
On the Expressiveness of Event Notification in
Data-Driven Coordination Languages?

Nadia Busi and Gianluigi Zavattaro

Dipartimento di Scienze dell’Informazione, Università di Bologna,
Mura Anteo Zamboni 7, I-40127 Bologna, Italy.

busi,zavattar@cs.unibo.it

Abstract. JavaSpaces and TSpaces are two coordination middlewares
for distributed Java programming recently proposed by Sun and IBM,
respectively. They are both inspired by the Linda coordination model:
processes interact via the emission (out), consumption (in) and the test
for absence (inp) of data inside a shared repository. The most interesting
improvement introduced by these new products is the event notification
mechanism (notify): a process can register interest in the incoming ar-
rivals of a particular kind of data, and then receive communication of
the occurrence of these events. We investigate the expressiveness of this
new coordination mechanism and we prove that even if event notifica-
tion strictly increases the expressiveness of a language with only input
and output, the obtained language is still strictly less expressive than a
language containing also the test for absence.

1 Introduction

In the last decades we assisted to a dramatic evolution of computing systems,
leading from stand-alone mainframes to a worldwide network connecting smal-
ler, yet much more powerful processors. The next expected step in this direction
is represented by the so-called ubiquitous computing, based on the idea of dyna-
mically reconfigurable federations composed of users and resources required by
those users. For instance, the Jini architecture [19] represents a first proposal of
Sun for a Java-based technology inspired by this new computing paradigm.

In this scenario, one of the most challenging topics is concerned with the
coordination of the federated components. For this reason, a renewed interest
in coordination languages – that have been around for more than fifteen years
– has arisen. For example, JavaSpaces [18] and TSpaces [20] are two recent
coordination middlewares for distributed Java programming proposed by Sun
and IBM, respectively. These proposals incorporate the main features of both
the two historical groups of coordination models [13]: the data-driven approach,
initiated by Linda [8] and based on the notion of a shared data repository,
and the control-driven model, advocated by Manifold [1] and centered around
the concepts of raising and reaction to events. Besides the typical Linda-like
? Work partially supported by Esprit working group n.24512 “Coordina”

G. Smolka (Ed.): ESOP/ETAPS 2000, LNCS 1782, pp. 41–55, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

42 N. Busi and G. Zavattaro

coordination primitives (processes interact via the introduction, consumption
and test for presence/absence of data inside a shared repository) both JavaSpaces
and TSpaces provide event registration and notification. This mechanism allows
a process to register interest in the future arrivals of a particular kind of data,
and then receive communication of the occurrence of these events.

In this paper we investigate the interplay of the event notification mechanism
with the classical Linda-like coordination paradigm. In particular we focus on the
expressive power of event notification and we prove the existence of a hierarchy
of expressiveness among the possible combinations of coordination primitives:
in, out , and inp are strictly more expressive than in, out , and notify , which in
turn are strictly more expressive than in and out only.

These results are proved by introducing a minimal language containing all the
coordination mechanisms we are dealing with, and by considering the sublangu-
ages corresponding to the various combinations of the coordination primitives.
The complete language (denoted by Lntf ,inp) is obtained by extending a Linda
based process algebra presented in [2] with the event notification mechanism.
We consider the following sublanguages: L containing only in and out , Lntf con-
taining also notify , and Linp containing in, out and inp.

L

Lntf

Lntf ,inp

Linp
encoding

sublanguage

no encoding

Fig. 1. Overview of the results.

The hierarchy of expressiveness sketched above follows from the three results
summarized in Figure 1.

The expressiveness gap between Lntf and L can be deduced by the following
facts:

(1) There exists an encoding of L on finite Place/Transition nets [14,16] which
preserves the interleaving semantics. As the existence of a terminating com-
putation is decidable in P/T nets [6], the same holds also in L.

(2) There exists a nondeterministic implementation of Random Access Machines
(RAM) [17], a well known Turing powerful formalism, in Lntf . The imple-
mentation preserves the terminating behaviour: a RAM terminates if and
only if the corresponding implementation has a terminating computation.
Thus, the existence of a terminating computation is not decidable in Lntf .

Hence there exists no encoding of Lntf in L which preserves at least the existence
of a terminating computation.

Expressiveness of Event Notification 43

The discrimination between Linp and Lntf proceeds in a similar way:

(3) There exists an encoding of Lntf on finite Place/Transition nets extended
with transfer arcs [7] which preserves the existence of an infinite computa-
tion. As this property is decidable in this kind of P/T nets, the same holds
also in Lntf .

(4) There exists a deterministic implementation of RAM in Linp such that a
RAM terminates if and only if all the computation of the corresponding
implementation terminate. Thus, the existence of an infinite computation is
not decidable in Linp .

Hence there exists no encoding of Linp in Lntf which preserves at least the
existence of an infinite computation.

