
Improving the Representation of Infinite Trees
to Deal with Sets of Trees

Laurent Mauborgne
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Abstract. In order to deal efficiently with infinite regular trees (or other
pointed graph structures), we give new algorithms to store such structu-
res. The trees are stored in such a way that their representation is unique
and shares as much as possible. This maximal sharing allows substan-
tial memory gain and speed up. For example, equality testing becomes
constant time. The algorithms are incremental, and as such allow good
reactive behavior. This new algorithms are then applied to the represen-
tation of sets of trees. The expressive power of this new representation
is exactly what is needed by set-based analysis.

1 Introduction

When applying set-based analysis techniques for practical applications, one is
surprised to see that the representation of the sets of trees is not very efficient.
Even when we use tree automata, we cannot overcome this problem without
performing a minimization of the whole automaton at each step. We propose a
new way of dealing with this kind of structure to get a representation that is as
small as possible during the computation.

After analysis of the problem, it appears that the underlying structure we
want to optimize can be described mathematically as regular infinite trees. Be-
cause tree structures appear everywhere in computer science where a hierarchy
occurs, we found it interesting to present the algorithms in an independent way.
In this way, our technique appears as an extension of an efficient solution to
store finite trees.

The representation we extend uses just the minimum amount of memory by
sharing equivalent subtrees. This saves a lot of space. It is used, for example,
with sets of words represented as a tree to share common prefixes. It is possible
to share the subtrees incrementally, and at the same time to give a unique
representation to different versions of the same trees. Such a technique allows
constant time equality testing and a great speed up for many other algorithms
manipulating trees. It has been the source of the success of Binary Decision
Diagrams (BDDs) [2], which are considered the best representation for boolean
functions so far.

But as soon as a loop occurs somewhere in the data, finite tree techniques are
no longer adequate. The main contribution of this article is to extend the good
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results of unique sharing representation from finite trees to infinite trees. These
techniques are applied to the representation of sets of trees in set-based analysis,
but they can also be applied directly to the representation and manipulation of
finite automata, or infinite boolean functions [14].

After a recollection of the classic results over finite trees in section 2, we
present the solutions for the most difficult problems with infinite trees in the
section 3 on cycles. The general problem is then treated in section 4, with a
full example. Complexity issues and algorithms to manipulate infinite trees are
discussed in section 5. The application to sets of trees implies the description of a
new encoding to keep the uniqueness of the representation. This new contribution
is described in section 6.

2 Classic Representation of Trees

2.1 Trees and Graphs

As we deal with the computer representation of data structures, we must give a
clear meaning to the word representation, and in particular clearly distinguish
between what is represented and what is the representation. For this reason, we
will give a mathematical definition of what is a tree, and another one for the
way it is usually stored in a computer.

Let IN∗ be the set of words over IN, ε denoting the empty word. We note ≺
the prefix ordering on words and u.v the concatenation of the words u and v.
Let F be a finite set of labels.

Definition 1. A tree t labeled by F is a function of pos(t) → F such that
pos(t) ⊂ IN∗ and ∀ p∈ IN∗,∀ i∈ IN, p.i∈ pos(t) ⇒ (p∈ pos(t) and ∀ j < i, p.j ∈
pos(t))

Let p ∈ pos(t). The subtree of t in p, written t[p] is defined by: pos(t[p])
def=

{q ∈ IN∗ | p.q ∈ pos(t)}, and t[p](q)
def= t(p.q). A tree is uniquely determined by

the label of its root, t(ε), and by the children of the root, the different t[i], i ∈ IN.

In the sequel, a generic tree will be denoted
f
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t0 tn−1

, where f is the label of the

root, and (ti)i<n are the children of the root.
When representing a tree in a computer, we usually use one computer location

for each position p in pos(t), where we store the label t(p) and the location of
the different children (the p.i’s in pos(p)) of this position. Such a representation
is well modeled by a graph, where each node of the graph corresponds to a
computer location. We do not give the most general definition of graphs, but the
definition that is useful in this article to represent trees.

