Using Domain-Specific Languages for the
Realization of Component Composition

Matthias Anlauff', Philipp W. Kutter?, Alfonso Pierantonio®, and
Asuman Siinbiil*

! GMD FIRST, Rudower Chaussee 5
D-12489 Berlin, Germany
ma@first.gmd.de
2 Swiss Federal Institute of Technology
Gloriastr. 35, CH-8092 Ziirich, Switzerland
kutter@tik.ee.ethz.ch
3 Dipartimento di Matematica, Pura ed Applicata
Universita di I’Aquila, I-67100 L’Aquila, Italy
alfonso@univaq.it
4 Computer Science Department, Technical University Berlin
Einsteinufer 17, Sekr. EN-7, D-10587 Berlin, Germany
asu@cs.tu-berlin.de

Abstract. In recent years, component-based development has evolved
to one of the key technologies in software engineering, because it provides
a promising way to deal with large scale software developments. Due to
this, the realization of component interactions has become an important
task while implementing a system being assembled from (existing) com-
ponents. Scripting languages, like Perl, Tcl, Unix-Shell, are often used
for implementing this so-called glue code, because they provide a flexi-
ble way to process string-based input, the most common data structures
used for component interactions. However, often it turns out that the
algorithms of the component interactions are too sophisticated to be ad-
equately expressed in this kind of languages. In this paper, we propose
the use of language technology for that purpose: the strings passed be-
tween the components are treated as sentences in specialized component
interaction languages (CIL). The syntax of such a language defines the
input format of the components to be interconnected, and the semantics
represents the functionality of the glue code. The appropriateness of this
approach depends on the methodology and support functionality avail-
able for designing these languages. We report on the positive experiences
using Montages as methodology. We will also describe the support func-
tionality of the Gem-Mex tool containing its graphical animation and
debugging facilities, which can be used as vehicle for the comprehension
of the interplay between the components of the overall system.

1 Introduction

The need for designing new programming languages is generally restricted to
those cases, where special applications require non-standard language constructs.

T. Maibaum (Ed.): FASE 2000, LNCS 1783, pp. 112-{I2Z6] 2000.
© Springer-Verlag Berlin Heidelberg 2000

Using Domain-Specific Languages 113

These so-called Domain-Specific Languages (DSL) are usually designed for being
used by domain experts who need languages consisting of terms and notions
they are familiar with. Often, a DSL also diminishes the amount of source code,
because domain-specific knowledge is already contained in the semantics of the
language constructs. However, the design overhead is often the reason, why the
definition of a DSL is chosen as the last alternative for solving a given problem.
This fact also prohibits specialized programming languages being exhaustively
used in other situations than the processing of human-written source code. In
this paper, we will present a “language design environment” which — as we think
— decreases the threshold of defining DSLs for solving given problems. Especially,
if the transformation from source to target is a non-trivial task, the use of DSLs
often leads to much better and less ad-hoc solutions.

In other words, the proposal of using syntax and semantics descriptions of
DSLs for implementing algorithms can be seen as a novel style of programming;:
Programming On Syntax Trees (PoST). That means that the input data defines
the locations of computation by the nodes of the parse tree, each of these nodes
is connected with a set of actions representing the computation, and the program
is given as the union of all these actions occurring in a parse tree.

The method, we are using for supporting this new paradigm is Montages
[I73]. Unlike other methods for describing formally the syntax and semantics of
programming languages, Montages is based strictly on techniques well known by
programmers: EBNF| finite state machines, imperative code. We will show, how
the Gem-Mex system automatically generates interpreters based on language
definitions given as Montages specifications. Montages has a formal semantics
based on Abstract State Machines [I2]15], which makes it also interesting when
security aspects of the target system must be considered.

In this paper, we will use the application domain of component-based soft-
ware development in order to show that designing new specialized languages in
our framework can compete with the technologies usually chosen in this domain.

This paper is organized as follows: We will first briefly describe some aspects
of the composition of software components and will thereby categorize our ap-
proach in the work already done in this field. Section [J] explains the running
example of the paper. We will then introduce the Montages method and briefly
describe the Gem-Mex system. Section [7] concludes the paper and provides an
outlook on future work.