Finally, the last result is:

(5) The event notification mechanism can be realized by means of the inp ope-
rator; indeed we provide an encoding of Lntf ,inp in Linp (and hence also of
Lntf in Linp).

The paper is organized as follows. Section 2 presents the syntax and semantics
of the language. Section 3, 4, and 5 discuss respectively the discriminating results
between Lntf and L, between Linp and Lntf , and the encoding of Lntf ,inp in Linp .
Section 6 reports some conclusive remarks.

2 The Syntax and the Operational Semantics

Let Name be a denumerable set of message names, ranged over by a, b, The
syntax is defined by the following grammar:

P ::= 〈a〉 | C | P |P
C ::= 0 | µ.C | inp(a)?C C | C |C

where:
µ ::= in(a) | out(a) | notify(a,C) | !in(a)

Agents, ranged over by P , Q , . . ., consist of the parallel composition of the data
already in the dataspace (each one denoted by one agent 〈a〉) and the concurrent
programs denoted by C , D , . . ., that share these data. A program can be a
terminated program 0 (which is usually omitted for the sake of simplicity), a
prefix form µ.P , an if-then-else form inp(a)?P Q , or the parallel composition
of programs.

A prefix µ can be one of the primitives in(a) or out(a), indicating the with-
drawing or the emission of datum a respectively, and the notify(a,P) operation
that registers interest in the incoming arrivals of new instances of datum a: every
time a new instance of 〈a〉 is produced, a new copy of process P is spawned. We
also consider the bang operator !in(a) which is a form of replication guarded on
input operations: the term !in(a).P is always ready to consume an instance of
〈a〉 and then activate a copy of P . The if-then-else form is used to model the
inp primitive: inp(a)?P Q is a program which requires an instance of 〈a〉 to be

44 N. Busi and G. Zavattaro

Table 1. Operational semantics (symmetric rules omitted).

(1) 〈a〉 a−→ 0 (2) out(a).P ~a−→ 〈a〉|P
(3) in(a).P a−→ P (4) notify(a,Q).P τ−→ on(a).Q |P
(5) on(a).P ȧ−→ P |on(a).P (6) !in(a).P a−→ P |!in(a).P

(7) inp(a)?P Q a−→ P (8) inp(a)?P Q ¬a−→ Q

(9)
P a−→ P ′ Q a−→ Q ′

P |Q τ−→ P ′|Q ′
(10)

P ¬a−→ P ′ Q a−→/
P |Q ¬a−→ P ′|Q

(11)
P ȧ−→ P ′ Q ȧ−→ Q ′

P |Q ȧ−→ P ′|Q ′
(12)

P ȧ−→ P ′ Q ȧ−→/
P |Q ȧ−→ P ′|Q

(13)
P ~a−→ P ′ Q ȧ−→ Q ′

P |Q ~a−→ P ′|Q ′
(14)

P ~a−→ P ′ Q ȧ−→/
P |Q ~a−→ P ′|Q

(15)
P α−→ P ′

P |Q α−→ P ′|Q
α 6= ¬a, ~a, ȧ

consumed; if it is present, the program P is executed, otherwise Q is chosen. In
the following, Agent denotes the set containing all possible agents.

The semantics of the language is described via a labeled transition system
(Agent , Label , −→) where Label = {τ} ∪ {a, a,¬a, ~a, ȧ | a ∈ Name} (ranged
over by α, β, . . .) is the set of the possible labels. The labeled transition relation
−→ is the smallest one satisfying the axioms and rules in Table 1. For the sake
of simplicity we have omitted the symmetric rules of (9) − (15).

Axiom (1) indicates that 〈a〉 is able to give its contents to the environment
by performing an action labeled with a. Axiom (2) describes the output: in one
step a new datum is produced and the corresponding continuation is activated.
The production of this new instance of 〈a〉 is communicated to the environment
by decorating this action with the label ~a. Axiom (3) associates to the action
performed by the prefix in(a) the label a, which is the complementary of a.

Axiom (4) indicates that notify(a,P) produces a new kind of agent on(a).P
(that we add to the syntax as an auxiliary term). This process spawns a new
instance of P every time a new 〈a〉 is produced. This behaviour is described in
axiom (5) where the label ȧ is used to describe this kind of computation step.
The term !in(a).P is able to activate a new copy of P by performing an action
labeled with a that requires an instance of 〈a〉 to be consumed (axiom (6)).

Axioms (7) and (8) describe the semantics of inp(a)?P Q : if the required
〈a〉 is present it can be consumed (axiom (7)), otherwise its absence is guessed
by performing an action labeled with ¬a (axiom (8)). Rule (9) is the usual
synchronization rule.

