicity.

Type Inference for First-Order Logic 303

4.1 Generation of Equations

In our algorithm, we use some equations. Thus, we have to define the entities to
be equated.
Definition 7 (e-terms)
The set of e-terms over the signature Σ and variables X , denoted by T e

Σ(X), is
defined as follows

– x ∈ T e
Σ(X) if x ∈ X ;

– f(t1, . . . , tn) ∈ T e
Σ(X) if f ∈ Σ, has arity n (n ≥ 0) and ti ∈ T e

Σ(X) for
i = 1, . . . , n;

– t〈x := s〉 ∈ T e
Σ(X) where t ∈ T e

Σ(X), x ∈ X , and s is an e-term over Σ with
variables from X .

We extend this notion to types using a set X of type variables.
Definition 8 (e-types)
The set of e-types over the signature Σ, variables X and type variables X , de-
noted by T e

Σ(X,X), is defined as follows

– P (t1, . . . , tn) ∈ T e
Σ(X,X), if ti ∈ T e

Σ(X) for i = 1, . . . , n;
– α ∈ T e

Σ(X,X), if α ∈ X ;
– τ1 → τ2 ∈ T e

Σ(X,X), if τ1, τ2 ∈ T e
Σ(X,X) and x ∈ X ;

– (∀x : 0)τ ∈ T e
Σ(X,X), if τ ∈ T e

Σ(X,X) and x ∈ X ;
– τ〈x := s〉 ∈ T e

Σ(X,X), if τ ∈ T e
Σ(X,X) and s is a homogeneous first-order

term over Σ with variables from X .

We use the notation τ〈x := t〉 in order to shorten τ〈x1 := t1〉 · · · 〈xn := tn〉.
The set of free first-order variables in an e-type (e-term) τ , denoted by Vars(τ),
is defined so that x is bounded in (∀x)τ ′ and τ〈x := t〉.

We introduce the notation TV(τ) to denote the set of all type variables in
τ . Notations Vars(· · ·) and TV(· · ·) are extended so that they can be applied to
sets of e-types.

The notion of (semantical) substitution is not straightforward here so we
present its definition. This notion describes a different operation than the one
defined later in Definition 13.
Definition 9 (first-order substitution)
A first-order substitution is a partial function from first-order variables to e-
terms with finite domain. We usually denote such a substitution by [x1 :=
t1, . . . , xn := tn]. This function acts on e-terms so that no free variable gets
bounded, which may be expressed as follows:

– xi[x1 := t1, . . . , xi := ti, . . . , xn := tn] = ti;
– y[x1 := t1, . . . , xn := tn] = y where for each i = 1, . . . , n we have xi 6= y;
– f(s1, . . . , sn)[x1 := t1, . . . , xn := tn] = f(s′1, . . . , s′n) where
s′i = si[x1 := t1, . . . , xn := tn];

– t〈x := u〉[x1 := t1, . . . , xn := tn] = t′〈x′ := u′〉 where u′ = u[x1 :=
t1, . . . , xn := tn], the variable x′ does not occur in any of terms x1, . . . , xn,
t1, . . . , tn and t′ = t[x := x′][x1 := t1, . . . , xn := tn];

304 Aleksy Schubert

– α[x1 := t1, . . . , xn := tn] = α;
– P (s1, . . . , sn)[x1 := t1, . . . , xn := tn] = P (s′1, . . . , s

′
n) where

s′i = si[x1 := t1, . . . , xn := tn];
– τ1 → τ2[x1 := t1, . . . , xn := tn] = τ ′1 → τ ′2 where τ ′i = τi[x1 := t1, . . . , xn :=
tn];

– ((∀x : 0)τ)[x1 := t1, . . . , xn := tn] = ((∀x′ : 0)τ ′) where x′ does not occur in
x1, . . . , xn, t1, . . . , tn and τ ′ = τ [x := x′][x1 := t1, . . . , xn := tn];

– τ〈x := u〉[x1 := t1, . . . , xn := tn] = τ ′〈x′ := u′〉 where u′ = u[x1 :=
t1, . . . , xn := tn], the variable x′ does not occur in any of terms x1, . . . , xn,
t1, . . . , tn and τ ′ = τ [x := x′][x1 := t1, . . . , xn := tn].