2 Composition of Software Components

A lot of work has been done regarding the composition of software components.
This fact is expressed by the large number of publications related to this issue.
We will try to position ourselves wrt. the state of the art in component composi-
tion technology using a very recent publication by Schneider and Nierstrasz [27]
where they distinguish between five techniques that are used for the realization
of software component composition, namel

! citation from the mentioned paper

114 Matthias Anlauff et al.

— component frameworks provide software components that encapsulate useful
functionality;

— architectural description languages explicitly specify architectural styles in
terms of interfaces, contracts, and composition rules that components must
adhere in order to be composable;

— glue abstractions adapt components that need to bridge compositional mis-
matches;

— scripting languages are used to specify compactly and declaratively how
software components are plugged together to achieve some desired result
[19]; and

— coordination models provide the coordination media and abstractions that
allow distributed components to cooperate [6/9)].

In this paper, we propose the use of domain-specific languages as a substitute
for scripting languages for those cases, where it would be clumsy to use this kind
of languages. We do not want to use DSLs for coordinating the architectural
design of the composed software system, as proposed in [I0]; we will focus on the
use of DSLs for non-trivial component composition tasks on the implementation
level. A more detailed discussion on aspects regarding the design of software
systems that are assembled from components can also be found in [5] and [22].

2.1 Component Interaction Technologies

Important requirements for the technology that shall be used for realizing com-
ponent interaction are flexibility and adaptability (see [11]). Flexibility in this
context means the ability to process and generate any format of data occurring
in a heterogeneous environment. Adaptability describes the possibility of the
technology to adapt it for certain application domains. Therefore, scripting lan-
guages, like Unix-Shell-Script, Tcl/Tk, Python, Perl, are often used for the im-
plementation of component interactions, because they meet these requirements.
In [20], the importance of scripting language for the component interaction cul-
minates in the statement: “The main purpose of a scripting language is to wire
components in other languages”.

In trying to analyze this elusive role of scripting languages for component
interaction technology and knowing the drawbacks of this kind of languages
concerning concepts of high-level programming languages, one might come to
the conclusion, that the uncomplicated way of dealing with input and output
data is the key factor for this rating. Most scripting languages provide very
easy to use input/output primitives on a higher abstraction level than usually
programming languages do. The data types that can be handled by scripting
languages are restricted to one or two basic types (e.g. strings and integers); for
the purpose of implementing component interaction this is usually sufficient.

2.2 The Implementation of Component Interaction Using DSLs

At the risk of oversimplifying somewhat, the functionality of the code imple-
menting the component interaction can be characterized by two basic tasks:

Using Domain-Specific Languages 115

processing data coming from and sending data back to components. The prereq-
uisite for applying the “PoST” style of programming is therefore given for this
kind of application: the execution of the code is mainly controlled by the struc-
ture of the input data. The format of this data defines the syntax of a Component
Interaction Language (CIL), and the functionality is expressed by the language
semantics given by the actions attached to the nodes of the resulting parse trees.
Thus, the component interaction code can be regarded as an interpreter for the
CIL. Figure [[lillustrates this approach: The components C;, ...C; send strings

in

Cin S, / Coy
Cj Co

CIL-interpreter

Co

m

Fig. 1. Composition using a component interaction language

Sy, ... Si, to the component C}, each of these strings is a sentence of the compo-
nent interaction language CIL. The interpretation of these sentences in the CIL
interpreter results in the output of data that is send back to the components.

The components on the left-hand-side and on the right-hand-side both rep-
resent subsets of the set of components occurring in the system

2.3 Domain-Specific vs. Scripting Languages

The situations in which we propose to use DSLs as a substitute for scripting
languages are those where non-trivial or at least non-linear transformations of
the data exchanged between the components must be performed. On the one
hand, we do not propose to get rid of scripting languages at all; this would be
a big mistake because scripting languages have been proven to be a very good
vehicle for a high percentage of component interaction problems. But on the
other hand, often the expressive power of scripting languages does not suffice
to provide an appropriate solution for a given composition problem. In these
cases we propose to use domain-specific languages as an alternative component
composition implementation techniques. Our running example introduced below
will show a typical situation were we think that the overhead of designing an
own language solely for the task of component interaction is justified. We will
also show how this overhead can can diminished by using the Montages method,

2.0 ; may represent the same component as C,,, and both may coincide with Cj

116 Matthias Anlauff et al.

a semi-visual framework for specifying syntax and semantics of programming
languages, and its tool environment Gem-Mex.