Expressiveness of Event Notification 45

Rules (10)−(14) regard the way actions labeled with the non-standard labels
¬a, ȧ, and ~a are inferred to structured terms. Rule (10) indicates that actions
labeled with ¬a can be performed only if no 〈a〉 is present in the environment
(i.e. no transition labelled with a can be performed). Rules (11) and (12) consider
actions labelled with ȧ indicating the interest in the incoming instances of 〈a〉.
If one process able to perform this kind of action is composed in parallel with
another one registered for the same event their local actions are combined in a
global one (rule (11)); otherwise, the process performs its own action leaving the
environment unchanged (rule (12)). Rules (13) and (14) deal with two different
cases regarding the label ~a indicating the arrival of a new instance of 〈a〉: if
processes waiting for the notification of this event are present in the environment
they are waked-up (rule (13)); otherwise, the environment is left unchanged (rule
(14)). The last rule (15) is the standard local rule that can be applied only to
actions different from the non-standard ¬a, ~a, and ȧ.

Note that rules (10), (12), and (14) use negative premises; however, our
operational semantics is well defined, because our transition system specification
is strictly stratifiable [9], condition that ensures (as proved in [9]) the existence
of a unique transition system agreeing with it.

We define a structural congruence (denoted by ≡) as the minimal congruence
relation satisfying the monoidal laws for the parallel composition operator:

P ≡ P |0 P |Q ≡ Q |P P |(Q |R) ≡ (P |Q)|R
As two structural congruent agents are observationally indistinguishable, in the
remainder of the paper we will reason up to structural congruence.

In the following we will only consider computations consisting of reduction
steps, i.e., the internal derivations that a stand-alone agent is able to perform
independently of the context. In our language, we consider as reductions not only
the usual derivations labeled with τ , but also the non-standard labeled with ¬a
and ~a. In fact, derivation P ¬a−→ P ′ indicates that P can become P ′ if no 〈a〉 is
available in the external environment, and P ~a−→ P ′ describes that a new agent
〈a〉 has been produced. Hence, in any of these cases, if P is stand-alone (i.e.
without external environment) it is able to become P ′. Indeed, these labels have
been used only for helping a SOS [15] formulation of the semantics, but they
correspond conceptually to internal steps. Formally, we define reduction steps as
follows:

P −→ P ′ iff P τ−→ P ′ or P ¬a−→ P ′ or P ~a−→ P ′ for some a
We use P −→/ to state that there exists no P ′ such that P −→ P ′.

An agent P has a terminating computation (denoted by P ↓) if it can block
after a finite amount of internal steps: P −→∗ P ′ with P ′ −→/ . On the other
hand, an agent P has an infinite computation (denoted by P ↑) if there exists
an infinite computation starting from P : for each natural index i there exists Pi
such that P = P0 and Pi −→ Pi+1. Observe that due to the nondeterminism of
our languages the two above conditions are not in general mutually exclusive,
i.e., given a process P both P ↓ and P ↑ may hold.

46 N. Busi and G. Zavattaro

3 Comparing Lntf and L

The discrimination between Lntf and L is a direct consequence of the facts (1)
and (2) listed in the Introduction.

The proof of (1) is a trivial adaptation of a result presented in [4]. Indeed,
as we made in that paper, it is possible to define for L a Place/Transition net
[14,16] semantics such that for each agent P the corresponding P/T net is finite
and preserves the interleaving semantics; thus, an agent can terminate if and
only if the corresponding net has a terminating computation. As this property
can be decided in finite P/T nets [6], we can conclude that given a process P of
L it is decidable if P ↓.

Result (2) uses Random Access Machines (RAM) [17] which is a Turing
equivalent formalism. A RAM is composed of a finite set of registers, that can
hold arbitrary large natural numbers, and by a program, that is a sequence of
simple numbered instructions, like arithmetical operations (on the contents of
registers) or conditional jumps.

To perform a computation, the inputs are provided in registers r1, . . . , rm ;
if other registers rm+1, . . . , rn are used in the program, they are supposed to
contain the value 0 at the beginning of the computation. The execution of the
program begins with the first instruction and continues by executing the other
instructions in sequence, unless a jump instruction is encountered. The execution
stops when an instruction number higher than the length of the program is
reached. If the program terminates, the result of the computation is the contents
of the registers.

In [12] it is shown that the following two instructions are sufficient to model
every recursive function:

– Succ(rj): adds 1 to the content of register rj ;
– DecJump(rj , s): if the content of register rj is not zero, then decreases it by

1 and go to the next instruction, otherwise jumps to instruction s.

We present an encoding of RAM based on the notify primitive. The encoding
we present is nondeterministic as it introduces some extra infinite computations;
nevertheless, it is ensured that a RAM terminates if and only if the corresponding
encoding has a terminating computation. As termination cannot be decided in
Turing equivalent formalisms, the same holds also for Lntf . A question remains
open in this section: “Is it possible to define in Lntf a more adequate deterministic
implementation of RAM which preserves also the divergent behaviour?”. The
answer is no, and it is motivated in Section 4 where we prove that the presence
of an infinite computation can be decided in Lntf . On the other hand, we will
show in the same Section that a deterministic implementation of RAM can be
defined in Linp .

