
Specification of an Automatic Manufacturing

System: A Case Study in Using Integrated
Formal Methods?

Heike Wehrheim

Universität Oldenburg
Fachbereich Informatik

Postfach 2503, D–26111 Oldenburg, Germany
wehrheim@informatik.uni-oldenburg.de

Abstract. An automatic manufacturing system serves as a case study
for the applicability of an integrated formal method to the specification
of software systems. The formal method chosen is CSP-OZ, an integra-
tion of the state-oriented formalism Object-Z with the process algebra
CSP. The practicability as well as limitations of CSP-OZ are studied. We
furthermore employ a graphical notation (class diagrams) from the Uni-
fied Modelling Language to describe the architectural view of the system.
The correctness of the obtained specification is checked by a translation
into the input language of the CSP model checker FDR and a following
property check.

1 Introduction

Recently, there is an emerging interest in formal methods which combine spec-
ification techniques for different views on systems. In particular, methods inte-
grating static aspects (data) and dynamic aspects (behaviour) are investigated
(see for example [Obj99, Que96, GP93, TA97, GS97, Smi97, MD98]). The ad-
vantage of these methods is that different views on a system can be conveniently
modelled. Integrated methods are in particular important for the specification of
software for reactive systems, which have to cope with a number of different as-
pects of systems: large data descriptions, dynamic behaviour, timing constraints
and analog components. In this paper, we investigate the usefulness and appli-
cability of an integrated formal method to the specification of software for man-
ufacturing systems. The formalism chosen is CSP-OZ [Fis97], a combination of
the process algebra CSP [Hoa85] and an object-oriented extension of Z, Object-
Z [DRS95]. CSP-OZ integrates a state-oriented with a behaviour-oriented view
and thus allows to specify different aspects of a system within a single formalism.
A semantics for the combined formalism has been given in [Fis97].

? This work was partially funded by the Leibniz Programme of the German Research
Council (DFG) under grant Ol 98/1-1.

T. Maibaum (Ed.): FASE2000, LNCS 1783, pp. 334–348, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Specification of an Automatic Manufacturing System 335

Our case study is the specification of a holonic manufacturing system. This
case study is part of the german research program ”Integration of Software Spec-
ification Techniques”1. The term ”holon” has its origin in the greek word ”holos”
(whole) and describes an autonomous, flexible agent. The term ”holonic manu-
facturing systems” refers to systems where the transportation of material within
the plant are managed by holonic transportation systems, i.e. transportation
systems without drivers and without central scheduling device [WHS94]. The
purpose of the manufacturing system is the processing of workpieces by different
machine tools. Two stores in the plant serve as containers for workpieces. The
holonic transportation agents are responsible for transportation of workpieces
between machine tools and stores. The throughput of workpieces in the plant
should be as high as possible. An elaborate communication protocol between
machine tools, stores and transportation agents ensures that the agent with the
smallest cost for transportation is used for a particular transportation job.

The CSP-OZ specification models an abstract view of the system, consider-
ing the activities of machine tools and agents as a modelling entity, i.e. we do
not specify the manufacturing system on machine level describing movements
of roboter arms etc., but rather have concentrated on the software used in the
different components. A particular focus was laid on the specification of the
communication scheme between components and the influence of the data part
thereon. The specification clearly showed the strength of CSP-OZ as a specifi-
cation formalism for software systems but also revealled some weaknesses, for
instance the lack of specifying timing constraints.

An additional aim of the work presented here was to investigate the possi-
bility of integrating more informal graphical notations, used in industry, with a
formal method. As a first approach, we have chosen to use the class diagrams of
UML for the specification of the communication structure of the system. This
turned out to fit well to the object-oriented method CSP-OZ; thedifference to
an ordinary use of class diagrams lies in the interpretation of associations in the
context of distributed communicating systems: since objects may be (and in our
case are) physically distributed, all interactions among active objects have to be
interpreted as communications (in the sense of message exchanges via channels).