The set Paths(τ) of paths in an e-type τ (an e-term) is a set of sequences
of natural numbers defined so that subsequent numbers represent which part
of an e-type or an e-term is taken. For instance, the path 12 points to τ2 in
(∀x)(τ1 → τ2), and the path 3 points to t in τ ′〈x := t〉.

We have already introduced types with explicit substitutions (e-types). These
substitutions allow to delay some substitution until a type variable is substituted,
but then substitutions must be applied. The whole just described work is done
by -reduction.

Definition 10 (reduction for e-terms and e-types)
The reduction for e-terms is defined as:

1. t1 = f(s1, . . . , sn) f(s′1, . . . , s
′
n) where for some i ∈ {1, . . . n} we have

si s′i and for j 6= i we have sj = s′j ;
2. t〈x := s〉 t′〈x := s〉 when t t′;
3. t1 = t〈x := s〉 t[x := s] when t is irreducible ([x := s] is the usual

substitution);
4. τ1 = P (s1, . . . , sn) and τ2 = P (s′1, . . . , s

′
n) for some predicate P ∈ Σ and for

some i ∈ {1, . . . n} we have si s′i and for j 6= i we have sj = s′j ;
5. τ1 = σ1 → σ2 and τ2 = σ′1 → σ2 where σ1 σ′1;
6. τ1 = σ1 → σ2 and τ2 = σ1 → σ′2 where σ2 σ′2;
7. τ1 = (∀y : 0)σ1 and τ2 = (∀y : 0)σ′1 where σ1 σ′1;
8. τ1 = σ〈x := s〉 and τ2 = σ′〈x := s〉, where s ∈ T e

Σ(X), x ∈ X , and σ σ′;
9. τ1 = (σ1 → σ2)〈x := s〉 and τ2 = σ1〈x := s〉 → σ2〈x := s〉, where s ∈ T e

Σ(X),
x ∈ X ;

10. τ1 = ((∀y : 0)σ)〈x := s〉 and τ2 = ((∀y : 0)σ〈x := s〉), where s ∈ T e
Σ(X),

x 6= y (if x = y perform α-conversion first and then reduce according to the
present rule).

11. τ1 = P (t1, . . . , tm)〈x := s〉 and τ2 = P (t′1, . . . , t
′
m), where s ∈ T e

Σ(X), x ∈ X ,
P ∈ Σ and has the arity m, and t′i = ti〈x := s〉 for i = 1, . . . ,m.

As usual, we extend to its reflexive-transitive closure ∗.

We point out that according to the definition above an e-type of the form
α〈x := t〉, where α is a variable, is irreducible.

The reduction ∗ has several good properties the proofs of which are omitted
here: it has Church-Rosser property, it is strongly normalising, and decidable.

Type Inference for First-Order Logic 305

Thus, we can define that NF (τ) and NF (t) which are normal forms of re-
spectively the e-type τ and the e-term t.

The following interesting fact gives a nice insight about what is going on in
e-types.

Property 1. If τ is an e-type in the normal form such that TV(τ) = ∅ then it
has no subtype (subterm) of the form σ〈x := t〉 (s〈x := t〉).

Definition 11 (equality for e-terms and e-types)
The equality for e-terms and e-types is defined as the least congruence containing

∗ ∪ ≡α and is denoted by '.
Definition 12 (e-equation)
We write τ1

.= τ2 to denote that the pair of e-types τ1, τ2 is an e-equation. Sets of
e-equations are denoted by E ,F , The set Ee

Σ(X,X) is the set of e-equations
among e-types from T e

Σ(X,X).
Now, we define a notion of substitution we deal with.