Definition 2. A graph G labeled by F is composed of two sets, the node set,
GN , and the edge set, GE ⊂ GN × GN × IN, and every node of the graph is
associated with a label in F .
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We define the notion of path in a graph: let p ∈ IN∗, p is a path of the node N
if and only if p = ε or p = i.q and there is an M ∈ GN such that (N, M, i) ∈ GE

and q is a path of M . If O is the only node at the end of the path, we write
N.p = O. We define G(N) as the graph defined by the modes which can be
reached from N . We will often identify a node N and the graph G(N).

Definition 3. A node N represents a tree t if and only if the set of paths of N
is pos(t), and ∀p ∈ pos(t), N.p is well defined, and its label is t(p).

A finite tree t is a tree such that pos(t) is finite. There is always a possible
representation by a finite graph for finite trees. In the most common use, one
node corresponds to each path of the finite tree.

A regular tree t is a tree such that the number of distinct subtrees of t is
finite. Such a tree can be infinite, but it can still be represented by a finite graph
[6], see Fig. 1 for an example.

t =




(10)∗ → f
(10)∗0 → a
1(01)∗ → g

can be represented by
f

0
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Fig. 1. An infinite regular tree

2.2 Best Representation

The naive representation, which consists in using any graph representing the
tree [6], is very easy to deal with and quite widely used for small problems. But
we can do far better if we observe that some nodes can represent different paths
of the tree, as long as the subtrees at these paths are the same. This is called
sharing the subtrees (see e.g. [1]). In fact, the best we can do is to have exactly
one node for each distinct subtree. This is what we call the best representation
of a tree. In the case of finite trees, this can save a lot of space, and even time by
memoizing [15], and in the case of infinite regular trees, we avoid the possibility
of unbounded representation for a given tree.

When dealing with many trees, we can do even better: considering the entire
computer memory as one graph, we can optimize the representation for all the
trees, and have in effect exactly one memory location for each distinct tree we
need to store. An immediate consequence is that we just have to compare the
location of the roots (the node representing the trees) to compare entire trees.
Such a technique is used e.g. in BDDs [2] to achieve impressive speed up and
memory gain.

The technique to obtain the best representation of the trees uses a dictionary
mechanism linking keys to nodes of the graph, usually a hash table. The keys
are built incrementally: if the keys for the (ti)i<n are known and linked to the
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nodes (Ni)i<n, then the key for
f
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t0 tn−1

is (f, (Ni)i<n). Each time a key is not

present in the dictionary, it is associated with a new node N , with edges to the
Ni’s. If we come to a tree whose key is already in the dictionary, we use the
corresponding node. As the trees are always built from leaves to root, we have
indeed a best representation for the trees.

3 Dealing with Cycles

When representing infinite trees, though, we cannot go from the leaves to the
root, so we cannot start the key mechanism which leads to the best represen-
tation. The difficulty lies in the infinite paths of the tree, that is the cycles of
the graph representing the tree. Whereas in finite trees there is no need to see
beyond the immediate children of a given node, when dealing with cycles, we
can have reasons to look further, in order to detect the two causes of cycle un-
folding: cycle growth and root unfolding. For example, consider the cycle a

99 b
{{

.
b




a

--

a

mm

b

MM is an example of cycle growth, and a // b ;; a
yy

is an example of root

unfolding. In this very simple example, it is easy to reduce root unfolding by
looking at the key of the root, but it is much more difficult if the root itself is
still in another cycle. In order to concentrate on the real difficulties, we suppose
in this section that we deal with strongly connected graphs, that is graphs such
that there is a path between any pair of nodes.

