Formal Specification of Object-Oriented
Meta-modelling

Gunnar Overgaard

Royal Institute of Technology, Stockholm, Sweden

Abstract. Modelling languages such as the Unified Modeling Language
are used during the early phases of system development to capture re-
quirements and to express high-level designs. Many such languages have
no universally fixed interpretations since different development projects
often use key concepts, like Class, Generalization and Association, in
slightly different ways. Therefore meta-modelling, i.e. the precise specifi-
cation of the concepts used in a model, is of importance in order to avoid
misunderstandings.

The BooMm framework, presented in this paper, is intended for this kind
of meta-modelling. The framework consists of a collection of modelling
constructs specified with a small object-oriented language. The frame-
work is simple enough for an engineer to adjust the modelling concepts
to project specific needs. It includes all necessary aspects of language
specification, among them definition of abstract syntax, well-formedness
rules, and dynamic semantics. To demonstrate its use, this paper includes
a specification of some of the constructs defined in the Unified Modeling
Language.

1 Introduction

There are many object-oriented system development methods used by industry
today [l 151 [17] 6l [1], [16]. Since these languages are used in the early phases of
system development, expressiveness is more important than precision. Therefore,
the languages typically have a rich and well-specified graphical syntax but no
rigorous semantics. Some of these languages even include constructs for modify-
ing the semantics of the language: the Unified Modeling Language [10] includes
the Stereotype construct which enables the developer to modify the semantics
of a construct as well as its notation. Only very few of the development meth-
ods have a formal specification, and these methods are usually developed for a
specific organisation or a specific type of application, like SDL [4]. Methods that
have received wider acceptance are usually informally specified.

However, informally and incompletely defined languages have several draw-
backs. The system specifications in such languages will not have unique inter-
pretations. A model can unintentionally be interpreted differently by different
people, both within the project and outside the project. It is also hard to en-
visage effective computer tools that support the system development process, if
the tool cannot access the intended meaning of the models.

T. Maibaum (Ed.): FASE 2000, LNCS 1783, pp. 193-207] 2000.
© Springer-Verlag Berlin Heidelberg 2000

194 Gunnar Overgaard

To avoid these problems, a modelling language needs a kind of formal seman-
tics which is easy to understand and which can be easily modified. The definition
must admit changes in the structure of the language constructs, in the meaning
of these constructs, and in the combination of the constructs. The definition
must be presented in an accessible way, so that system developers can under-
stand and adjust it at need — it has to be a flexible language. At the same time,
the specification must be rigorous enough to avoid unnecessary ambiguities.

Several different formal specification methods exist today (see e.g. the Formal
Methods home page at http://www.comlab.ox.ac.uk/archive/formal-methods.
html). These methods are based upon different kinds of formalisms. During the
last decade, object-orientation has influenced the formal community resulting in
formal object-oriented methods [2,[18]. In these methods, precision is combined
with the advantages of object-orientation, such as encapsulation and inheritance.

A major reason for choosing an object-oriented formal specification language
instead of a traditional one is that the intended user is acquainted with the
object-oriented paradigm. In this way, there is no conceptual shift between the
object-oriented modelling language and the object-oriented specification method.
Moreover, just as an object-oriented technique, including factoring out com-
monalities, encapsulation and localization of information, is preferable for sys-
tem development, it is also appropriate for language specification. Traditionally,
the abstract syntax of a construct is separated from the definition of the rule
that state when the construct is well-formed. Moreover, the specification of the
dynamic semantics of the language is often separated from the rest of the spec-
ification. Understanding or adjusting the definition of a construct given in a
traditional specification will therefore be much more difficult than in a specifi-
cation using an object-oriented technique, since in the traditional specification
the complete definition of the construct is spread out over several places.

Another advantage with an object-oriented specification technique is that it
may include a library of predefined components in a language specification. Since
different object-oriented modelling languages use similar constructs, each new
specification does not have to start from scratch. Deviations from the predefined
definition can be expressed in subclasses of the components.

Together the components form a so-called meta-model, i.e. they constitute
a model of an object-oriented modelling language. The different kinds of con-
structs in the language are expressed with classes in the meta-model, and the
associations between these classes state the relationships between the constructs.
The methods that are defined in the classes in the meta-model specify both the
well-formedness rules and the dynamic semantics of the language.