Definition 13 (substitutions)
Each partial function from type variables to some T e

Σ(X,Y) is called a substi-
tution.

We extend a substitution S : X ⇀ T e
Σ(X,Y) to e-types inductively as follows:

– S(0) = 0;
– S(P (t1, . . . , tm)) =
P (t1, . . . , tm);

– S(α) = α if α 6∈ Dom(S);
– S(α) = S(α) if α ∈ Dom(S);

– S((∀x : 0)σ2) = (∀x : 0)S(σ2);
– S(σ1 → σ2) = S(σ1) → S(σ2);
– S(σ〈x := s〉) = S(σ)〈x := s〉.

Note that in the definition above we do not have any kind of renaming of
individual variables while substituting under quantifier. This approach is inten-
tional here. We agree with the fact that some symbols may get bounded during
such a substitution.
Definition 14 (solution of a set of equations)
We say that a substitution S : X ⇀ T e

Σ(X, ∅) is a solution of a set of e-equations
E iff for each e-equation [τ1

.= τ2] ∈ E we have S(τ1) ' S(τ2).
We define S(Γ) for a context Γ as the sequence Γ with each x : τ replaced

by x : NF (S(τ)).
We cannot hope for a most-general solution property here.

Example 1. Consider a signature context ΓΣ = {P : 0 ⇒ ∗, c : 0}. The set of
equations E = {α〈x := c〉〈y := c〉 .= P (c)} has two solutions S1(α) = P (x) and
S2(α) = P (y), but there is no S3 such that S3 ◦ S2 = S1 or S3 ◦ S1 = S2. Thus,
neither S1 nor S2 can be the most general solution.

Definition 15 (generation of equations)
Here is a nondeterministic procedure gener that takes as an input a Curry-
style term M , an enriched first-order context Γ , and a path ρ (intentionally
leading to M in a bigger term) and generates a set of e-equations included
in Ee

Σ∪{c0,c1}(Γ
0,X) where c0, c1 are fresh first-order constants. The procedure

follows

306 Aleksy Schubert

1. gener(x, Γ, ρ) = {αx,ρ
.= Γ (x)} when x ∈ Dom(Γ) and Γ (x) 6= 0;

2. gener(x, Γ, ρ) = {c0 .= c1} when x 6∈ Dom(Γ) or x ∈ Dom(Γ) and Γ (x) = 0;
3. gener(MN,Γ, ρ) = {αM,ρ·l

.= (∀x : 0)α0
MN,ρ, α

0
MN,ρ〈x := N〉 .= αMN,ρ} ∪

EM ∪ EN provided that N is a homogeneous first-order term, x is a fresh
first-order variable, EM = gener(M,Γ, ρ · l) and EN = gener(N,Γ, ρ · r);

4. gener(MN,Γ, ρ) = {αM,ρ·l
.= αN,ρ·r → αMN,ρ} ∪ EM ∪ EN provided that N

is not a homogeneous first-order term, EM = gener(M,Γ, ρ · l) and EN =
gener(N,Γ, ρ · r);

5. nondeterministically choose one of either (5a) or (5b):
(a) gener(λx.M, Γ, ρ) = {αλx.M,ρ

.= αx,ρ → αM,ρ·l} ∪ EM where the set of
equations EM = gener(M,Γ ∪ {x : αx,ρ}, ρ · l),

(b) gener(λx.M, Γ, ρ) = {αλx.M,ρ
.= (∀x : 0)αM,ρ·l} ∪ EM where the set of

equations EM = gener(M,Γ ∪ {x : 0}, ρ · l).
We divide the set of variables X so that X = X0 ∪X1 where X0 ∩X1 = ∅ and

X1 = {αM,ρ |M ∈ λP, and ρ is a path }.