3.1 Cycle Growth and Tree Keys

We give ≡tree as the equivalence between nodes representing the same tree. The
goal of cycle growth reduction is to find an equivalent graph with the minimum
number of nodes. In such a graph, whatever the nodes N and M , N ≡tree M ⇒
N = M . Such a problem is called a partitioning problem. It has been solved
in time n log(n) by Hopcroft [10] for finite automata, and in the general case
by [4]. We call share(N) the algorithm that takes a node N and modifies the
associated graph so that it has the fewest possible nodes (Fig. 2).

share
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Fig. 2. Application of the share algorithm.
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Cycle growth reduction corresponds to the state of the art in automata re-
presentation. But we want to go further: we need that the representation be
unique whatever the different versions of the same tree. To perform this, we give
a key which distinguishes between non isomorphic graphs. This key is associa-
ted to a given node N of the graph. It is a finite tree which corresponds to the
graph as long as we do not loop, but as soon as we loop, the label of the node
is replaced by its access path from N . It is described as treeKey(N). See Fig. 3
for an example. The isomorphism between graphs is not the same thing as ≡tree.
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Fig. 3. A graph, followed by the tree keys of its two nodes

In general it can differentiate two graphs which represent the same tree. The
interesting point is that it is indeed the same relation on graphs with a minimal
number of nodes.

Proposition 1. Whatever M and N , such that G(M) and G(N) are graphs with
minimal number of nodes, treeKey(M) = treeKey(N)⇔M ≡tree N .

Proof. The difficult point is M ≡tree N ⇒ treeKey(M) = treeKey(N). Suppose
there are M and N such that G(M) and G(N) are graphs with minimal number of
nodes, M ≡tree N and treeKey(M) 6= treeKey(N). Let tM = treeKey(M) and
tN = treeKey(N). Because tM 6= tN , there is a path p such that tM (p) 6= tN (p).
But if tM (p) is a label of the graph, tM (p) is the label of M.p, and the same
holds for N . Because M ≡tree N , M.p and N.p have the same label, so at least
one of tM (p) or tN (p) is not a label of the graphs (and so is in IN∗), say tM (p).
It means there is a q ≺ p such that M.q ≡tree M.p. So N.q ≡tree N.p, but by
minimality of the number of nodes of G(N), N.q and N.p must be the same
node, and so tN (p) = q = tM (p). ut

Because we can find an equivalent graph with minimal number of nodes
for strongly connected graphs, we have a valid key mechanism for any strongly
connected graph: we first apply share, then treeKey.

3.2 Root Unfolding and Partial Keys

With just share and treeKey (applied to every node), we can have a unique
representation that shares common subtrees. But as we need to start the whole
process from the beginning for each little modification in the trees, such a process
would be quite slow. Moreover, it is much better to apply the share algorithm on
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the smallest possible graphs. As it is not a linear algorithm, we have better results
if we can split the graph and apply the algorithm to each separate subgraph only.

The finite parts of the tree can always be treated in the classic way, while
the loops will need a special treatment. In order to decompose the graph and
mark those parts of the graph which have been definitely treated, we introduce
partial keys. A partial key looks like a node key for a finite tree, a label followed
by a vector of nodes, except that for some parts of the vector, there is no node
(see Sect 4.3 for an example). A partial key k has a name: name(k) ∈ F and
is a partial function from IN to nodes. A graph labeled by partial keys is such
that for every node N in the graph, if k is the partial key for N , the edges in
the graph correspond to those integers for which the partial key is not defined.
For example, if a node is labeled by f of arity 3, we can have a partial key
which is not defined on 0 and 1 (we write a •), and on 2 its value is the node
number 4. We write (f, ••�4) for this partial key. The only edges that can leave
from such a node would be labeled by 0 and 1. The idea is that what is in the
partial keys is uniquely represented. In our example, the node number 4, �4,
is a unique representation of some tree. Later on during the computation, it is
possible that we have a unique representation for the first component, say with
node �2, and the partial key becomes (f,�2 • �4). When a partial key is full
(defined everywhere), then the node should be a unique representation.

This new graphs have new equivalence relation, ≡pk which is implied by
≡tree. This new equivalence relation corresponds to ≡tree after the expansion of
the partial keys into the graph.