An advantage of using formal methods in the specification of software is their pre-
cise formal semantics. This advantage can best be exploited when some property
checking on the specification can also be performed. Using a technique proposed
in [FW99] – translating CSP-OZ specifications into the input language of the
CSP model checker FDR [FDR97] – we carry out some correctness checks on
the specification, most notably a check for deadlock-freedom. Given the com-
plex communication protocol among machine tools and transportation agents,
deadlock-freedom is not trivial to achieve.

In Section 2 we start with a brief introduction of our specification formalism
CSP-OZ. Section 3 presents (part of) the specification of the manufacturing
system, and Section 4 describes the property check on the specification.

1 http://tfs.cs.tu-berlin.de/projekte/indspec/SPP/index.html.

336 Heike Wehrheim

2 CSP-OZ

CSP-OZ is an object-oriented formal method combining Object-Z [DRS95] (an
object-oriented extension of Z) with the process algebra CSP. The general idea
is to augment the state-oriented Object-Z specification with the specification of
behaviour in the style of CSP. A CSP-OZ specification describes a system as a
collection of interacting objects, each of which has a prescribed structure and
behaviour. Communication takes place via channels in the style of CSP. CSP-OZ
has a formal semantics on the basis of CSPs failure-divergence model [Fis97].

In general, a CSP-OZ specification consists of a number of paragraphs, intro-
ducing classes, global variables, functions and types. Instances of the classes can
be combined via CSP composition operators. Here, we will briefly describe the
form of class specifications and illustrate them by a small example of a one-place
buffer. A CSP-OZ class has the following basic structure:

Name(formal parameters)
inherit superclass [inherited superclasses]
chan channelname [channel definitions]
main = . . . [CSP-Part]
type and constant definitions [Z-Part]
state schema, initial state schema
operation schemas

The state schema gives the attributes of a class, the operation schemas their
methods. The initial state schema fixes the initial values of attributes. For every
method which can be called on an instance of the class, a corresponding chan-
nel has to be defined. In the operation schemas methods are defined by enable
and effect predicates, which give the enabling conditions for an application of an
method and its effect on the attributes and communicated values. The parame-
ters of a method can be of type input (denoted x?), output (x !) or simple (solely
x). A simple parameter is one on which both communication partners agree,
there is no direction in the flow of communication value. Simple parameters can
for instance be used for object references: in a distributed setting, a method call
m to a particular object O (usually written as O .m, where O is a reference to
the object) can now be expressed, using communication via channels, as m.O ,
where m is the name of a channel and O an instantiation of a simple parameter.

Every class may inherit attributes and methods from one or more other
classes. A class may have a number of formal parameters, which have to be
replaced by actual parameters when the class is instantiated. In the CSP-Part
of the specification the behaviour of a class is defined, i.e. the order of execution
of methods is fixed (sometimes also called the synchronisation constraint of the
class). The CSP-Part describes the data-independent part of behaviour, it may
not refer to attributes of the class (therefore all parameters of channel names
occur as input parameters, chan?x). The data-dependent aspects are encoded
in the enabling conditions of the methods. Thereby a clean separation of data
and behaviour aspects is obtained.

Specification of an Automatic Manufacturing System 337

Below a CSP-OZ specification of a class Buffer is given. The basic type of ele-
ments in the buffer is Element .

[Element]

Buffer
chan put : [elem? : Element]
chan get : [elem! : Element]
main = put?x → get?x → main

contents : PElement

#contents ≤ 1

Init
contents = ?

enable put

contents = ?

effect put
∆(contents)
elem? : Element

contents ′ = contents ∪ {elem}

enable get

#contents = 1

effect get
∆(contents)
elem! : Element

elem ∈ contents
contents ′ = contents \ {elem}

The class has one attribute contents (specified in the state schema) and methods
put and get . A primed attribute name stands for the value of the attribute
after the execution of the method. The ∆-declaration declares the attributes
which may be changed by the method. The CSP-Part specifies that put and get
methods may only be used alternately. This is also guaranteed by the enabling
conditions of the methods, i.e. we could as well either leave out the CSP-Part or
set the enabling conditions of methods to true without changing the behaviour
of class Buffer .