Theorem 2. There exists a nondeterministic algorithm which for each first-
order context Γ and a Curry style term M has a run that gives a set of e-
equations E such that the following sentences are equivalent:

1. There exists a type τ such that Γ `M : τ has a first-order derivation.
2. E has a solution.

Proof. The algorithm is described by the procedure gener. The procedure gives
nondeterministically a set of equations E . By straightforward induction on the
term M , we prove both implications of the theorem. Details are omitted due to
lack of space.

4.2 Simplification of Equations

Generally, types in equations from the previous subsection contain first-order
quantifiers of type 0 and arrows. We get rid of arrows using a procedure similar
to the one in Robinson’s unification.

In order to shorten the notation, we should denote by ∀∀nτ an e-type of the
form (∀x1 : 0) · · · (∀xn : 0)τ where n ≥ 0. In order to distinguish different ∀∀n’s,
we sometimes supplement them with a subscript.

We present a procedure to simplify equations. The general idea behind the
procedure is to unify equations in the fashion of Robinson’s unification with
additional work connected with pushing explicit substitutions and first-order
quantifiers to leaves.
Definition 16 (simplification procedure)
The procedure processes step by step pairs (Q, S) where Q is a sequence of

equations to be solved and S is a substitution. The input of the procedure is a
pair (Q0, ∅), where Q0 is the set of equations we are interested in.

The intended property of the abovementioned substitution S is that if equa-
tions in Q are solvable by a substitution S′ then S′ ◦ S solves Q0.

Type Inference for First-Order Logic 307

The procedure terminates either when it explicitly fails or when the sequence
Q consists only of pairs of one the following three shapes:

∀∀n
1α〈x := t〉 .= ∀∀n

2α
′〈y := s〉 (1)

∀∀n
1α〈x := t〉 .= ∀∀n

2P (s1, . . . , sm) (2)
∀∀n

1P (t1, . . . , tn) .= ∀∀n
2P (s1, . . . , sn) (3)

where x, y, t, s stand for appropriate vectors of variables and terms, and n ≥ 0.
In the procedure, we use two kinds of type variables: normal variables and

travelling variables. Travelling variables are used only in the proof of termination.
They may be omitted in a working version of the algorithm. All variables in the
input are marked as normal.

At each step, the following cases are checked (we omit cases symmetric
wrt. .=):

1. Let Q =‖ ∀∀n(σ1 → σ2)〈y := t〉 .= τ ‖ · Q′. The present pair is transformed
to

(‖ ∀∀n(σ1〈y := t〉 → σ2〈y := t〉) .= τ ‖ · Q′, S).

2. Let Q =‖ ∀∀n((∀x : 0)σ2)〈y := t〉 .= τ ‖ ·Q′. The present pair is transformed
to

(‖ ∀∀n((∀x′ : 0)σ2〈x := x′〉〈y0 := t0〉) .= τ ‖ · Q′, S)

where x′ does not occur in any of terms in t, and 〈y0 := t0〉 are those explicit
substitutions for which y’s do not occur in ∀∀n.

3. Let Q =‖ ∀∀nP (s1, · · · , sm)〈y := t〉 .= τ ‖ · Q′. The present pair is trans-
formed to

(‖ ∀∀nP (s1〈y := t〉, . . . , sm〈y := t〉) .= τ ‖ · Q′, S).

4. Let Q =‖ ∀∀n
1 (σ1 → σ2) .= ∀∀n

2 (τ1 → τ2) ‖ ·Q′. The present pair is transformed
to

(‖ ∀∀n
1σ1

.= ∀∀n
1 τ1 ‖ · ‖ ∀∀n

2σ2
.= ∀∀n

2 τ2 ‖ · Q′, S)

5. Let Q =‖ ∀∀n
1α〈x := t〉 .= ∀∀n

2 τ1 → τ2 ‖ · Q′ where x is the set of variables
x1, . . . , xm, the vector t is the set of terms t1, . . . , tm, and α is a type variable
such that no cycle containing α in the graph GQ has an edge from Es. The
present pair is transformed to

(‖ ∀∀n
1 (α1 → α2)〈x := t〉 .= ∀∀n

2 τ1 → τ2 ‖ · Q′[α := α1 → α2)],
[α := α1 → α2] ◦ S)

where α1, α2 are fresh variables. Additionally, we mark variables α1, α2 as
travelling.