But now, with those partial keys, we can have a strongly connected graph
such that, by root unfolding, one of its nodes is equivalent to a node in a partial
key. Figure 4 shows a case of root unfolding, which can be as big as we want,
even after cycle growth reduction1. So, we must look for such a node, even before
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Fig. 4. Root unfolding of a cycle

applying the share algorithm.
The name of the algorithm performing this task is shareWithDone(N). It

returns N if and only if no other node in the partial keys is equivalent to N .
Otherwise, it returns the node in the partial keys that is equivalent to N . This

1 In this figure, dotted lines correspond to nodes stored in partial keys.
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algorithm uses some properties of the graph to reduce the complexity of the
computation. Let G be the graph associated with N . As always in this section,
we suppose that G is strongly connected. We call H the graph already computed
and that is reachable from the partial keys of G. The algorithm determines
whether a node of G is equivalent to a node of H. If it is the case, then there
is root unfolding. If not, there is no root unfolding. We show that it is enough
to verify this property for one node to treat the entire graph G because G is
strongly connected. Suppose N is equivalent to M in H. Then, whatever the
legible path p, N.p is equivalent to M.p. Because H has been treated already,
any M.p is in H, and because G is strongly connected, any node of G is a N.p.

There is a kind of reciprocal property that is exploited too: for some subsets
of HN , if no node of the subset is equivalent to a particular node of G, then
they are not equivalent to any node of G. A subset of HN is said to be closed
if and only if, for every legible path p, for every node N in the subset, N.p is in
the subset.

Proposition 2. ∀H ′ ⊂ HN such that H ′ is closed, if ∃N ∈ GN such that
∀M ∈ H ′, N 6≡pk M , then this holds for every N ∈ GN .

Proof. Let H ′ be such a subset and N a node of G. If N is not equivalent to
any node in H ′, then, suppose there is a M ∈ GN and a O ∈ H ′ such that M
is equivalent to O. As G is strongly connected, there is a p such thatM.p = N .
So, N would be equivalent to O.p, which is in H ′. This proves that no element
of GN is equivalent to any element of H ′. ut

Because of these properties, we can use the following algorithm for share-
WithDone: we just compare every nodes of G with the nodes that are reachable
from their partial keys and not already encountered. This comparison can be
quite efficient by exploiting the fact that the nodes in the partial keys are unique
representations of trees, although we have a quadratic worst case complexity.

We will show in the next section, that by applying first shareWithDone,
then share and then treeKey, we can indeed represent uniquely (and with the
least possible number of nodes) any strongly connected graph, in an incremental
process.

4 The Best Representation for Infinite Trees

4.1 Informal Presentation

In order to show how we can produce the best representation for an infinite
tree, we solve the following problem: considering a graph representing a tree t,
return an equivalent graph with a minimal number of nodes. To achieve this
in an incremental way, we use two dictionary mechanisms and a decomposition
of the graph. First, we apply the classic algorithm, using the dictionary D, on
the finite subtrees of the tree. When a finite subtree is entirely treated, it is
incorporated in the graph through partial keys. Second, when there is no more
finite subtree, there is a subtree represented by a strongly connected graph. The
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dictionary DG stores the tree keys of such graphs, and after shareWithDone and
if necessary, share, we can decide whether another equivalent graph has already
been encountered, and if not, use new nodes. When the strongly connected graph
is treated, it is considered as just a node, and so we can iterate on our algorithm
until we give the representation of the root.

4.2 The Algorithm

We suppose given a dictionary D which maps full keys to nodes corresponding
to a unique representation of the associated tree, and a dictionary DG which
maps tree keys (in fact keys of these finite trees) to nodes corresponding to a
unique representation of the associated strongly connected graph.

The algorithm uses local dictionaries too, which we assume to be empty when
the process starts on a tree. The dictionary encountered contains the nodes of
the original representation already encountered (so that we do not loop). The
set returnNodes is used to detect the roots of the loops.