2.1 CSP Operators

In this example, we have used just one CSP operator, the prefix operator →. In
the specification of the manifacturing system, a number of other operators will
be used, which are now briefly explained.

– ; denotes sequential composition of processes;
– ||| denotes parallel composition with no synchronisation, ||A is parallel com-

position with synchronisation on all events in the set A, i.e. the components
of a parallel composition have to jointly execute events in A;

338 Heike Wehrheim

– \A is hiding of events in the set A;
– 2 is an external choice; external means that the choice can be influenced by

an environment requesting certain events;
– [name1← name2] is a renaming of name1 into name2.

Furthermore, most operators may be used in a replicated version, e.g. ||| a : A •
P(a) is a parallel composition of all processes P(a), where a is in A.

A last operator is to be explained, which will be used quite often: the CSP
timeout operator. The intention of this operator is to abstractly model a timeout
in the absense of a notion of time in CSP. The process P . Q has the following
behaviour: with any visible action of P , the choice between P and Q is decided,
if no action from P happens, the process times out and behaves like Q .
A more thorough introduction to CSP can be found in [Hoa85, Ros97], an in-
troduction to Z in [Spi92], to Object-Z in [Smi00].

3 Specification

Next, we present the specification of the automatic manufacturing system. This
case study is part of the german DFG priority program ”Integration of specifica-
tion techniques with applications in engineering”. The automatic manufacturing
system consists of the following parts: two stores (In and Out), one for workpieces
to be processed (the in-store), one for the finished workpieces (the out-store), a
number of holonic transportation systems (hts) (T1,T2, . . .) and three machine
tools (short: wzm for german ”Werkzeugmaschinen”) A, B and C for process-
ing the workpieces. Every workpiece has to be processed by all three machine
tools in a fixed order (In → A → B → C → Out). The hts’ are responsible for
transportation of workpieces between machine tools and stores. The hts’ work
as autonomous agents, free to decide which machine tool to serve (within some
chosen strategy). Initially the in-store is full and the out-store as well as all wzm
are empty. When a wzm is empty or contains an already processed workpiece
it broadcasts a request to the hts in order to receive a new workpiece or to de-
liver one. The hts’ (when listening) send some offer to the wzm, telling them
their cost for satisfying the request. Upon receipt of offers the wzm decides for
the best offer and give this hts the order, which then executes it. This way, all
workpieces should be processed by all three tools and transported from the in-
to the out-store.

The specification language we employ is an object-oriented formal method.
The specification thus consists of a number of classes, somehow related to one
another. To facilitate the understanding of the overall structure of the specifi-
cation, we describe it by means of a class diagram (in the style of the Unified
Modelling Language, UML). Class diagrams are (so far) not part of the formal
method CSP-OZ, we just use them as a graphical means for showing the struc-
ture of specifications. Class diagrams show the static structure of the model, in
particular, the things that exist, their internal structure and their relationships
to other things. In particular, we find: boxes, denoting classes; arrows, describ-
ing generalisation (inheritance); simple arcs, standing for associations and arcs

Specification of an Automatic Manufacturing System 339

with filled diamonds at the end, denoting compositions. An association shows a
possible interaction between two classes. A composition is a strong form of an
association: it describes a relationship between a ”whole” and its parts, where
the existence of the parts depends on the whole. Class diagrams are traditionally
used for data modelling. In this paper we take a different view on class diagrams.
All classes in the diagram are assumed to be active. When using class diagrams
in the description of distributed communicating systems, active objects most
often reside on different locations, hence any interaction has to take the form of
a communication. Thus associations and compositions stand for some particular
form of composition (now in the process algebra sense) of the classes, using com-
munication via channels for interaction. Associations are parallel compositions
with communication via the channels which are the names of the association.
Composition is stronger: the class and its components are combined in parallel
but now all channels between the class and its components are hidden to the
outside.