6. Let Q =‖ ∀∀n
1α〈x := t〉 .= ∀∀n

2 ((∀y : 0)τ) ‖ · Q′ where x is the set of variables
x1, . . . , xm, the vector t is the set of terms t1, . . . , tm, and α is a type variable

308 Aleksy Schubert

such that no cycle in the graph GQ contains a vertice with α and an edge
from Es simultaneously. The present pair is transformed to

(‖ ∀∀n
1 ((∀y′ : 0)α1)〈x := t〉 .= ∀∀n

2 ((∀y : 0)τ) ‖ · Q′[α := ((∀y′ : 0)α1)],
[α := ((∀y′ : 0)α1)] ◦ S)

where α1 is a fresh type variable, and y′ is a fresh first-order variable. Addi-
tionally, we mark variable α1 as travelling.

7. Let Q =‖ σ .= τ ‖ · Q′ and let σ .= τ be of one of the shapes (1–3). The
present pair is transformed to

(Q′· ‖ σ .= τ ‖ , S).

8. In all other cases fail.

Theorem 3. 1. The procedure terminates for all inputs of the form (Q, ∅).
2. A system Q has a solution iff the result of the simplification procedure ap-

plied to (Q, ∅) is (Q′, S) where Q′ has a solution and each equation in the
sequence is in one of the forms (1–3) described in Definition 16.

Proof. The termination is obtained due to similar reasoning to the one in Robin-
son’s unification. For the proof of the second claim, one should show that each
rule of the simplification procedure is sound and complete and then the claim
follows by induction. Details are omitted due to lack of space.

4.3 Removal of First-Order Quantifiers

We obtain a set of e-equations by means of the simplification procedure. These
equations have a special form. They still contain first-order quantifiers which do
not allow for a direct translation into second-order unification. We introduce a
procedure to remove them. The procedure uses as a intermediate data structure
a special kind of graph which is defined as follows
Definition 17 (graph of fixing)
A graph of fixing for a set of equations E is defined as each graph with vertices

VE = XE × TV(E)

where XE is the set of first-order variables quantified in E , and TV(E) is defined
as the set of type variables in E . The edges of such graphs are meant to be
unordered pairs.

We will start the procedure of removal of first-order quantifiers with a fixing
graph in which an edge between (x, α) and (x′, α′) informs that there exists an
equation with α and α′ where x and x′ are quantified in the same place in both
sides of equation. We will be processing fixing graphs then in order to approach
the situation that each edge between (x, α) and (x′, α′) informs that either x
and x′ should occur at exactly the same places in terms that result in applying
a solution to α and α′ respectively.

The procedure that removes quantifiers gives as a result a new set of equations
with some negative constraints. These constraints say that some symbol may not
occur in a type variable. We remove quantifiers as follows:

Type Inference for First-Order Logic 309

Definition 18 (removal of first-order quantifiers)
The input for the procedure is a triple (Σ,X, E) where Σ is a signature, X is a

set of first-order variables, and E is a set of e-equations included in Ee
Σ(X,X). The

output is a triple (Σ′, E ′, φ), where Σ′ is a signature, E ′ is a set of e-equations in-
cluded in Ee

Σ′(∅,X), and φ : TV(E ′) → P (XE). Equations are modified according
to the following schema:

1. We build a graph of fixing GE and φETV(E ′) → P (XE). They are the result
of the hereafter mentioned iteration:
(a) We begin with G0

E = 〈VE , E0〉 and φ0 : TV(E) → P (XE) where

E0 = {((xi, α), (x′i, α
′)) |

[∀x1 . . . ∀xi . . . ∀xnα〈· · ·〉 .= ∀x′1 . . .∀x′i . . . ∀x′nα′〈· · ·〉] ∈ E}
φ0(α) = ∅ for each α.