In this paper we present a meta-model for specification of modelling lan-
guages. The purpose of the meta-model is to provide a framework for defining
the different constructs in such a language. The idea of this kind of framework
arose from our participation in the team developing and enhancing the Uni-
fied Modeling Language. This paper is organized as follows: The next section
presents a framework for specification of modelling languages, while Section Bl
demonstrates its usage by expressing some of the constructs defined in the Uni-

Formal Specification of Object-Oriented Meta-modelling 195

fied Modeling Language in the framework. This paper ends with some concluding
remarks.

2 BooMm — A Framework for Formal Specification

In this section we present Boowm, a framework for specification of object-oriented
modelling languages. It includes all necessary aspects of language specification,
among them definition of abstract syntax, well-formedness rules, and dynamic
semantics. The framework consists of a meta-model of such languages and a
formal specification language called OpaL which is used for defining the classes
in the meta-model. ODAL is a simple, strongly typed object-oriented language
with a familiar syntax. Its semantics is specified using the m-calculus [8]. In this
it follows the principles from e.g. Walker [19] and Jones [7] where it is shown
how the m-calculus is used to define object-oriented programming languages. The
complete semantics of OpAL is approximately 50 pages and is out of the scope
of this paper.

In Boom we adopt a localization principle that implies a specification tech-
nique in which the semantics of the different kinds of relationships are separated
from other kinds of constructs. For example, the specification of an object con-
struct states that, among other things, an object has a set of relationships, but
the specification of the construct does not include any of the semantics of these
relationships. The meaning of a particular kind of relationship is defined sepa-
rately. Hence, when a new kind of object construct is defined in the modelling
language, features like atomic transactions, persistence etc. are included in the
definition, but not features based on a relationship of a specific kind. Similarly,
the definition of a class construct is made without any assumptions about e.g.
the existence of a generalization construct.

BoowM includes all meta levels in one model, i.e. different meta levels are not
separated into different models. This enables Boom to express languages that
support meta-modelling, like languages that include a meta-class construct or
that allow explicit relationships to cross meta levels.

It should be noted that Boowm is not a model of a CASE-tool. The purpose of
Boow is to specify the semantics of modelling languages, i.e. its purpose is not
to provide a model of how such a language should be implemented. There are
several aspects which are not considered during the development of Boom but
which must be included in the design of a tool, like efficiency, storage etc.

Connection

ConnectionType

Declaration ~———1 Env

N

AssociationRule

EntityType

Fig. 1. A subset of BooM in UML notation.

196 Gunnar Overgaard

The core of Boom contains approximately 30 classes for defining class-like
constructs, binary relationships, instances and links, i.e. each class defines the
abstract syntax as well as the static and the dynamic semantics of a construct.
These classes are accompanied by a set of classes for specification of operations
and actions. Moreover, Boom contains classes for stating rules how different con-
structs may be connected to each other. Together, these classes form a framework
for specification of modelling languages.

If Boom does not contain a class which specifies the desired semantics exactly,
a new class can be added. This new class usually becomes a subclass of an already
existing class in BooMm, modifying selected parts of the existing class by overriding
or extending some of its definitions.

Below we describe parts of Boowm. In Section[3, we use Boou for specification
of some of the constructs in the Unified Modeling Language [10].

2.1 Class-like Constructs

In Boowm class-like constructs in a modelling language, such as a Class construct
or a Data Type construct, are expressed with the class Declaration. It specifies
a construct which declares a set of features, and may create instances that offer
these features. There may both be structural features, like attributes and as-
sociations to other class-like constructs, as well as be behavioural features, like
operations and methods. In BoowM structural features are basically expressed
with the Connection class, which specifies binary, directed relationships between
Declarations, while the Operation class in Boowm is used for specifications of
behavioural features. Hence, a Declaration includes a set of Connections and a
set of Operations. In accordance with the localization principle a Declaration
depends only on the existence of its Connections and Operation, not on their
specific kinds. The semantics of the different kinds of features are specified within
(subclasses of) the Connection class and the Operation class.

The different kinds of instance constructs in a model, like Object and Data
Value, are expressed as instances of the Boowm class Instance. In an object-
oriented model, an instance is created by, and therefore follows the declara-
tion in, a class-like construct. This implies that an Instance is associated with
a Declaration (its creator, or origin), and that the Instance has a set of Links
corresponding to the set of Connections declared in its Declaration, as well as
that it can perform the behaviour declared in the Operations of its Declaration.

Since BooM defines all meta levels within one model, a Declaration must be
an instance of another Declaration. The class Declaration is therefore a subclass
of Instance. This implies that relationships between class-like constructs, like
generalization between classes, are expressed with Links between Declarations.