Wzm Hts Store

Driver Acquisition

���
���
���

���
���
���

���
���
���

���
���
���

Communication Machine

setPosition

loadHtsMachine
loadMachineHts

order

offer

requst listen

full

loadMachineHts
loadHtsMachine

whichPosition

full

acquireOrder
newOrderarrived

gotoMachine

Fig. 1. Class diagram for manufacturing system

In Figure 1 the class diagram for the manufacturing system is given. The main
classes of our specification are Wzm, Hts and Store. The class diagram further-
more contains two superclasses from which these classes are derived: a super-
class Machine specifying the basic behaviour of stores and machine tools (with
attributes like contents and methods like loading), and a superclass Communi-
cation defining a protocol for broadcast communication. The class Hts embodies
two other classes: one for managing the driving in the plant hall (Driver) and a
class for acquisition of new orders (Acquisition). The use of composition and not
association here implies that every Hts inevitably has components Driver and
Acquisition.

Class specifications. The classes themselves are now specified with CSP-OZ.
At the end we will see how they can be combined by CSP operators in order

340 Heike Wehrheim

to achieve the above depicted structure. We start with the definition of a basic
type and some abbreviations: Workpiece is the basic type for workpieces, Wzm
specifies the set of all machine tools, Hts the holonic transportation systems,
and Store the stores.

[Workpiece]
Hts == {T1,T2}
Machines == Stores ∪Wzm

Wzm == {A,B ,C}
Store == {In,Out}

The type Coord is used to describe the position of machines and agents in the
hall. Status describes the status of workpieces in machines (processed or not yet
processed): Coord == N × N, Status == {finished ,notFinished}.

We start with the specification of the superclass Machine. It should capture
the basic common properties of machine tools and stores: they may contain a
number of workpieces (limited by some capacity), they may load and deload
workpieces, and tell others whether they are empty or full.

Machine(id : Machines)
chan full : [h : Hts ; m : {id}; b! : B]
chan loadHtsMachine : [h : Hts ; m : {id}; w? : Workpiece]
chan loadMachineHts : [m : {id}; h : Hts ,w ! : Workpiece]

contents : PWorkpiece
capacity : N1

#contents ≤ capacity

Init
contents = ?

effect full
b! : B

b = (#contents = capacity)

enable loadMachineHts

contents 6= ?

effect loadMachineHts
∆(contents)
h : Hts ,w ! : Workpiece

w ∈ contents

enable loadHtsMachine

#contents < capacity

effect loadHtsMachine
∆(contents)
h : Hts ,w? : Workpiece

contents ′ = contents ∪ {w}

The first part of the specification describes the basic interface between machines
and hts. Afterwards the attributes of the class are defined and the initial state
values are given. The last part gives the enabling conditions and effects for the

Specification of an Automatic Manufacturing System 341

execution of operations (e.g. only load workpieces from a machine to an hts when
the machine is not empty). Since we just define the basic ingredients of machines
here, we have no CSP behaviour descriptions.

The superclass Communication provides two protocols for broadcast commu-
nication between agents and machine tools. Here is one point where we reach
the limits of CSP-OZ: CSP with its synchronous communication paradigm can-
not exactly describe the radio communication between tools and agents. Radio
communication is somehow a mixture of synchronous and asynchronous commu-
nication: the sender may always send its message (asynchronously), the receiver
can only receive the message when it listens at exactly the time the message is
sent (synchronously). Since we have no notion of time in our specification lan-
guage, we model this type of communication with the CSP timeout operator:
the sender tries a synchronous communication with every receiver; when this
fails it may timeout. Similarly the receiver can timeout when no communica-
tion is possible. This behaviour is modelled by the processes BROADCAST and
LISTEN , which have the set of receivers (to), senders (from) respectively, and
the communication channel (comm) as parameters.