(b) We transform Gn
E into Gn+1

E only if there exists a path ρ in Gn
E from

(xi, α) to (xj , α) where xi 6= xj . We define En+1 and φn+1 as follows
i. take an edge in ρ — ((y, β), (y′, β′)),
ii. remove the edge — the resulting set is En+1,
iii. φn+1(γ) = φn(γ) for γ 6= β,

φn+1(γ) = φn(γ) ∪ {y} when there is an equation in E

∀z1 . . . ∀zi . . . ∀zmβ〈z1 := t〉 .= ∀z′1 . . . ∀z′i . . . ∀z′mβ′〈· · ·〉

where zi = y and z′i = y′ and z1 does not contain y,
φn+1(γ) = φn(γ) when the former condition does not hold.

2. We produce a new set of equations E ′ by means of two steps:
(a) we generate a function ψ : VE → Const such that ψ−1(c) is either ∅ or a

connected component in GE ;
(b) we remove quantifiers in each equation:

∀z1 . . . ∀zi . . . ∀znα〈z1 := t1〉 .= ∀z′1 . . . ∀z′i . . . ∀z′nβ〈z2 := t2〉

using the following rules
– if (zi, α) and (z′i, β) are in the same connected component then we

replace both the variables by ψ((zi, α));
– if (zi, α) and (z′i, β) are in different connected components then

• if zi ∈ φ(α) we replace xi and xj by ψ((zi, β)),
• if z′i ∈ φ(β) we replace xi and xj by ψ((zi, α)),

(if both cases hold we take the first option).

The signature we return contains: all the symbols from Σ, all the symbols
from X , and all the first-order constants introduced in the abovementioned pro-
cedure.

The following fact is necessary to establish the correctnes of the abovemen-
tioned definition.

310 Aleksy Schubert

Property 2. Let ∀z1 . . . ∀zi . . . ∀znα〈z1 := t1〉 .= ∀z′1 . . . ∀z′i . . . ∀z′nβ〈z2 := t2〉
be an equation. If Gk does not contain the edge ((zi, α), (z′i, β)) then either
zi ∈ φk(α) or z′i ∈ φk(β).

Proof. Induction on k.

The following fact explains why we should break paths from (xi, α) to (xj , α).
Existence of such path means that xi and xj are equal.

Property 3. Let ρ be a path in Gk for some k and let S be a solution of E . If for
each edge ((zi, α), (z′i, β)) on ρ and for each equation of the form

∀z1 . . .∀zi . . . ∀znα〈z1 := t1〉 .= ∀z′1 . . . ∀z′i . . . ∀z′nβ〈· · ·〉

we have that zi 6∈ z1, then there exists a position w such that for each vertice
(y, γ) in we have that y is on w in S(γ).

Proof. Induction on the length of ρ.

Property 4. The procedure of removal of first-order quantifiers

1. terminates,
2. E has a solution T : X ⇀ T e

Σ(X, ∅) iff the result E ′ of removal of first-order
quantifiers has a solution T ′ : X ⇀ T e

Σ′(X\(Σ ∪Dom(Γ)), ∅)

Proof. The property (1) is obvious.
The proof of (2) has two parts. We present a scetch of them here.
(⇒) If E has a solution T then we can construct a solution T ′ of E ′. This is

done by replacing each constant x in T (α) by ψ((x, α)). As there are no paths
from (xi, α) to (xj , α) in GE , each first-order variable in α obtains a different
constant. Bullets in the point (2b) of Definition 18 guarantee that this operation
results in a solution.

(⇐) If E ′ has a solution T ′ then we can reconstruct T that solves E by simply
replacing fresh constants by first-order variables they replaced. The existence of
ρ in the point (1b) of Definition 18 guarantees that only one first-order variable
may correspond to a constant in a type variable.