The encoding implements nondeterministically DecJump operations: two pos-
sible behaviours can be chosen, the first is valid if the tested register is not zero,
the second otherwise. If the wrong choice is made, the computation is ensured to
be infinite; in this case, we cannot say anything about the corresponding RAM.

Expressiveness of Event Notification 47

Nevertheless, if the computation terminates, it is ensured that it corresponds to
the computation of the corresponding RAM. Conversely, any computation of the
RAM is simulated by the computation of the corresponding encoding in which
no wrong choice is performed.

Table 2. Encoding RAM in Lntf .

[[R]] = [[I1]]| . . . |[[Ik]]|in(loop).DIV

[[i : Succ(rj)]] = !in(pi).out(rj).notify(zeroj , INC).out(pi+1)

[[i : DecJump(rj , s)]] = !in(pi).out(loop).in(rj).in(loop).notify(zeroj ,DEC).out(pi+1)

|!in(pi).out(zeroj).in(zeroj).out(ps)

where:

INC = out(loop).in(match).in(loop)

DEC = out(match)

DIV = out(div).!in(div).out(div)

Given the RAM program R composed by the instructions I1 . . . Ik the cor-
responding encoding is defined in Table 2. Observe that DIV is an agent that
cannot terminate; we will prove that it is activated whenever a wrong choice is
made.

The basic idea of this encoding is to represent the actual content of each regi-
ster rj with a corresponding number of 〈rj 〉. Moreover, every time an increment
(or a decrement) on the register rj is performed, a new agent on(zeroj).INC
(or on(zeroj).DEC) is spawned by using the notify operation. In this way it is
possible to check if the actual content of a register rj is zero by verifying if the
occurrences of on(zeroj).INC corresponds to the ones of on(zeroj).DEC .

There are two possible wrong choices that can be performed during the com-
putation: (i) a decrement on a register containing zero or (ii) a jump for zero on
a non-empty register.

In the case (i), out(loop).in(rj).in(loop).notify(zeroj ,DEC).out(pi+1) is ac-
tivated with no 〈rj 〉 available. Thus, the program produces 〈loop〉 and blocks
trying to execute in(rj). The produced 〈loop〉 will be not consumed and the
agent DIV will be activated.

In the case (ii), the process out(zeroj).in(zeroj).out(ps) is activated when
there are more occurrences of the auxiliary agent on(zeroj).INC than the ones
of on(zeroj).DEC . When 〈zeroj 〉 is emitted, its production is notified to the
auxiliary agents; then the corresponding processes INC and DEC start. Each
DEC emits an agent 〈match〉 while each INC produces a term 〈loop〉, and re-
quires a 〈match〉 to be consumed before removing the emitted 〈loop〉. As there
are more INC processes than DEC , one of the processes INC will block waiting

48 N. Busi and G. Zavattaro

for an unavailable 〈match〉; thus it will not consume its corresponding 〈loop〉. As
before, DIV will be activated.

The formal proof of correctness of the encoding requires a representation of
the actual state of a RAM computation: we use (i , inc1, dec1, . . . , incm , decm),
where i is the index of the next instruction to execute while for each register
index l , incl (resp. decl) represents the number of increments (resp. decrements)
that have been performed on the register rl . The actual content of rl corresponds
to incl − decl . In order to deal with correct configurations only, we assume that
the number of increments is greater or equal than the number of decrements.

Given a RAM program R, we write
((i , inc1, dec1, . . . , incn , decn),R) −→ ((i ′, inc′

1, dec
′
1, . . . , inc′

n , dec′
n),R)

to state that the computation moves from the first to the second configuration
by performing the i th instruction of R; ((i , inc1, dec1, . . . , incn , decn),R) −→/
means that the program R has no instruction i , i.e., the computation is ter-
minated. As RAM computations are deterministic, given a RAM program R
and a configuration (i , inc1, dec1, . . . , incm , decm), the corresponding computa-
tion will either terminate (denoted by ((i , inc1, dec1, . . . , incm , decm),R) ↓) or
diverge (((i , inc1, dec1, . . . , incm , decm),R) ↑). As RAM permits to model all the
computable functions both the termination and the divergence of a computation
are not decidable.

According to this representation technique a configuration is modeled as
follows:

[[(i , inc1, dec1, . . . , incn , decn)]] =
〈pi〉|

∏
i=1...n(

∏
inci

on(zeroi).INC |∏deci
on(zeroi).DEC |∏inci−deci

〈rj 〉)
where

∏
i∈I Pi denotes the parallel composition of the indexed terms Pi .

It is not difficult to prove the following lemma stating that the encoding
is complete as each RAM computation can be simulated by the corresponding
encoding.