The detailed specifications of Declaration, Instance and their subclasses are
made in ODAL, a formal object-oriented language. Due to the scope of this paper
we have excluded most of these details. However, some examples are to be found
in the following. Although OpAL has not been presented in this paper, we believe
that a reader who is familiar with object-oriented languages will have no problem
of understanding these examples.

Formal Specification of Object-Oriented Meta-modelling

CLASS Instance
VARIABLES

origin : Declaration,

links : Link*
INVARIANT

origin # NULL
METHODS
initialize (o : Declaration,

c : Connections) : Instance
origin := o;
FOREACH con IN ¢ DO
links ADD con createLink ()

entityType () : EntityType

origin instanceKind ()
evaluateAction (a : Action) : Boolean

197

CLASS Declaration SUPERCLASS Instance
VARIABLES
operation : Operation*,
connection : Connection*,
instanceType : EntityType,
name : Name
INVARIANT
name 7 NULL AND instanceType # NULL
METHODS
addConnection (¢ : Connection) : Boolean
IF SELF lookupConnection (¢ name ()) = NULL AND
ruleset allowedConnection (
SELF instanceKind (),
¢ target () instanceKind (),
¢ connectionType ()) THEN

connection ADD c; TRUE

ELSE FALSE
lookupConnection (n : Name) : Connection

COLLECT ¢ IN connection SUCHTHAT ¢ name () = n
instanceKind () : EntityType

instanceType
createlnstance () : Instance

instanceType source () NEW (SELF, connection)

For example, the meaning of adding a new Connection to a Declaration
is defined in the addConnection operation in the Declaration class. It states
that two conditions must be fulfilled: there must not be another Connection
within the Declaration with the same name as the new one, and this kind of
Connection must be allowed between the kinds of instances represented by the
Declaration and by the target of the Connection. (The ruleset referenced in the
operation specifies the allowed combinations. See Section Z3.) If these conditions
are fulfilled the Connection is added and the operation results in true.

2.2 Relationships

Boowm defines binary directed relationships, called Connections, between Decla-
rations, and corresponding binary directed relationships, called Links, between
Instances. A Link can only exist between two Instances if a corresponding Con-
nection is declared between their Declarations (cf. the declaration of a variable
and the variable slot). Hence, such relationship constructs, like Pointers, are
easily specified using (a subclass of) the Connection class.

CcLASS Connection CLASS Link

VARIABLES VARIABLES
name : Name, origin : Connection
target : Declaration, value : Instance*
instanceType : ConnectionType INVARIANT

INVARIANT origin # NULL
target # NULL AND name # NULL AND METHODS

instanceType # NULL connectionType () : ConnectionType

METHODS origin connectionType ()
target () : Declaration

target
connectionType () : ConnectionType

instanceType

createLink () : Link
Link NEW (SELF)

198 Gunnar Overgaard

If the modelling language contains more complex relationship constructs, like
N-ary relationships or bi-directional relationships, a more complex mapping onto
Boow is required. Since the semantics of an N-ary relationship is in many ways
similar to a class (each of its links is connected to a collection of instances), and a
bi-directional relationship can be seen as a special case of an N-ary relationship,
it is therefore not surprising that they are expressed in the same way as a class.
For example, the different end-points of the relationship must have unique names
which correspond to the requirement that the attributes of a class must have
unique names. Hence, such a relationship is specified by mapping the relationship
itself onto a Declaration, and the relationship’s end-points onto Connections
included in the Declaration (see the example in Section B:2])

2.3 Mapping Language Entities onto Boom Classes

BoowMm uses an explicit mapping between the names of the class-like and object-
like constructs in a modelling language and the Boowm classes that specify the
constructs. There are a few reasons for doing this. First, BooM contains a set of
predefined classes that have already been given names. When there is a mismatch
between the name used in the modelling language and the name used in Boowm,
a mapping resolves the conflict. Second, several constructs may be specified with
the same Boowm class, e.g. a N-ary relationship may have the same semantics as
an ordinary class. Instead of duplicating the Boowm class, both Class and N-ary
Relationship may be mapped onto the same Boowm class. Third, to be able to
compare constructs in different languages the names of the Boowm classes should
not interfere. Finally, once the mapping of the language constructs onto Boom
classes has been established, the names used in the modelling language can be
used. If, for example, the semantics of a construct is later modified, only the
mapping has to be changed (possibly after adding a new class to Boom which
includes the changes.)