Communication
BROADCAST (to, comm) =
||| rec : to • ((comm?x .rec?y → SKIP) . SKIP)

LISTEN (from, comm) =
||| sender : from • ((comm!from?x?y → SKIP) . SKIP

The class Wzm specifying machine tools is a subclass of both Machine and
Communication (i.e. we have multiple inheritance here). Inheritance is seman-
tically the conjunction of the Z part of the superclass with the Z part of the
subclass, and parallel composition of the CSP parts with synchronisation on all
events that occur in both CSP specifications. The process equations of the su-
perclass are inherited by the subclass and may be used by them (code re-use).
This is for instance the case for the protocols of superclass Communication:
inheritance makes the two process names accessible within the subclass Wzm.
The basic behaviour of a wzm is as follows: it has to find an hts fetching some
workpiece for it, load a workpiece, process it, find another hts to take it over,
deload it and start again from the beginning. Additionally it always has to be
able to tell others wether it is full or empty. This behaviour is specified by the
CSP process of class Wzm. The search for an hts proceeds as follows: the wzm
broadcasts a request to all hts (telling them whether it is full or empty), the hts
that have listened may send a reply offering some cost for the transport. The
wzm then chooses the offer with the smallest cost and tries to order this hts.
If the ordering does not succeed (the hts may have decided for another job),
they choose another offer until either the order succeeds or no further offers are
available upon which the wzm makes its request again.

342 Heike Wehrheim

Wzm
inherit Machine,Communication
chan process , choose,noOffers
chan request : [h : Hts ; m : {id}; b! : B]
chan offer : [h : Hts ; m : {id}; cost? : N]
chan order : [h : Hts ; m : {id}]
main = FULL |||WORK
FULL = full?x → FULL
WORK = FINDHTS ; loadHtsMachine?x → process →

FINDHTS ; loadMachineHts?x →WORK
FINDHTS = BROADCAST (Hts , request);

LISTEN (Hts , offer); CHOOSE
CHOOSE = choose → ((order?x → SKIP) . CHOOSE))

2 noOffers → FINDHTS

status : Status
offers : seq(Hts × N)
orderTo : Hts

Init
offers = 〈 〉
status = finished

enable request

status = finished

effect request
h : Hts , b! : B

b = (contents 6= ?)

effect offer
∆(offers)
h : Hts , cost? : N

offers ′ = offers a 〈(h, cost)〉

enable choose

offers 6= 〈 〉

effect choose
∆(offers , orderTo)

∃n ∈ N : (orderTo′,n) in offers ∧ ∀(h,m) in offers : n ≤ m
offers ′ = offers � ((Hts × N) \ {(orderTo′,n)})

effect order
h : Hts

h = orderTo

enable noOffers

offers = 〈 〉

The basic behaviour of wzms is specified by the CSP process main, all data
dependent aspects are specified within the CSP part (for instance the choice
for the offer with the smallest cost is encoded in the effect schema of operation
choose). This allows for a clear separation of static and dynamic aspects, and

Specification of an Automatic Manufacturing System 343

also allows for an easy change (for instance when other criteria should be used
for choosing an offer).

The class Hts describes the principle behaviour of a holonic transportation agent.
The driving and order acquisition specific aspects are specified within the com-
ponents Driver and Acquisition. Since the most interesting part of an hts (ne-
gotiation with wzms) is specified within the component Acquisition we refrain
from giving the specification of classes Hts and Driver here and instead concen-
trate on Acquisition. The main task of class Acquisition is the negotiation of new
orders. Initially it waits for a call from class Hts to acquire a new order. It asks
for its current position and listens to the requests made by the wzm. All received
requests have to be checked whether they can be satisfied, for instance, if the
requesting wzm is full, it has to be checked whether the wzm, next to the re-
questing one, is empty (in order to asure that a workpiece can also be delivered).
This check is encoded in the effect of operation full : all wzm are asked whether
they are full (ASK) and the set of current requests is modified according to the
answer. From all satisfiable requests the one with the least cost (distance from
current position to wzm) is chosen and an offer is made to the requesting wzm.
If this offer succeeds and an order is accomplished, class Acquisition informs
the Hts about this. If the offer does not succeed, the set of current requests is
emptied and finding a new order starts again.