3 Running Example: Transformation of Object
Repository Decription Formats

As a running example for explaining our proposal we use the interaction of a
object-based tool (e. g. a graphical editor) and a data repository. We assume that
the tool wants to store its objects in the repository in order to make use of the
configuration management functionality provided by the repository system. As
it is common in practice, the meta-models of both components do not match so
that the objects of the tool can not be stored in the repository as they are. In our
special case, the tool has a notion of sub-classing while the repository system has
not. In order to correctly reflect the interrelations of objects and their attributes,
the inheritance relation should also be represented in the repository.

For illustration purposes, we assume, that the classes occurring in the object-
based tool can consist of a list of attributes each of which has one of the basic
types “int”, “float”, “string”, or “bool”. Furthermore, we assume, that a class
has at most one super-class. For making things more concrete, we will further
assume that the grammar for describing the object format of the object-based
tool is given as follows:

Program ::= { ClassDefinition ”;” }
ClassDefinition = BasicClassDefinition | SubclassDefinition
BasicClassDefinition m="class” Ident "{” { Attribute ?;” } "}’
SubclassDefinition ::= 7subclass” Ident ”of” Ident ”{”

{ Attribute 7;” } 7}”
Attribute = Ident ”:” AttrType
AttrType = 7Int” |”Float” |”String” |”Bool”

The repository component is only able to declare classes and attributes, no
sub-classing is defined in the repository. The task of the DSL is to read the
object definitions from the tool and generate for each object the corresponding
entry in the repository. The attributes of an object’s super-class must also be
inserted for each object. Thus, the DSL must “flatten” the inheritance relation-
ship introduced by the object-based tool, so that the corresponding objects in
the repository contain the correct list of attributesd

In the following, we will use this example to introduce the Montages ap-
proach, and demonstrate the functionality of the Gem-Mex system.

3 This example is inspired by a problem that arose in the context of the “KobrA”-
project which currently runs with industrial partners at GMD FIRST. The approach
described in this paper is used to extend the repository system developed by one of
the industrial partners to deal with sub-classing.

Using Domain-Specific Languages 117
4 Visual Formal Semantics Descriptions: Montages

Montages [I7J2] constitute a specification formalism for describing all aspects
of programming languages. Syntax, static analysis and semantics, and dynamic
semantics are given in an unambiguous and coherent way by means of semi—
visual descriptions. The static aspects of Montages resemble control and data
flow graphs, and the overall specifications are similar in structure, length, and
complexity to those found in common language manuals.

In the same way Montages is used to describe the syntax and semantics of
programming languages, it can be used to formulate application functionality
based on the structure of input data. The difference lies on the conceptual level:
While in the first case the language and its semantical description lies in the
center of interest, in latter case one focuses on the application that processes
data of a given format. Thus, the term “language” does not necessarily refer to
a programming language, but may also refer to the description of the format of
the input data of an application.

The mathematical semantics of Montages is given with Abstract State Ma-
chines (formally called Evolving Algebras) [I315]. In short, ASMs are a state-
based formalism in which a state is updated in discrete time steps. Unlike most
state based systems, the state is given by an algebra, that is, a collection of
functions and universes. The state transitions are given by rules that update
functions point-wise and extend universes with new elements.

ASMs have already been used to model the dynamic semantics of a number
of programming languages, such as C [14], Occam [7], C++ [23], Oberon [I6],
and Java []] to mention a few. At the risk of oversimplifying somewhat, one
defines the initial state of the functions and specifies how they evolve by means
of transition rules. The initial state is assumed to include the results of a static
analysis. After this analysis the program’s control and data flow is represented
in the form of functions between parts of the program text. As usual the control
flow functions specify the order in which statements are executed, and the data
flow functions specify how values flow via variables through operations. The
corresponding transition rules update the system state and let the control evolve
through the control flow.

The existing case studies showed that it is possible to model with ASMs the
dynamic semantics of realistic programming languages, but they have the disad-
vantage that they do not formalize the static aspects. Montages engineered the
ASMs approach to programming language semantics showing how to model con-
sistently not only the dynamic semantics, but the static analysis and semantics
as well. In particular, Montages describe how to define intensionally the control
and data flow, starting from the concrete syntax.