The mapping is done using three classes called EntityType, ConnectionType
and LinkType. Each of them pairs a modelling construct name and a Boom
class; EntityType pairs the name with (a subclass of) the class Instance, while
ConnectionType pairs the name and (a subclass of) the class Connection, and
LinkType pairs the name with (a subclass of) the class Link. To express that a
new entity is being defined in the modelling language, the class that the mod-
elling constructs maps onto, is instantiated.

For example, assume that the Class construct has the semantics as defined by
the Declaration class in Boom, and that the semantics of the Object construct
is specified by the Instance class. Moreover, assume that each object can have
a set of pointers to other objects, i.e. the language includes a Pointer construct
and therefore also a PointerDeclaration construct; the semantics of the Pointer
construct is assumed to be defined by the Link class while the PointerDeclaration
construct is specified with the Connection class. The mapping of these modelling
constructs onto BooM is defined by the following statements:

Formal Specification of Object-Oriented Meta-modelling 199

mapping ADD (EntityType NEW (CLASS, Declaration));

mapping ADD (EntityType NEW (OBJECT, Instance));

mapping ADD (ConnectionType NEW (POINTERDECLARATION, Connection));
mapping ADD (LinkType NEW (POINTER, Link));

When a new object is to be created, the Boowm class which the name OBJECT
maps onto, i.e. Instance, is instantiated.

BoowM also requires that all allowed combinations of kinds of connections and
kinds of declarations are explicitly enumerated. In this way it is stated what
kinds of connections are meaningful between different kinds of constructs; no
other combinations are allowed. For this purpose BooMm uses an explicit set of
association rules. Each rule is expressed with a tuple of entity and connection
names: {(kind of source, kind of target, kind of connection).

In our small example, classes can declare pointers to classes. We therefore
state that a class can be connected to a class with a pointer declaration. This is
done with the following expression:

ruleset ADD (AssociationRule NEW (CLASS, CLASS, POINTERDECLARATION));

If a declaration of a connection is added to the model which does not conform
to any of the association rules, the model is not well-formed, i.e. its semantics is
not defined.

After defining how the different language constructs are mapped onto the
Boowm classes that specify their semantics, and after stating what connections
may be used between the different constructs, we can now define how the con-
structs in the language are connected to each other. We are using a graphical
notation to do this. Figure [2] shows the different language constructs we have
defined in our small example.

1 S
[~
CLASS DECLARATION

*

\ \

:

Fig. 2. A fragment of a meta-model of our example language.

A box denotes the language construct with the name equal to the string inside
the box. An arrow from one box to another implies that an occurrence of the
construct denoted by the source box contains a set of references to occurrences
of the construct denoted by the target box. A declaration of a relationship is
denoted by an open arrow head, while a closed arrow head denotes the connection
itself. The multiplicity of the contained set is defined by the number or the
interval at the arrow head (‘*’ denotes unlimited, i.e. any number of instances
is allowed). A dashed arrow denotes an instance-of relationship.

The multiplicities stated on in these diagrams are included in the definition
of the corresponding Boowm classes. The multiplicity on an arrow:

200 Gunnar Overgaard

— from a Declaration to a Connection is included in the invariant of the Dec-
laration

— from a Connection to a Declaration is always ‘1’ (cf. there is only one type
in a variable declaration)

— from an Instance to a Link is always ‘*’, since the actual number of Links is
always determined by the multiplicity on the arrow between the correspond-
ing Declaration and Connection (see also the specification of the Instance
class in Section 2.T)).

— from a Link to an Instance is included in the invariant of the Link

Hence, in our small meta-model we have stated that an object may have a set
of pointers, and that each pointer may reference a set of objects. Furthermore,
an object is an instance of, i.e. it originates from, a class. A class may declare a
set of pointers, and each of these references a class.

3 Formal Specification of UML Using Boom

In this section we exemplify how Boowm is used for specification of modelling
languages by presenting how some of the constructs in the Unified Modeling
Language (UML) [10] can be expressed in Boom. We will not present all the
details regarding the Boowm classes but concentrate on the usage of Boom. More
detailed descriptions of the semantics can be found in e.g. [12 11} [13]. In this
paper we will focus our presentation on a few constructs in UML: Class, Asso-
ciation and Package.