Acquisition(master : Hts)
inherit Broadcast

chan newOrder : [ord ! : Wzm × B]
chan whichPosition : [pos? : Coord]
chan listen : [h : {master}; wzm : Wzm; b? : B]
chan offer : [h : {master}; wzm : Wzm; cost ! : N]
chan order : [h : {master}; wzm : Wzm]
chan requestsThere,noRequests , emptyRequests , acquireOrder
main = acquireOrder → whichPosition?x → FINDORDER
FINDORDER = LISTEN (Wzm, listen);

(requestsThere → ASK ;
((offer?x → ((order?x → newOrder?x → main)

. emptyRequests → FINDORDER))
. emptyRequests → FINDORDER)

2 (noRequests → FINDORDER))
2 (noRequests → FINDORDER)

ASK =||| ma : Machines • (full?x !ma?y → SKIP)

currRequests : P(Wzm × B)
orderFrom : Wzm
position : Coord

Init
currRequests = ?

344 Heike Wehrheim

effect newOrder
∆(currOffers)
ord ! : Wzm × B
first(ord) = orderFrom, ord ∈ currRequests
currOffers ′ = ?

effect whichPosition
∆()
pos? : Coord

pos = position

effect emptyRequests
∆(currRequests)

currRequests ′ = ?

enable noRequests

currRequests = ?

enable requestsThere

currRequests 6= ?

effect listen
∆(currRequests)
wzm : Wzm, b? : B

currRequests ′ = currRequests ∪ {(wzm, b)}

enable offer

currRequests 6= ?

effect order
∆(orderFrom)
wzm : Wzm

orderFrom ′ = wzm

effect offer
∆()
wzm : Wzm, cost ! : N

∃ b ∈ B : (wzm, b) ∈ currRequests ∧
∀(m, q)∈ currRequests •

dist(position, target(wzm, b)) ≤ dist(position, target(m, q))
[function target determines the position of the target of the request]
cost = dist(position, place(wzm))

effect full
∆(currRequests)
wzm : Wzm, b? : B

currRequests ′ =
currRequests \ {(w , f) • (if f then next(w) = wzm ∧ b) ∨

(if ¬ f then prev(w) = wzm ∧ ¬ b)}

Specification of an Automatic Manufacturing System 345

This completes the part of the class specifications. Due to lack of space we leave
out the specifications of the other classes.

System specification. The classes now have to be instantiated and the created
objects have to be combined to give the automatic manufacturing system. First
we define a process compoHts describing the composition of Hts with Driver and
Acquisition. Composition in class diagrams is translated into a parallel composi-
tion of components, where in contrast to ordinary association, the synchronised
events are hidden afterwards. The synchronisation set is derived from the in-
scriptions of the association arcs in the class diagram: Driver and Acquisition
synchronise on the set A = {whichPosition}, Hts with Driver and Acquisition
on B = {setPosition, setId , arrived , gotoMachine,newOrder , acquireOrder}. We
also carry out the renaming here which is induced by the association between
Hts and Wzm in which the participants of the association have different roles
(channel names request and offer at the ends of the association). However, we
could also have chosen to use a linked parallel composition between Hts and
Wzm.

compoHTS (id) =
(Hts(id) ||B (Driver(id) ||A Acquisition(id))) \ (A ∪ B)[listen ← request])

The automatic manufacturing system is then obtained as a parallel composi-
tion of an appropriate number of class instances. In the choice of synchroni-
sation sets we have to be a little more careful now: some channel names (e.g.
loadHtsMachine) occur on more than one association; since the associations are
however not ternary, this is not ment to be a synchronisation of three or more
objects. In this case synchronisation now has to be distinguished by parameters
and not by channel names alone. All parameters used for this purpose should
be simple and stand for the identities of the involved objects. As an example:
Store(In) and all hts synchronise on loadMachineHts .In, whereas Wzm(A) and
the hts synchronise on loadMachineHts.A.