In terms of the “PoST”-programming style this means that during the first
phase — the static analysis — the locations of the computation — associated with
a subset of the nodes of the syntax tree — are linked with each other using
control flow arrows. Data access to other parts of the syntax tree is defined
by data arrows. In the second phase — the dynamic execution — these locations

118 Matthias Anlauff et al.

are visited depending on firing condition on the flow arrows. In contrast to
traditional programming languages, where the control flow graph is fixed by the
source program, in our approach this graph is first constructed depending on
the structure of the input data and then processed according to the rules and
actions given for each node of that graph.

While ::= ”while” Expression
”do” StmSequence ”end”

--—-- —)I S-Expression |— e
A
I
I
I

T
I
I S-Ezxpression.value
I
| ¥
| S-StmSequence |

condition S-Expression.type = boolean

Fig. 2. The While Montage

In order to get an idea on how the the syntax and semantics is described
for a typical language construct in an imperative language, Figure B contains
the Montages specification of a “While” statement. The topmost part in the
working area is the production rule defining the context—free syntax. Below is
the local flow, i.e. the graphical definition of the mapping between syntax tree
and flow graph. In the While-Montage the tree with the expression and the
statement sequence descendants (denoted by the selectors S-Expression and S-
StmSequence) is mapped to a control cycle. The dotted control flow arrows may
be labeled by means of firing conditions, i.e. predicates which determine through
which edges the control must flow. If the firing condition S-Expression.value
evaluates to true, control cycles, otherwise it leaves the construct through the
exit point denoted by the T node (terminal). The entry point for the control is
the I node (initial).

Unlike the While construct, most other Montages contain additional points
of computation. Such points, or actions nodes are visualized as labeled ovals.
The action to perform is given in the fourth part (not contained in Figure[2) of
a Montage, by using the label as reference. We will see examples of this in the
following section.

Using Domain-Specific Languages 119

5 Implementing Component Interaction Using Montages

In this section, we will illustrate how Montages and its support environment
Gem-Mex can be used to implement the interaction of components using the
examples introduced in Section Bl According to the grammar specified there we
have specified a Montage for each language construct of the DSL implementing
the component interaction between the object-based tool and the object repos-
itory.

In Figure B the Montage for the attribute definition is given. The action
performed when an attribute node is reached is given by the lower part of the
window: The name and the type of the attribute is written to stdout in a format
that is accepted by the repository system.

Attribute ::= Ident ”:” AttrType
AttrType = 7Int” |"Float” |”String” |”Bool”

stdout := 7 Attr {” + aname.Name + 7:” + atype.Name + ”}”

Fig. 3. The “Attribute”’-Montage

In Figure @] the Montage for a basic class definition is given. When the
control flow reaches a basic class definition the return point is set to the “self”
node. This is done, because the return point serves as register for storing the
“next” class definition occurring in the input stream. The class definition header
as it is expected by the repository system is printed to stdout. After the list of
attributes has been processed, the control reaches the return point that has been
set in the first action of this construct. This Montage represents the base case,
only the local attributes are written to stdout.

The Montage in Figure Blrepresents the most interesting part of this example,
namely the case in which local and inherited attributes must be transfered to the
repository system. The Montage is nearly identical to the “BasicClassDefinition”-
Montage only that the control flow — after the local attributes has been processed
— does not enter the return point immediately; instead the control flow is set to
the “self” node of the super class. This node has been stored during the static
analysis in the global table “ClassDef”. From here, the inherited attributes are
also reached and transfered to the repository component. The use of the “Return-
Point” variable becomes clearer now: after processing the basic class definition

120 Matthias Anlauff et al.

BasicClassDefinition ::= ”class” Ident ”{”
{ Attribute ”;” }

2 }”
classident
1= >Caetlocal >

LIST

——> | S-Attribute | ——>| 'ReturnPoint@returnpoint

ClassDef(S-Ident.Name) := self

@setlocal:
stdout := ”Class ” + classident.Name + ” {”
ReturnPoint := self

@returnpoint:
stdout := "} ”

Fig. 4. The “BasicClassDefinition”-Montage

representing the root class for the current subclass, the control returns to the
current class definition.

Example

In order to illustrate the functioning of the DSL described above, we have gener-
ated a language interpreter from the Montages described above using the Gem-
Mex tool. Figure[d contains an example input and the generated output. As one
can see there, the attributes of the classes are flattened so that no information
is lost in the repository.