3.1 Class Construct

In UML a class is a description of a set of objects that share the same structure
and behaviour. More specifically, a class declares a set of attributes, and a set of
operations, and may be attached to a collection of associations. (Due to the scope
of this paper we ignore the other constructs for specification of behaviour, such as
Methods and State Machines.) In Boowm the Declaration class specifies precisely
this: it has a name, contains a set of Operations and a set of Connections. Hence,
we use Declaration for specification of the Class construct.

Each attribute of the class declares a name and a reference to a data type. In
Boowm the Connection class specifies a named connection to a (subclass of) Dec-
laration. However, an attribute has a multiplicity stating how many data values
an instance of the class should hold, which is absent in Connection. (We ignore
some other properties of the Attribute construct, but these can be added simi-
larly.) Therefore, a new class is defined in Boowm, called Multiplicity Connection.
This class is a subclass of Connection; it adds an extra attribute, multiplicity,
and a set of corresponding methods. Furthermore, the class also defines the extra
semantics implied by the multiplicity property.

The operations of a UML class are defined similarly to attributes using (sub-
classes of) the class Operation in Boowm.

Formal Specification of Object-Oriented Meta-modelling 201

The specification of the Data Type construct can also be done with the Dec-
laration class, because the construct supports the same features as the Class
construct. However, instances of these two constructs have different semantics.
They are therefore specified using two different Boowm classes: Object is an ordi-
nary kind of instance, while a Data Value cannot modify its own state. Therefore,
the Object construct is specified using the Instance class, while Data Value is
specified using the TokenInstance subclass of Instance.

In UML the connection between an object and a data value is called an
Attribute Link. It corresponds to an attribute in the object’s class, and it holds
the actual attribute values. However, the number of data values referenced by
the attribute link must fulfil the requirement stated by the multiplicity declared
by the attribute. This is specified in the NumberedLink class in Boowm.

Hence, we state how these constructs are mapped onto Boom and how they
may be connected with the following OpAL expressions:

mapping ADD (EntityType NEW (CLASS, Declaration));

mapping ADD (EntityType NEW (DATATYPE, Declaration));

mapping ADD (EntityType NEW (OBJECT, Instance));

mapping ADD (EntityType NEW (DATAVALUE, TokenInstance));

mapping ADD (ConnectionType NEW (ATTRIBUTE, MultiplicityConnection));
mapping ADD (LinkType NEW (ATTRIBUTELINK, NumberedLink));

ruleset ADD (AssociationRule NEW (CLASS, DATATYPE, ATTRIBUTE));

The meta-model defining these constructs and how they are related to each
other is found in Figure Bl

1
CLASS H‘* ATTRIBUTE DATATYPE
OBJECT e |ATTRIBUTE- “m | DATAVALUE

Fig. 3. A fragment of a meta-model presenting the Class and Attribute constructs of
UML.

Note that this kind of diagram only present the constructs and how they are
related. The detailed formal semantics of each construct is specified with the
OpaL language, and is found in the Boowm classes that each construct maps onto.

3.2 Association Construct

The Association construct of UML is a relationship with at least two end-points.
These end-points are similar to the attributes of a class; they have a name and
a multiplicity. (Once again we ignore some of its properties, but these can be
specified using the same technique as in the case of multiplicity.) We therefore
define the Association End construct to be specified by the MultiplicityConnec-
tion class. This class has an extra attribute representing the multiplicity, as well
as some methods using this attribute. The Association construct itself can be

202 Gunnar Overgaard

specified with the Declaration construct, since in UML an Association can create
instances, called Links, and it has a name and includes operations for reading
and modifying the end-points of these Links. There is, however, an extra require-
ment that must be fulfilled by an Association which is absent in a Class: it must
have at least two association end-points (see Figure[d). Therefore, a new class is
defined in Boowm, called AssociationDeclaration. It is a subclass of Declaration;
the difference is that the subclass has an extended invariant stating the extra
requirement. (In fact, there are also other differences between the N-ary Asso-
ciation construct and the Class construct, and all these differences are captured
by the AssociationDeclaration class in Boom.)

To specify the UML Association construct the following ODAL expression
establish the mapping between the constructs:

mapping ADD (EntityType NEW (ASSOCIATION, AssociationDeclaration));

mapping ADD (ConnectionType NEW (ASSOCIATIONEND, MultiplicityConnection));
ruleset ADD (AssociationRule NEW (ASSOCIATION, CLASS, ASSOCIATIONEND));

Similarly, the Link and Link End constructs of UML correspond to the Ob-
ject and Attribute Link constructs. However, Link End has an additional re-
quirement: it must be connected to exactly one instance, and not to a set of
instances. Hence, a new Boowm class is defined: SingleLink.