Theorem 1. Let R be a RAM program, if
((i , inc1, dec1, . . . , incn , decn),R) −→ ((i ′, inc′

1, dec
′
1, . . . , inc′

n , dec′
n),R)

then also
[[(i , inc1, dec1, . . . , incn , decn)]]|[[R]] −→∗ [[(i ′, inc′

1, dec
′
1, . . . , inc′

n , dec′
n)]]|[[R]]

On the other hand the encoding is not sound as it introduces infinite compu-
tations. Nevertheless, a weaker soundness for terminating computations holds.

Theorem 2. Let R be a RAM program, if
[[(i , inc1, dec1, . . . , incn , decn)]]|[[R]] −→∗ P −→/

then P = [[(i ′, inc′
1, dec

′
1, . . . , inc′

n , dec′
n)]]|[[R]] such that

((i , inc1, dec1, . . . , incn , decn),R) −→∗ ((i ′, inc′
1, dec

′
1, . . . , inc′

n , dec′
n),R) −→/

Corollary 1. Let R be a RAM program, then
((i , inc1, dec1, . . . , incn , decn),R) ↓ iff [[(i , inc1, dec1, . . . , incn , decn)]]|[[R]] ↓

Expressiveness of Event Notification 49

4 Comparing Linp and Lntf

The discrimination between Linp and Lntf is a direct consequence of the facts
(3) and (4) listed in the Introduction.

The result (4) has been already proved in [4]. In that paper an encoding of
RAM in a language corresponding to Linp is presented. Also that encoding (that
we do not report here due to the space limits) represents the content of register
rj by means of agents of kind 〈rj 〉. In this way, a DecJump instruction testing the
register rj can be simply implemented by means of an inp(rj) operation which
either consumes an available 〈rj 〉 or observes that the register is empty. In [4]
we prove that a RAM program can perform a computation step if and only if
its encoding can perform the corresponding step.

In order to prove the result (3) we recall, using a notation convenient for
our purposes, the definition of simple P/T nets extended with transfer arcs (see,
e.g., [7]).

Definition 1. Given a set S , we denote by Mfin(S) the set of the finite multi-
sets on S and by Fp(S ,S) the set of the partial functions defined on S. We use ⊕
to denote multiset union. A P/T net with transfer arcs is a triple N = (S ,T ,m0)
where S is the set of places, T is the set of transitions (which are triples
(c, p, f) ∈ Mfin(S) × Mfin(S) × Fp(S ,S) such that the domain of the partial
function f has no intersection with c and p), and m0 is a finite multiset of pla-
ces. Finite multisets over the set S of places are called markings; m0 is called
initial marking. Given a marking m and a place s, m(s) denotes the number of
occurrences of s inside m and we say that the place s contains m(s) tokens. A
P/T net with transfer arcs is finite if both S and T are finite.

A transitions t = (c, p, f) is usually written in the form c
f�−→ p and f is

omitted when empty. The marking c is called the preset of t and represents the
tokens to be consumed. The marking p is called the postset of t and represents
the tokens to be produced. The partial function f denotes the transfer arcs of
the transition which connect each place s in the domain of f to its image f (s).
The meaning of f is the following: when the transition fires all the tokens inside
a place s in the domain of f are transferred to the connected place f (s).

A transition t = (c, p, f) is enabled at m if c ⊆ m. The execution of the
transition produces the new marking m ′ such that m ′(s) = m(s) − c(s) + p(s) +∑

s′:f (s′)=s m(s ′), if s is not in the domain of f , m ′(s) =
∑

s′:f (s′)=s m(s ′),

otherwise. This is written as m t−→ m ′ or simply m −→ m ′ when the transition
t is not relevant. We use σ, σ′ to range over sequences of transitions; the empty
sequence is denoted by ε; let σ = t1, . . . , tn , we write m σ−→ m ′ to mean the firing
sequence m t1−→ · · · tn−→ m ′. The net N = (S ,T ,m0) has an infinite computation
if it has a legal infinite firing sequence.

The basic idea underlying the definition of an operational net semantics for
a process algebra is to decompose a process P into a multiset of sequential
components, which can be thought of as running in parallel. Each sequential

50 N. Busi and G. Zavattaro

component has a corresponding place in the net, and will be represented by a
token in that place. Reductions are represented by transitions which consume
and produce multisets of tokens.

In our particular case we deal with different kinds of sequential components:
programs of the form µ.P or inp(a)?P Q , agents 〈a〉, and terms on(a,P) re-
presenting idle processes on(a).P . Besides these classes of components corre-
sponding directly to terms of the language, we need to introduce a new kind of
components arrived(a,P) used to model event notification.

notify(a, P).Q

on(a, P)

〈a〉

out(a).R

dec(R)

dec(Q)

dec(P)

arrived(a, P)

Fig. 2. Modeling event notification.