6 Gem-Mex: The Development Environment for
Montages

The development environment for Montages is given by the Gem-Mex tool [2[4].
The intended use of the tool Gem-Mex is, on one hand to allow the designer to
‘debug’ her/his semantics descriptions by empirical testing of whether the in-
tended decisions have been properly formalized; on the other hand, to automat-
ically generate a correct (prototype) implementation of programming languages
from the description, including visualization and debugging facilities.

Using Domain-Specific Languages 121

SubclassDefinition ::= ”subclass” Ident ”of” Ident ”{”
{ Attribute ”;” }

”}”

classident)
superident — - T
- Catoral)
LIST

_____ > S-Attribute - =

\
|
[
v
| IClassDef(superident.Name) |

ClassDef(S1-Ident.Name) := self

@setlocal:
stdout := "Class ” + classident.Name + ” {”
ReturnPoint := self

@returnpoint:
stdout := "}”

Fig. 5. The “SubclassDefinition”-Montage

Gem-Mex consists of a number of interconnected tools:

— a specialized graphical editor allows to enter and manipulate Montages in a
convenient way;

— frames for the documentation of the specified languages are generated auto-
matically;

— the Montages executable generator (Mex) generates a correct and efficient
interpreter of the language;

— the generic animation and debugger tool visualizes the static and dynamic
behavior of the specified language at a symbolic level; source programs writ-
ten in the specified language and user-defined data structures can be ani-
mated and inspected in a visual environment; a snapshot of the debugging
process is shown in Fig[1

6.1 Generation of Language Interpreters

Using nothing but the formal semantics description given by the set of Montages,
the Gem-Mex system generates an interpreter for the specified language. The
core of the Gem-Mex system is Aslan, which stands for Abstract State Machine

122 Matthias Anlauff et al.

Class Rectangle {
Attr {x0:Int}
Attr {y0:Int}
Attr {x1:Int}
Attr {y1l:Int}

}

Class Square {

Attr {length:Int}
Attr {x0:Int}
Attr {yO:Int}
Attr {x1:Int}
Attr {y1:Int}

}

Class Trapezium {
Attr {angle:Float}
Attr {x0:Int}
Attr {yO:Int}
Attr {x1:Int}
Attr {y1l:Int}

}

class Rectangle {
x0:Int; yO:Int; x1:Int; yl:Int;
};

subclass Square of Rectangle {
length:Int;
3

subclass Trapezium of Rectangle {
angle:Float;
};

Fig. 6. Input (left) and output (right) of the DSL connector

Language and provides a fully-fledged implementation of the ASM approach.
Aslan can also be used as a stand-alone, general purpose ASM implementation.
The process of generating an executable interpreter consists of two phases:

— The Montages containing the language definition are transformed to an in-
termediate format and then translated to an ASM formalization according
to the rules presented in the previous sections.

— The resulting ASM formalization is processed by the Aslan compiler gener-
ating an executable version of the formalization, which represents an inter-
preter implementing the formal semantics description of the specified lan-
guage.

Using Aslan as the core of the Gem-Mex system provides the user the possibility
to exploit the full power of the ASM framework to enrich the graphical ASM
macros provided by Montages with additional formalization code.

6.2 Generation of Visual Programming Environments

Besides pure language interpreters, the Gem-Mex system is able to generate
visual programming environments for the generated ASM formalization of the
programming language semanticd]. This is done by providing a generic debugging
and animation component which can be accessed by the generated executable.

4 This feature is again available to all kind of ASM formalizations implemented in
Aslan not only to those generated from a Montages language specification

Using Domain-Specific Languages 123

During the translation process of the Montages/ASM code special instructions
are inserted that provide the information being necessary to visualize the exe-
cution of the formalization. In particular, the visual environment can be used
to debug the specification, animate the execution of it, and generate documents
representing snapshots of the visualization of data structures during the execu-
tion. The debugging features include stepwise execution, textual representation
of ASM data structures, definition of break points, interactive term evaluation,
and re-play of executions.

Figure [7] shows an example of the graphical animation facility of the Gem-
Mex system. On the right-hand-side of the window the source code program
written in the specified programming language is displayed using position infor-
mation generated during the compilation process of the Montages. This position
information is used, for example, to highlight certain parts of the source code
that correspond to values of data structures contained in the language formal-
ization. In Figure [7 for example, the change of the value of the “current-task”
function C'T is animated by drawing an arrow from its old value to the new
one. Similarly, after the rules of the static semantics are processed, the corre-
spondence of the use occurrence of an identifier an its declaration position is
visualized by drawing an arrow between the two positions in the “view source”
window. Experiences show that especially this kind of animation is useful to
explain and document the formal semantics as specified in the Montages.