These two constucts are mapped onto Boom with the following expressions:

mapping ADD (EntityType NEW (LINK, Instance));
mapping ADD (LinkType NEW (LINKEND, SingleLink));

The meta-model specifying these constructs and how they are related to each
other is presented in Figure [l

I:I 2.x 1
ASSOCIATION ASSOCIATION CLASS
* 1
LINK LINKEND — = | OBJECT

Fig. 4. A fragment of a meta-model presenting the Association and Link constructs
of UML.

Once again, the details of the specifications are to be found in the Boom
classes. The diagram only presents the constructs and their relationships. A
formal specification in ODAL of some of the relationship constructs in UML is
found in [T1].

3.3 Package Construct

In UML Packages are used for grouping elements, such as Classes and Packages,
into units that act as name spaces for their contained elements, i.e. each con-
tained element must have a unique name within the package. Furthermore, a

Formal Specification of Object-Oriented Meta-modelling 203

package is not instantiable, which implies that it does not exist at the object
level; its sole purpose from a semantic point of view is to define a name space.
We will use the Package construct of UML to exemplify how relationships at
the model level are expressed in BooM by specifying that packages can contain
classes.

In Boowm the specific connection between two instances is expressed with
a Link, while the declaration of that connection is expressed with a (subclass
of) Connection. This implies that the relationship between a specific package
and its contents is expressed with a Link. Hence, the declaration of this Link is
expressed between the creator of the package and the creator of the contents.
We therefore introduce the MetaClass and the MetaPackage constructs. When
these constructs are instantiated, Classes and Packages are created. Hence, the
Contents relationship, stating that a package may contain classes, is declared
from MetaPackage to MetaClass. In this way each package has a link expressing
the connection between the package and its contained classes.

To specify the MetaClass construct we use the MetaDeclaration class of
Boowm, which is a subclass of Declaration, but which creates Declarations in-
stead of Instances. The MetaPackage construct might also have been specified
with the MetaDeclaration class, but the construct has an additional constraint:
it must have a containment relationship (see Figure Bl). Therefore, the MetaPack-
age construct is mapped onto the NamespaceDeclaration, which is a subclass of
MetaDeclaration.

mapping ADD (EntityType NEW (METAPACKAGE, NamespaceDeclaration));
mapping ADD (EntityType NEW (METACLASS, MetaDeclaration));

The Contents construct is specified with a subclass of Connection, because
its semantics affects the uniqueness of the contained classes’ names as well as
the semantics of the element-lookup operation. The actual connection between
a package and its contained classes is defined with a Link.

mapping ADD (ConnectionType NEW (CONTENTSDECLARATION, ContentsConnection));

mapping ADD (LinkType NEW (CONTENTS, Link));
ruleset ADD (AssociationRule NEW (METAPACKAGE, METACLASS, CONTENTSDECLARATION));

As packages are not instantiable, the Package construct is mapped onto the
NonlInstantiableDeclaration, which is a subclass of Declaration. The difference
between the two is that the subclass cannot create instances.

mapping ADD (EntityType NEW (PACKAGE, NonInstantiableDeclaration));

The meta-model specifying the contents relationship between the Package
construct and the Class construct is presented in Figure bl

3.4 Class and Association Constructs Revisited

In this section we give two examples showing why the Boom framework supports
adjustments of the modelling language. In UML, not only packages but also
classes may contain other classes. This implies that the container class acts as the

204 Gunnar Overgaard

1 1
CONTENTS—
METAPACKAG DECLARATION METACLASS

.
@—*» CONTENTS CLASS

Fig. 5. A fragment of a meta-model presenting the Package and Contents constructs
of UML.

name space of the contained classes. Since we already have specified the meaning
of the containment relationship, and thanks to the localization principle, it is very
simple to add this extension to the current specification. We only need to do two
modifications of the specification: i) the set of association rules is extended with
the possibility for a class to have a containment relationship to other classes,
and ii) the mapping of the MetaClass construct onto the Boowm class which
specifies its semantics is changed. Instead of mapping it onto MetaDeclaration
it is mapped onto NamespaceDeclaration, which has the same semantics as a
MetaDeclaration, but with the additional invariant constraint of always including
a containment relationship. No other modification is needed in the specification.
The meta-model is updated accordingly (see Figure [G]).