The way we represent input and output operations in our net semantics is
standard. More interesting is the mechanism used to model event notification re-
presented in Figure 2. Whenever a new token is introduced in the place 〈a〉, each
token in a place on(a,P) is transferred to the corresponding place arrived(a,P).
In order to realize this, we use a transfer arc that moves all the tokens inside
the source place to the target one. Each token introduced in arrived(a,P) will
be responsible for the activation of the new instance of P . Moreover, when the
activation happens, also a token in on(a,P) is introduced in order to register
interest in the next production of a token in 〈a〉.

The main drawback of this procedure used to model event notification is that
it is not executed atomically. For instance, a new token in 〈a〉 can be produced
before it terminates. In this case, the processes whose corresponding token is still
in the place arrived(a,P) will be not notified of the occurrence of this event.
However, as we will prove in the following, even in the presence of this drawback
the net semantics respects the existence of infinite computation.

Expressiveness of Event Notification 51

After the informal description of the net semantics we introduce its formal de-
finition. Given the agent P , we define the corresponding contextual P/T system
Net(P). In order to do this, we need the following notations.

– Let S be the set
{P | P sequential program} ∪ {〈a〉 | a message name} ∪
{on(a,P), arrived(a,P) | a message name and P program}.

– Let the function dec : Agent → Mfin(S) be the decomposition of agents into
markings, reported in Table 3.

– Let T contain the transitions obtained as instances of the axiom schemata
presented in Table 4.

The axioms in Table 3, describing the decomposition of agents, state that the
agent 0 generates no tokens; the decomposition of the terms 〈a〉 and of the other
processes produces one token in the corresponding place; the decomposition of
the idle process on(a).P generates one token in place on(a,P); and the parallel
composition is interpreted as multiset union, i.e, the decomposition of P |Q is
dec(P) ⊕ dec(Q).

The axioms in Table 4 define the possible transitions. Axiom in(a,Q) deals
with the execution of the primitives in(a): a token from place 〈a〉 is consumed.
Axiom out(a,Q) describes how the emission of new datum is obtained: a new
token in the place 〈a〉 is introduced and the transfer arcs move all the tokens
from the places on(a,R) in the corresponding arrived(a,R). In this way, all the
idle agents are notified. The activation of the corresponding processes R requires
a further step described by the axiom arrived(a,Q): an instance of process Q
is activated (by introducing tokens in the corresponding places) and a token is
reintroduced in the place on(a,Q) in order to register interest in the next token
produced in 〈a〉. Axiom !in(a,Q) deals with the bang operator: if a token is
present in place !in(a).Q and a token can be consumed from place 〈a〉, then a
new copy of dec(Q) is produced and a token is reintroduced in !in(a).Q . Finally,
axiom notify(a,Q,R) produces a token in the place on(a,Q) in order to register
interest in the arrival of the future incoming token in 〈a〉.

Definition 2. Let P be an agent. We define the triple Net(P) = (S ,T ,m0)
where:
S = {Q | Q sequential subprogram of P} ∪

{〈a〉 | a message name in P} ∪
{on(a,Q), arrived(a,Q) | a message name in P and Q subprogam of P}

T = {c f |S�−→ p | c
f�−→ p ∈ T and dom(c) ⊆ S}

m0 = dec(P)
where by f |S we mean the restriction of function f to its subdomain S.

It is not difficult to see that Net(P) is well defined, in the sense it is a correct
P/T net with transfer arcs; moreover, it is finite. Moreover the net semantics is
complete as it simulates all the possible computations allowed by the operational
semantics.

52 N. Busi and G. Zavattaro

Table 3. Decomposition function.

dec(0) = ∅ dec(〈a〉) = {〈a〉}
dec(µ.P) = {µ.P} dec(on(a).P) = {on(a,P)}
dec(P |Q) = dec(P) ⊕ dec(Q)

Table 4. Transition specification.

in(a,Q) in(a).Q ⊕ 〈a〉 �−→ dec(Q)

out(a,Q) out(a).Q
f�−→ 〈〈a〉〉 ⊕ dec(Q)

where f = {(on(a,R), arrived(a,R)) | R is a program}
arrived(a,Q) arrived(a,Q) �−→ dec(Q) ⊕ on(a,Q)

!in(a,Q) !in(a).Q ⊕ 〈a〉 �−→ !in(a).Q ⊕ dec(Q)

notify(a,Q,R) notify(a,Q).R �−→ on(a,Q) ⊕ dec(R)

Theorem 3. Let Net(P) = (S ,T ,m0) and R be an agent s.t. dom(dec(R)) ⊆ S.
If R −→ R′ then there exists a transition sequence σ s.t. dec(R) σ−→ dec(R′).

The above theorem proves the completeness of the net semantics which, on the
other hand, is not sound. Indeed, as we have already discussed, the encoding
introduces some slightly different computations due to the non atomicity of the
way we model the event notification mechanism. However, the introduction of
these computations does not alterate the possibility to have an infinite compu-
tation. This is proved by the following Theorem.