AutoManuSystem =

Store(In)
||C

(||| hts : Hts • compoHTS (hts))
||D

(||| wzm : Wzm •Wzm(wzm))
||E

Store(Out)

where we have the following synchronisation sets:

C = {loadMachineHts .In, full .T1.In, full .T2.In},
D = {loadMachineHts .A, loadMachineHts.B , loadMachineHts.C ,

loadHtsMachine.T1.A, loadHtsMachine.T1.B , loadHtsMachine.T1.C ,

loadHtsMachine.T2.A, loadHtsMachine.T2.B , loadHtsMachine.T2.C ,

346 Heike Wehrheim

full .T1.A, full .T1.B , full .T1.C , full .T2.A, full .T2.B , full .T2.C ,

request , offer , order},
E = {loadHtsMachine.T1.Out , loadHtsMachine.T2.Out ,

full .T1.Out , full .T2.Out}.

This completes the specification of the automatic manufacturing system. So far,
this models the manufacturing system on a rather abstract level; we have for in-
stance not modelled how the loading and deloading of workpieces is handled on
the actual machine level. Nevertheless, the specification contains all activities
performed by the system and describes the communication scheme for inter-
action. The communication scheme of a system is the major source for errors
leading to deadlocks of the system. In the next section, we describe how we can
prove deadlock freedom of our specification.

4 Verification

The verification of the manufacturing system follows ideas proposed in [FW99]
(building on ideas of [MS98]): the CSP-OZ specification is translated into the
CSP dialect of the model-checker FDR [FDR97], which can then be used to
verify properties on the specification. The formal basis for this translation is
the failure-divergence semantics of CSP-OZ classes. The CSP dialect of FDR
is a combination of CSP with a functional language. The functional part of
FDR-CSP can be used for modelling the Z-part of the specification. The trans-
lation cannot handle CSP-OZ completely, but a rather large portion of it. The
translation for instance requires instantiation of basic types and restriction of
variables to finite domains; however we do not have to eliminate nondeterminism
from the specification, which usually has to be done when ”executing” a formal
specification.

For the manufacturing system, we thus have to choose some concrete set of
values for the basic type Workpiece and we have to restrict Coord to a finite space
(say 1 . . . 10×1 . . .10). The most severe restriction, necessary for model-checking,
concerns the initial values of the stores. We have not given the specification of
the stores here, but of course the in-store has to be filled with a certain number of
workpieces. Ideally, the model-checker should be able to verify deadlock-freedom
of the specification for any number of workpieces in the in-store. However, this
is beyond the range of model checkers like FDR. We thus have to perform the
model-checking for a fixed number of workpieces in the store.

Having chosen these concrete values, the specification can be translated into
FDR-CSP2. Two properties have been checked on the translated specification:

1. Deadlock-freedom and
2. adherence to the correct ordering of processing.

2 At the moment the translation has to be done manually, but an implementation is
under development.

Specification of an Automatic Manufacturing System 347

By the second point, we mean that every workpiece has to be processed by the
machine tools in the correct order. The second property was verified by hiding
all events besides the event process and only observing the ordering of processing
workpieces. This shows that every workpiece of the in-store is correctly carried
to the wzm and processed in the right order. As an example for the performance
of FDR on the case study: the labelled transition system for an instantiation
with two hts and three wzm has 4213677 states and the second property can be
checked in 1008 seconds cpu time on a SPARC Ultra.