(=l view source code []

add term. /
. class Rectangle] {

WD R %x01Ints yO:1Infr xliInt; yliInt;
close. b

subclass Square|of Rectangle |

step. length:Int:
1:
continue.
N |subclass Trapez of Rectangle [|
Blow moticn. | |ang1e:E‘lDat;
step 64 =

CH = undef

CT = #82
!

Fig. 7. Graphical animation in the Gem-Mex system

6.3 Generation of Documentation Frames

The Gem-Mex system also generates files that can be used as frames for the
documentation of the language specification. Both, paper and online presentation
of the language specification are automatically generated:

124 Matthias Anlauff et al.

— ITEX documents illustrate the Montages and the grammar; such documents
are easily customizable for the non-specialist user; all Montages in this paper
are generated by Gem-Mex;

— HTML versions of the language specification allows to browse the specifica-
tion and retrieve pieces of specification.

7 Conclusion

The implementation of component interaction mainly consists of processing in-
put data coming from other components, analyzing this data, starting inter-
nal computation and sending output data back. Because of their flexibility and
adaptability, scripting languages are often used for this task. They usually pro-
vide regular expressions for analyzing incoming data streams. This technique is
very powerful, if the transformations that must be applied to the data aren’t too
complex. Using scripting languages in these cases often leads to nearly unmain-
tainable code. In this paper, we propose an alternative for the implementation
of component interaction for these cases. Our approach is based an experiences
in the field of the formal description of programming languages semantics using
the Montages method.

We explicitly do not want to get rid of scripting languages at all, because
they have been proven to be very useful for most cases of component interaction
problems. Nevertheless, we think that DSLs are appropriate for implementing
component interactions requiring non-trivial or at least non-linear transforma-
tions of data that is exchanged by the components to be interconnected. This
assumption only holds, if an environment like Montages/Gem-Mex is used di-
minishing the overhead of designing DSLs and generating interpreters for them.

Originally Montages are used to give syntax and semantics of programming
languages: syntax defines the possible programs and semantics defines the static
and dynamic properties of programs. If used to implement component interac-
tion, syntax defines the input format of components, while semantics is used to
"code” the glue algorithms. We named this form of algorithm structuring the
PoST programming style.

We have furthermore sketched, how the generated graphical tool environ-
ment, originally designed for debugging an animating the semantics of described
programming languages, now serves as a tool for visualizing the component in-
teractions.

In earlier work we designed two DSLs, which fall partly in the category of CIL.
The Cubix DSL [1§] is an interesting example for the proposed methodology.
Cubix itself is used to initialize driver components. These components use as
input CIL a query language for multi-dimensional data bases and generate as
output corresponding SQL queries. The SQL-sentences are fed to a relational
data base management system (DBMS). Hysdel [1] is designed in order to specify
hybrid systems in a convenient way. Hysdel has two semantics: one is the direct
simulation of the system for validation purposes. The second is the generation of
the corresponding Matlab code. Hysdel together with the first semantics is used

Using Domain-Specific Languages 125

as a CIL for a simulation component, while the same language together with the
second semantics is used as a CIL for a Matlab component.

As already mentioned in Section B] we are applying our approach in the
context of an research project with industrial partners. In this project, a com-
mercial repository system should be connected with other components using an
object definition language. First experiments with this industrial case study have
shown, that our approach provides an efficient and elegant way to describe and
implement component interaction, and that it represents a promising alternative
to techniques traditionally used for the realization of component interaction.

References

1. M. Anlauff, A. Bemporad, S. Chakraborty, P. Kutter, D. Mignone, M. Morari,
A. Pierantonio, and L. Thiele. From ease in programming to easy maintenance:
Extending DSL usability with Montages, 1999. submitted for publication.

2. M. Anlauff, P. Kutter, and A. Pierantonio. Formal Aspects of and Development
Environments for Montages. In M. Sellink, editor, 2nd International Workshop
on the Theory and Practice of Algebraic Specifications, Workshops in Computing,
Amsterdam, 1997. Springer.