Theorem 4. Let Net(P) = (S ,T ,m0) and R an agent s.t. dom(dec(R)) ⊆ S.
There exists an infinite firing sequence starting from dec(R) iff R ↑.

5 Comparing Lntf ,inp and Linp

In Section 3 we proved that in and out are not sufficiently powerful to encode
the event notification mechanism; now we show that the addition of the inp
operation permits to realize the encoding of Lntf ,inp in Linp .

In order to simulate event notification we force each process performing a
notify(a,P) to declare its interest in the incoming 〈a〉 by emitting 〈waita〉. Then,
the process remains idle, waiting for 〈arriveda〉, signaling that an instance of 〈a〉
appeared. When an output operation out(a) is performed, a protocol composed
of three phases is started.

Expressiveness of Event Notification 53

Table 5. Encoding the notify primitive (n(P) denotes the set of message names of P).

[[[P]]] = [[P]]|MEn(P)

[[0]] = 0 [[out(a).P]] = in(mea).out(wcaP)|O(a,P)

[[〈a〉]] = 〈a〉 [[inp(a)?P Q]] = inp(a)?[[P]] [[Q]]

[[in(a).P]] = in(a).[[P]] [[on(a).P]] = 〈waita〉|W (a,P)|!in(waP).W (a,P)

[[!in(a).P]] =!in(a).[[P]] [[P |Q]] = [[P]]|[[Q]]

[[notify(a,P).Q]] = in(mea).out(waita).out(waP).out(mea).(!in(waP).W (a,P)|[[Q]])

MEA =
∏

a∈A〈mea〉
W (a,P) = in(arriveda).out(waita).out(acka).out(waP).[[P]]

O(a,P) = !in(wcaP).inp(waita)?(out(creatinga).out(wcaP)) (out(a).out(caaP))|
!in(caaP).inp(creatinga)?(out(arriveda).out(askacka).out(caaP)) out(eaaP)|
!in(eaaP).inp(askacka)?(in(acka).out(eaaP)) (out(mea).[[P]])

In the first phase, each 〈waita〉 is replaced by 〈creatinga〉. At the end of this
phase 〈a〉 is produced.

In the second phase, we start transforming each 〈creatinga〉 in the pair of
agents 〈arriveda〉 and 〈askacka〉.

The agents 〈arriveda〉 will wake up the processes that were waiting for the
notification of the addition of 〈a〉; each of these processes produces a new instance
of 〈waita〉 (to be notified of the next emissions of 〈a〉) and an 〈acka〉, to inform
that it has been waked. We use two separated renaming phases (from waita to
creatinga and then to arriveda) in order to avoid that a just waked process (that
has emitted 〈waita〉 to be notified of the next occurrence of output of a) is waked
two times.

In the third phase the 〈acka〉 emitted by the waked processes are matched
with the 〈askacka〉 emitted in the second phase; this ensures that all the processes
waiting for emission of 〈a〉 have been waked.

The concurrent execution of two or more output protocols could provoke
undesired behaviour (for example, it may happen that some waiting process is
notified of a single occurrence of output, instead of two); for this reason the
output protocol is performed in mutual exclusion with other output protocols
producing a datum with the same name. For similar reasons we avoid also the
concurrent execution of the output protocol with a notification protocol con-
cerning the same kind of datum. This is achieved by means of 〈mea〉, which is
consumed at the beginning of the protocol and reproduced at the end.

Note that, in the implementation of this protocol, the inp operator is neces-
sary in order to apply a transformation to all the occurrences of a datum in the

54 N. Busi and G. Zavattaro

dataspace. Indeed, with only a blocking input in it is not possible to solve this
problem. The formal definition of the encoding is presented in Table 5.

The proof of the correctness of the encoding is essentially based on an in-
termediate mapping, where partially executed out and notify protocols are re-
presented with an abstract notation. We report here only the enunciates of the
main results.

The following theorem states that each move performed by a process in
Lntf ,inp can be mimicked by a sequence of moves of its encoding.

Theorem 5. Let P be a term of Lntf ,inp s.t. n(P) ⊆ A. If P −→ P ′ then
[[P]]|MEA|∏i=1...k O(ai ,Pi) −→+ [[P ′]]|MEA|∏i=1...h O(bi ,Qi).

The next result says that any computation of the encoding of P can be
extended in order to reach the encoding of a process reachable from P .

Theorem 6. Let P be a term of Lntf ,inp s.t. n(P) ⊆ A.
If [[P]]|MEA|∏i=1...k O(ai ,Pi) −→∗ Q then there exists P ′ such that P −→∗ P ′

and Q −→∗ [[P ′]]|MEA|∏i=1...h O(bi ,Qi).