The verification detected three errors in the first specification: an incorrect
setting of initial values of one class, a wrong order of events in the CSP-part of a
class and a wrong synchronisation set in the parallel composition of classes. So,
although we cannot claim to have verified correctness of the specification for all
possible instantiations of the system, we have been able to use a model-checker
to find general errors.

5 Conclusion

In this paper we investigated the applicability of an integrated formal method to
the specification of an industrial-scale software system. The case study clearly
showed the advantages of using CSP-OZ, in particular the need for a formalism
combining behaviour and data specification, but also revealed some drawbacks,
for instance the inability of expressing timing requirements. The later aspect
would especially be important when evaluating the performance (throughput in
time) of the manifacturing system.

Besides designing a specification, we were also able to prove correctness prop-
erties of the design by means of a translation into the input language of the
model checker FDR. The model checking process however always relies on fixing
a particular instantiation of the system.

The case study also demonstrated the usefulness of employing graphical mod-
elling languages in the design of the specification. We intend to further extend
the possibilities of using object-oriented design methods together with CSP-OZ,
especially the UML profile UML-RT [SR98], which seems to be well suited for
the description of distributed communicating systems.

References

[DRS95] R. Duke, G. Rose, and G. Smith. Object-Z: A specification language advo-
cated for the description of standards. Computer Standards and Interfaces,
17:511–533, 1995.

[FDR97] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 User
Manual, Oct 1997.

[Fis97] C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowman
and J. Derrick, editors, Formal Methods for Open Object-Based Distributed
Systems (FMOODS ’97), volume 2, pages 423–438. Chapman & Hall, 1997.

348 Heike Wehrheim

[FW99] C. Fischer and H. Wehrheim. Model-checking CSP-OZ specifications with
FDR. In K. Araki, A. Galloway, and K. Taguchi, editors, Proceedings of the
1st International Conference on Integrated Formal Methods (IFM), pages
315–334. Springer, 1999.

[GP93] J.F. Groote and A. Ponse. Proof theory for µ-CRL: A language for pro-
cesses with data. In Semantics of specification languages, Workshops in
Computing. Springer, 1993.

[GS97] A. J. Galloway and W. Stoddart. An operational semantics for ZCCS. In
M. Hinchey and Shaoying Liu, editors, Int. Conf. of Formal Engineering
Methods (ICFEM). IEEE, 1997.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[MD98] B. P. Mahony and J.S. Dong. Blending Object-Z and Timed CSP: An

introduction to TCOZ. In The 20th International Conference on Software
Engineering (ICSE’98), pages 95–104. IEEE Computer Society Press, April
1998.

[MS98] A. Mota and A. Sampaio. Model-checking CSP-Z. In Proceedings of the
European Joint Conference on Theory and Practice of Software, volume
1382 of LNCS, pages 205–220, 1998.

[Obj99] Object Management Group. OMG Unified Modeling Language Specification,
June 1999. version 1.3.

[Que96] J. Quemada, editor. Revised working draft on enhancements to LOTOS
(V4). ISO, 1996.

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1997.

[Smi97] G. Smith. A semantic integration of Object-Z and CSP for the specification
of concurrent systems. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors,
Proceedings of FME 1997, volume 1313 of LNCS, pages 62–81. Springer,
1997.

[Smi00] G. Smith. The Object-Z Specification Language. Kluwer Academic Pub-
lisher, 2000.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall Interna-
tional Series in Computer Science, 2nd edition, 1992.

[SR98] B. Selic and J. Rumbaugh. Using UML for modeling complex real-time
systems. Technical report, ObjecTime, 1998.

[TA97] K. Taguchi and K. Araki. Specifying concurrent systems by Z + CCS.
In International Symposium on Future Software Technology (ISFST), pages
101–108, 1997.

[WHS94] E. Westkämper, M. Höpf, and C. Schaeffer. Holonic manufacturing systems.
In Lake Tahoe HMS Consortium, editor, Holonic manufacturing systems,
1994.

	Introduction
	CSP-OZ
	CSP Operators

	Specification
	Verification
	Conclusion