4.4 From Equations to Second-Order

We finally obtained a set of e-equations that can easily be transformed to a spe-
cial form of second-order unification equations. We have to deal with constraints,
though. The translation is defined as
Definition 19 (translation to second-order)
For each type variable α, let Aα be the set of all the variables x such that

there exists a type α〈y := t〉〈x := s〉〈z := u〉 in the set being translated.
Assuming Aα = {x1, . . . , xn}, we replace each α〈y := t〉 by Fα(t′1, . . . , t

′
n} where

t′i = tj [xj+1 := tj+1] · · · [xn := tn] if xi = yj and t′i = xi if there is no yj = xi.
Constraints are translated to second-order constraints by replacing α’s by

corresponding F ’s.

Type Inference for First-Order Logic 311

Immediately, we obtain the following property:

Property 5. For a given set E of equations of the form (1–3) in Definition 16,
there exists a set E ′ of second-order unification equations such that E is solvable
if and only if E ′ is solvable.

Moreover, the translation from E to E ′ is effective.

The transformation that allows to get rid of constraints looks as follows
Definition 20 (removing constraints)
Let E be a set of second-order equations with constraints φ. For each constant
c ∈ Σ we introduce two constants c1 and c2. For each second-order variable F
of arity n we introduce two variables F1 and F2 both of arities n+ k where k is
the number of constants in Σ. We define two operations | · |1 and | · |2 as follows:

– |c|i = ci,
– |f(t1, . . . , tn)|i = f(|t1|i, . . . , |tn|i),
– |F (t1, . . . , tn)|i = Fi(|t1|i, . . . , |tn|i, c1i , . . . , cki) where {c1, . . . , ck} is the set of

all constants in Σ.

Each equation t1 = t2 in E is replaced by a pair of equations |t1|1 = |t2|1
and |t1|2 = |t2|2. For each variable F in E we supply additional equations
F1(a, . . . , a, c11, . . . , ck1) = F2(a, . . . , a, c11, . . . , ck1) and F1(a, . . . , a, c12, . . . , ck2) =
F2(a, . . . , a, c12, . . . , c

k
2) where a is a fresh constant. At last for each constraint

φ(F) we supply the equation

F1(a, . . . , a, c11, . . . , c
k
1) = F2(a, . . . , a, d1, . . . , dk)

where di = ci1 if ci 6∈ φ(F) and di = ci2 if ci ∈ φ(F).
Immediately we obtain the following property:

Property 6. For a given set E of equations with constraints φ, there exists a set
E ′ of second-order unification equations such that E is solvable if and only if E ′
is solvable.

The translation from E to E ′ is effective and involves only equations of the
form (1–3) in Definition 21.

4.5 Solving of Final Equations

In Subsection 4.2, we obtained sets of equations. Each equation is in one of three
forms.
Definition 21 (head equations)
The sets of equations in one of the following forms

1. F1(t1, . . . , tn) = F2(s1, . . . , sm);
2. F1(t1, . . . , tn) = P (s1, . . . , sm);
3. P1(t1, . . . , tn) = P2(s1, . . . , sm);

where F1, F2 are second-order variables, and P1, P2 symbols of first-order con-
stants, is called the set of head equations.

312 Aleksy Schubert

Now, we describe a procedure to solve such sets of equations.
We need the following facts:

Theorem 4. complete set of solutions for second-order matching For each set E
of second-order matching equations, if the set is solvable then it has a finite num-
ber of solutions with domains equal to TV(E) and all of them can be effectively
generated.

Property 7. If the set E of second-order unification has only equations of the
form F1(t1, . . . , tn) = F2(s1, . . . , tm), then it has a ground solution provided
that the signature has at least one constant symbol.