6 Conclusion

We investigated the expressiveness of event notification in a data-driven coor-
dination model. We proved that the addition of the notify primitive strictly
increases the expressiveness of a language with only in and out , but leaves it
unchanged if the language contains also inp. On the other hand, we showed that
the inp primitive cannot be encoded by in, out , and notify .

We embedded the coordination primitives in a minimal language. The re-
levance of our results extends to richer languages in the following way. The
encodability result extends to any language comprising the minimal features of
our calculus. The negative results of non-encodability can be interpreted on a
Turing complete language as the necessity for an encoding to exploit the specific
computational features of the considered language.

We think that this kind of results has not only a theoretical relevance, but
they could be of interest also for designers and implementors of coordination
languages. For example, the powerful inp primitive has been a source of problems
during the first distributed implementations of Linda (see, e.g., [10]). The results
proved here suggest that the notify primitive may represent a good compromise
between easiness of implementation and expressive power.

In [3] we consider three different interpretations for the out operation and
in [4] we found an expressiveness gap between two of them. More precisely,
we proved that a language with in, out , and inp is Turing powerful under the
ordered semantics (the one considered here), while it is not under the unordered
one (where the emission and the effective introduction of data in the dataspace
are two independent steps). In [5] we investigate the impact of event notification
on the unordered semantics: we prove that the addition of the notify primitive
makes the language Turing powerful also under the unordered interpretation and

Expressiveness of Event Notification 55

it permits a faithful encoding of the ordered semantics on top of the unordered
one.

Here, we have chosen the ordered interpretation as it is the semantics adopted
by the actual JavaSpaces specifications, as indicated in the sections 2.3 and 2.8
of [18], and also confirmed us by personal communications with John McClain
of Sun Microsystems Inc. [11].

References

1. F. Arbab, I. Herman, and P. Spilling. An overview of Manifold and its implemen-
tation. Concurrency: Practice and Experience, 5(1):23–70, 1993.

2. N. Busi, R. Gorrieri, and G. Zavattaro. A Process Algebraic View of Linda Coor-
dination Primitives. Theoretical Computer Science, 192(2):167–199, 1998.

3. N. Busi, R. Gorrieri, and G. Zavattaro. Comparing Three Semantics for Linda-
like Languages. Theoretical Computer Science, to appear. An extended abstract
appeared in Proc. of Coordination’97.

4. N. Busi, R. Gorrieri, and G. Zavattaro. On the Expressiveness of Linda Coordina-
tion Primitives. Information and Computation, to appear. An extended abstract
appeared in Proc. of Express’97.

5. N. Busi and G. Zavattaro. Event Notification in Data-driven Coordination Langu-
ages: Comparing the Ordered and Unordered Interpretation. In Proc. of SAC2000,
ACM press. To appear.

6. A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets. Theo-
retical Computer Science, 147:117–136, 1995.

7. C. Dufourd, A. Finkel, and P. Schnoebelen. Reset nets between decidability and
undecidability. In Proc. of ICALP’98, volume 1061 of Lecture Notes in Computer
Science, pages 103–115. Springer-Verlag, Berlin, 1998.

8. D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, 1985.

9. J.F. Groote. Transition system specifications with negative premises. Theoretical
Computer Science, 118:263–299, 1993.

10. J. Leichter. Shared Tuple Memories, Shared Memories, Buses and LANS: Linda
Implementations Across the Spectrum of Connectivity. PhD thesis, Yale University
Department of Computer Science, 1989.

11. J. McClain. Personal communications. March 1999.
12. M.L. Minsky. Computation: finite and infinite machines. Prentice-Hall, 1967.
13. G.A. Papadopoulos and F. Arbab. Coordination Models and Languages. Advances

in Computers, 46:329–400, 1998.
14. C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für Instrumen-

telle Mathematik, Bonn, Germany, 1962.
15. G. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN-19, University of Aarhus, 1981.
16. W. Reisig. Petri Nets: An Introduction. EATCS Monographs in Computer Science.

Springer-Verlag, Berlin, 1985.
17. J.C. Shepherdson and J.E. Sturgis. Computability of recursive functions. Journal

of the ACM, 10:217–255, 1963.
18. Sun Microsystem, Inc. JavaSpaces Specifications, 1998.
19. Sun Microsystem, Inc. Jini Architecture Specifications, 1998.
20. P. Wyckoff, S.W. McLaughry, T.J. Lehman, and D.A. Ford. T Spaces. IBM

Systems Journal, 37(3), 1998.

	Introduction
	The Syntax and the Operational Semantics
	Comparing $unhbox voidb @x hbox {bf L}_{ntf}$ and $unhbox voidb @x hbox {bf L}$
	Comparing $unhbox voidb @x hbox {bf L}_{inp}$ and $unhbox voidb @x hbox {bf L}_{ntf}$
	Comparing $unhbox voidb @x hbox {bf L}_{ntf,inp}$ and $unhbox voidb @x hbox {bf L}_{inp}$
	Conclusion