mapping REPLACE (EntityType NEW (METACLASS, NamespaceDeclaration));
ruleset ADD (AssociationRule NEW (METACLASS, METACLASS, CONTENTSDECLARATION));

The second example is the Association Class construct. In UML, an asso-
ciation may have attributes attached to it. These attributes model information
that belongs to the relationship itself and not to any of the associated classes.
This kind of association is called an Association Class for it acts both as an
association and as a class. To specify the Association Class construct in Boow,
we use the same Boowm classes as for Association and Link, but we add to the
specification rules that makes it possible for the construct to contain links and
attribute links.

mapping ADD (EntityType NEW (ASSOCIATIONCLASS, AssociationDeclaration));
mapping ADD (EntityType NEW (LINKOBJECT, Instance));

ruleset ADD (AssociationRule NEW (ASSOCIATIONCLASS, DATATYPE, ATTRIBUTE));
ruleset ADD (AssociationRule NEW (ASSOCIATIONCLASS, CLASS, ASSOCIATIONEND));

1
CONTENTS- _ ASSOCIATIONj 2>| j
METACLASS - BECLARATION ATTRIBUTE ASSOCIATION
.
— .
CLASS > CONTENTSl A BUTE | LINKOBJECT > LINKEND

Fig. 6. A fragment of a meta-model presenting the additions made to the model: Class
containment and Association Class.

Formal Specification of Object-Oriented Meta-modelling 205

This example shows how simple it is to add a new construct to the language
if the necessary Boowm classes are available. Note that already existing classes
can be reused when defining new classes.

3.5 Other Meta-modelling Approaches

A few other approaches to meta-modelling of modelling languages have been
presented:

MOF The Meta Object Facility (MOF) [9] is a meta-meta model, i.e. a model
for modelling meta-models. The MOF has been accepted as a standard by
the Object Management Group (OMG), and it is, for example, used as the
foundation for defining UML. The main purpose of the MOF is “to pro-
vide a set of CORBA [Common Object Request Broker Architecture [14]]
interfaces that can be used to define and manipulate a set of interoperable
metamodels” [9, 1-1]. This implies that the MOF can be used for defining
repository services for storing computer representations of models, for infor-
mation management as well as for data warehouse management. Hence, the
MOF is a model for meta-data management and meta-data interoperability.
The focus is on tool vendors and tool interoperability. However, the MOF is
not intended for specification of the semantics of a meta-model. The mean-
ing of the different constructs in a meta-model has to be expressed by other
means.

CDIF The CASE Data Interchange Format [3] is a standard for interchange
formats between CASE tools. It is not specific for object-oriented models,
and can be used for several different kinds of models, like process models and
data-flow models. The models in CDIF are defined using Entity-Relationship-
Attribute models. These models are defined at three levels of models: model,
meta-model and meta-meta model. No run-time semantics or modelling se-
mantics is given as the focus is on interchange of information between CASE
tools.

4 Concluding Remarks

In this paper we have presented Boowm, a framework for formal specification of
modelling languages. The framework consists of a formal specification language
and a meta-model of object-oriented modelling languages. The meta-model offers
a set of predefined components to be used when specifying such a modelling
language. Hence, the specification work does not have to start from scratch each
time, but can be based an already existing specification. Differences between the
actual semantics and the semantics offered by the components are specified in
user-defined subclasses of the components.

The framework offers different levels of abstractions for the specification of a
language: what constructs exist, how the constructs are interconnected, a map-
ping from the constructs to Boowm classes, and the detailed semantics defined in

206 Gunnar Overgaard

the Boowm classes. In this way, all the details need not be covered for understand-
ing the specification of a language. This paper focuses on the first three layers;
a description of the last layer can be found in e.g. [13| [11].

The practical usage of the framework is demonstrated by the specification
of the Unified Modeling Language, and this paper presents how some of the
constructs in UML have been specified. This paper also demonstrates that many
typical modifications of a modelling language, like adding variations to existing
constructs, or modifying the detailed semantics of a construct, can be easily
performed in the framework. In our work we have also used Boowm for specifying
other parts of UML, e.g. specification of the abstract syntax, the static and
the dynamic semantics of the Collaboration, the Use Case and the Subsystem
constructs.