The first one is proved in [HL78]. The second is obvious — the solution
assigns the same term with no arguments on all the second-order variables. This
construction is applicable, though, only if we have at least one constant symbol
in the signature.
Definition 22 (solving procedure)
The nondeterministic procedure to solve our second-order equations is defined

as follows:

1. Check if there are equations of the form P1(t1, . . . , tn) = P2(s1, . . . , sm),
where the sides of the equation are different. If so fail else remove all equa-
tions of the form P (t1, . . . , tn) = P (t1, . . . , tn)

2. Find the complete set A of solutions for all the equations of the form
F (t1, . . . , tn) = P (s1, . . . , tm) (the set exists by Theorem 4). If there are
no such equations then go to step 5.

3. Choose one of the solutions and apply to all equations.
4. Go to step 1.
5. There are only equations of the form F1(t1, . . . , tn) = F2(s1, . . . , tm). These

equations have always a solution (provided that there is at least one constant
in the signature) so we accept in this case.

We have the following theorem:

Theorem 5. The problem, if a given set of head equations is solvable, is decid-
able.

At last, we obtain:

Theorem 6. The first-order type inference problem is decidable.

Proof. A consequence of Theorem 2, Theorem 3, Fact 5 and Theorem 5.

5 Acknowledgements

I would like to thank Pawe l Urzyczyn for encouraging me to work on the problem.
He is also a person to thank for his digging in early versions of the paper. His
remarks were very helpful during the preparation of the document. Also, I would

Type Inference for First-Order Logic 313

like to thank Gilles Dowek for a discussion we had about the problems. In fact,
much of the ideas in the proof presented in Subsection 4.5 is due to him. The
present proof, due to his remarks, is much simpler than my primary version.
Anonymous referees contributed to better presentation of the paper so my thanks
go for them too.

References

[Dow93] Gilles Dowek, The undecidability of typability in the lambda-pi-calculus,
Typed Lambda Calculi and Applications (M. Bezem and J.F. de Groote,
eds.), LNCS, no. 664, 1993, pp. 139–145.

[Gol81] W. D. Goldfarb, The undecidability of the second-order unification prob-
lem, TCS (1981), no. 13, 225–230.

[HHP87] R. Harper, F. Honsell, and G. Plotkin, A Framework for Defining Logics,
Proceedings of Logic in Computer Science, 1987, pp. 194–204.

[HL78] G. Huet and B. Lang, Proving and applying program transformations ex-
pressed with second order patterns, Acta Informatica (1978), no. 11, 31–55.

[Pfe91] Frank Pfenning, Logic Programming in the LF Logical Framework, Log-
ical Frameworks (Gherard Huet and Gordon Plotkin, eds.), Cambridge
University Press, 1991.

[Sch98] A. Schubert, Second-order unification and type inference for church-style
polymorphism, Proc. of POPL, 1998.

[SU98] M.H. Sørensen and P. Urzyczyn, Lectures on Curry-Howard Isomorphism,
Tech. Report 14, DIKU, 1998.

[TvD88] A.S. Troelstra and D. van Dalen, Constructivism in Mathematics, An
Introduction, Volume II, Studies in Logic and the Foundations of Math-
ematics, vol. 123, North-Holland, 1988.

[vBLRU97] Stefan van Bakel, Luigi Liquori, Simona Ronchi Della Rocca, and
Pawe lUrzyczyn, Comparing cubes of typed and type assignment systems,
Annals of Pure and Applied Logic (1997), no. 86, 267–303.

[Vor96] Andrei Voronkov, Proof search in intuitionistic logic based on constraint
satisfaction, Theorem Proving with Analytic Tableaux and Related Meth-
ods (Terrasini, Palermo) (P. Miglioli, U. Moscato, D. Mundici, and M. Or-
naghi, eds.), LNAI, no. 1071, Springer Verlag, 1996, pp. 312–329.

	Introduction
	Basic Definitions
	Language of $lambda P$
	Rules of $lambda P$

	Undecidability of Type Inference with a First-Order Context
	First-Order Type Inference
	Generation of Equations
	Simplification of Equations
	Removal of First-Order Quantifiers
	From Equations to Second-Order
	Solving of Final Equations

	Acknowledgements