3. M. Anlauff, P. Kutter, and A. Pierantonio. Enhanced control flow graphs in Mon-
tages. In A. D.Bjoerner, M.Broy, editor, Perspective of System Informatics, LNCS,
1999. to appear.

4. M. Anlauff, P. W. Kutter, and A. Pierantonio. The Gem-Mex tool homepage.
http://www.first.gmd.de/~ma/gem/, 1997.

5. M. Anlauff and A. Siinbiil. Software architecture based composition of components.
In GI-Workshop Sicherheit und Zuverlissigkeit software-basierter Systeme, 1999.

6. J. A. Bergstra and P. Klint. The ToolBus coordination architecture. In Ciancarini
and Hankin [9], pages 75-88.

7. E. Borger, I. Durdanovié¢, and D. Rosenzweig. Occam: Specification and Compiler
Correctness. Part I: Simple Mathematical Interpreters. In U. Montanari and E. R.
Olderog, editors, Proc. PROCOMET’9/ (IFIP Working Conference on Program-
ming Concepts, Methods and Calculi), pages 489-508. North-Holland, 1994.

8. E. Borger and W. Schulte. Programmer Friendly Modular Definition of the Se-
mantics of Java. In J. Alves-Foss, editor, Formal Syntaz and Semantics of Java,
LNCS. Springer, 1998.

9. P. Ciancarini and C. Hankin, editors. Coordination and models, Proceedings of
the first international conference, Cesena, Italy, number 1061 in LNCS. Springer
Verlag, 1996.

10. C. Consel and R. Marlet. Architecturing software using a methodology for language
development. In C. Palamidessi, H. Glaser, and K. Meinke, editors, Proceedings of
the 10" International Symposium on Programming Language Implementation and
Logic Programming, number 1490 in LNCS, pages 170-194, Pisa, Italy, Sept. 1998.

11. F. Griffel. Componentware. dpunkt.verlag, 1998.

12. Y. Gurevich. Logic and the challenge of computer science. In E. Borger, editor,
Theory and Practice of Software Engineering, pages 1-57. CS Press, 1988.

13. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, editor, Specifi-
cation and Validation Methods, pages 9-36. Oxford University Press, 1995.

126

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Matthias Anlauff et al.

Y. Gurevich and J. Huggins. The Semantics of the C Programming Language. In
E. Borger, H. Kleine Biining, G. Jédger, S. Martini, and M. M. Richter, editors,
Computer Science Logic, volume 702 of LNCS, pages 274-309. Springer, 1993.

J. Huggins. Abstract State Machines Web Page
http://www.eecs.umich.edu/gasm.

P. Kutter. Dynamic semantics of the programming language oberon. Technical
report, ETH Ziirich, 1997.

P. Kutter and A. Pierantonio. Montages specifications of realistic programming
languages. Journal of Universal Computer Science, 3(5), 1997.

P. W. Kutter, D. Schweizer, and L. Thiele. Integrating formal domain-specific
language design in the software life cycle. In Current Trends in Applied Formal
Methods, LNCS. Springer, October 1998.

J. K. Ousterhout. Scripting: Higher level programming for the 21st century. IEEE
Computer, 31(3):23-30, Mar. 1998.

J.-G. Schneider and O. Nierstrasz. Scripting: Higher-level programming for
component-based systems. In OOPSLA 1998, 1998. Tutorial.

J.-G. Schneider and O. Nierstrasz. Components, scripts and glue. In L. Barroca,
J. Hall, and P. Hall, editors, Software Architectures — Advances and Applications,
pages 13—-25. Springer, 1999.

A. Siinbiil. Abstract state machines for the composition of architectural styles. In
Perspectives on System Informatics, PS199, 1999. to appear.

C. Wallace. The Semantics of the C++ Programming Language. In E. Borger,
editor, Specification and Validation Methods, pages 131-164. Oxford University
Press, 1995.

	Introduction
	Composition of Software Components
	Component Interaction Technologies
	The Implementation of Component Interaction Using DSLs
	Domain-Specific vs. Scripting Languages

	Running Example: Transformation of Object Repository Decription Formats
	Visual Formal Semantics Descriptions: Montages
	Implementing Component Interaction Using Montages
	Gem-Mex: The Development Environment for Montages
	Generation of Language Interpreters
	Generation of Visual Programming Environments
	Generation of Documentation Frames

	Conclusion