There are three major areas that will benefit from the Boowm framework, all of
them requiring formal and adjustable specification techniques. Use of the Boom
framework will facilitate tailoring of the modelling language in a development
process: the Boowm classes define the abstract syntax and semantics of language
constructs, such as Class, Association, and Object. The definitions of the con-
structs used in a project must capture the desired semantics to ensure that the
constructs are used consistently within the project. Moreover, the framework fa-
cilitates the development of tools for performing intelligent operations on models,
such as checking for internal consistency or conformance between parts of the
model. The Boowm classes can be used to define precisely what such operations
mean. Finally, we claim that Boowm is of particular use for the UML develop-
ment community, where the absence of a proper and flexible semantics makes it
difficult to relate the many different approaches and extensions.

References

[1] G. Booch. Object-Oriented Design with Applications. Redwood City, 1991.

[2] E.H. Diirr and J. van Katwijk. VDM++ - A Formal Specification Language
for Object-oriented Designs. In Computer Systems and Software Engineering.
Proceedings of CompFEuro’92, pages 214-219. IEEE Computer Society Press, 1992.

[3] Electronic Industries Association, 2500 Wilson Blvd. Arlington, VA 22201.
EIA/IS-107: CDIF / Framework for Modeling and FExtensibility, 1997.
http://www.eia.org/eig/cdif/how-to-obtain-standards.html.

[4] International Telecommunication Union (ITU), Place des Nations, CH-1211
Geneva 20, Switzerland. Recommendation Z.100 (03/93) - CCITT specifi-
cation and description language (SDL), 1993. http://www.itu.int/itudoc/itu-
t/rec/z.html.

[5] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison-Wesley, 1999.

[6] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Soft-
ware Engineering: A Use Case Driven Approach. Addison-Wesley, 1993.

[7] C. B. Jones. A pi-calculus Semantics for an Object-Based Design Notation. In
E. Best, editor, CONCUR’93: 4th International Conference on Concurrency The-
ory Lecture Notes in Computer Science 715. Springer-Verlag, 1993.

8]
[9]

[10]

[13]

[14]
[15]
[16]
[17]
[18]

[19]

Formal Specification of Object-Oriented Meta-modelling 207

R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, 1. Infor-
mation and Computation, 100:1-40, 1992.

Meta Object Facility (MOF') Specification, September 1997. On-line documenta-
tion: http://www.omg.org/pub/docs/ad/97-08-{14,15}.pdf.

Object Management Group, Framingham Corporate Center, 492 Old Connecticut
Path, Framingham MA 01701-4568. OMG Unified Modeling Language Specifica-
tion, version 1.3, June 1999. http://www.omg.org/cgi-bin/doc?ad/99-06-08.

G. Overgaard. A Formal Approach to Relationships in the Unified Modeling Lan-
guage. In M. Broy, D. Coleman, T. S. E. Maibaum, and B. Rumpe, editors, Pro-
ceedings PSMT’98 Workshop on Precise Semantics for Software Modeling Tech-
niques, pages 91-108. Technische Universitdt, Miinchen, Germany, TUM-19803,
April 1998.

G. Overgaard. A Formal Approach to Collaborations in the Unified Modeling
Language. In R. France and B. Rumpe, editors, Proceedings of UML’99 — The
Unified Modeling Language: Beyond the Standard, Lecture Notes in Computer
Science 1723, pages 99-115. Springer-Verlag, 1999.

G. Overgaard and K. Palmkvist. A Formal Approach to Use cases and Their
Relationships. In P.-A. Muller and J. Bézivin, editors, Proceedings of the Unified
Modeling Language: UML’98: Beyond the Notation, Lecture Notes in Computer
Science 1618. Springer-Verlag, 1999.

A. Pope. The Corba Reference Guide : Understanding the Common Object Request
Broker Architecture. Addison-Wesley, 1998.

T. Reenskaug, P. Wold, and O. A. Lehne. Working with Objects: The OOram
Software Engineering Method. Manning Publications, 1996.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, 1991.

B. Selic, G. Gullekson, and P. Ward. Real-Time Object-Oriented Modeling. John
Wiley and Sons, 1994.

S. Stepney, R. Barden, and D. Cooper. Object Orientation in Z. Springer-Verlag,
1992.

D. Walker. Objects in the m-Calculus. Information and Computation, 116:253—
271, 1995.

	Introduction
	unhbox voidb @x hbox {sc Boom} -- A Framework for Formal Specification
	Class-like Constructs
	Relationships
	Mapping Language Entities onto {sc Boom} Classes

	Formal Specification of UML Using unhbox voidb @x hbox {sc Boom}
	Class Construct
	Association Construct
	Package Construct
	Class and Association Constructs Revisited
	Other Meta-modelling Approaches

	Concluding Remarks