A node is considered “treated” when it is in the dictionary D (and so it
represents uniquely a tree). To decide whether a node is “treated”, we just have
to look at its key: it is “treated” if the key is full.

representation(t)
Step 1 if t ∈ encountered then

if encountered(t) is not treated add it in returnNodes
return encountered(t)

Step 2 N is a new node labeled by the empty partial key k of name
the label of t

Step 3 for each child ti of t do
3a Ni ←←← representation(ti)
3b if Ni is treated, then add it to k

else N.i ←←← Ni

Step 4 if k is full then
if k ∈ D return D(k)
else add k→N to D and return N

Step 5 remove N from returnNodes
Step 6 if returnNodes = ∅ then return representCycle(N)
Step 7 return N

representCycle(N)
Step 1 if shareWithDone(N) 6= N then return shareWithDone(N)
Step 2 share(N)
Step 3 if treeKey(N) ∈ DG then return DG(treeKey(N))
Step 4 for each node M in the graph defined by N do

4a add treeKey(M)→M to DG

4b add the children of M to its partial key m
4c add m→M to D

Step 5 return N
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4.3 Example

We present the algorithm to represent regular trees on an example, the graph
of Fig. 5, where each node is assigned a number. We will write ti for the tree
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Fig. 5. Example

represented by the node number i, �i.
representation(t1) calls representation for t2, t5 and t6. The call to

representation on t2 will return the node �2. It will also store various nodes
in D, and in particular (a)→�4. The call on t5 will just return an untreated
node �5, with nothing added in the dictionaries. The call on t6 will recognize
on step 4 that a is in D and so it will return �4.

Thus, at step 5, returnNodes = {�1} becomes empty, and we call re-

presentCycle with the graph2

(f,�2 •�4)

1
		

(g, ••)
0

II

1
bb

. A call to shareWithDone returns

the node �2. So the return value of representation on t1 is �2, the node

labeled by f in the graph
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. Moreover, the dictionaries will be:

D = {(a)→�4, (g,�3�2)→�3, (f,�2�3�4)→�2}

DG =




(f, • •�4)

}}zz
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


2 Remember that (f, �2 • �4) is the partial key which is not defined on its second
component.
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4.4 Proof of the Algorithm

The algorithm returns the node of a graph. We must prove that this graph
represents the same tree as the original graph, and that it is a graph of maximal
sharing.

First, notice that the algorithm terminates, because of the dictionary en-
countered which implies that each node of the original graph is treated only
once.

The correctness of the algorithm is derived from the fact that we return the
same graph as the original, except when we recognize that an equivalent node
had already been encountered (through the node keys or the tree keys), in which
case we replace one node by the other. It is the case step 4 of representation,
and steps 1, 2 and 3 of representCycle

The fact that the resulting graph has the minimal number of nodes lies
in the use of the dictionaries D and DG to ensure that we never duplicate
any node. The dictionary D contains the node keys of every node encountered,
and the dictionary DG contains the tree key of every node of every strongly
connected graph with minimal number of nodes we encounter. We can prove that
each time we definitely introduce new nodes, there is no duplication. Definitive
introduction is performed in two points: step 4 of representation, and step 4
of representCycle.

Step 4 of representation, we know that the key k is not in D. Moreover,
each one of the Ni composing the key is unique because nodes in partial keys

have already been treated. So if a tree
f
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had already been encountered,

the key (f, (Ni)i<n) would already have been encountered.
Step 4 of representCycle, we know that the key treeKey(share(N)) has

never been encountered before. Because such a key is valid for strongly connec-
ted graphs, it means that no other node M such that M ≡tree N have been
encountered before. But the problem is that we have a partial key semantics on
these graphs, and ≡tree⊂≡pk, so we could have M 6≡tree N but M ≡pk N in
effect representing the same tree. Because M 6≡tree N , there is a path p such
that M.p and N.p do not have the same label, kM and kN . But as N and M
represent the same tree, kM and kN must have the same name, so their only
possible difference is in the partial function. It means there is an i such that
one of the keys is defined on i and not the other key (if both of them were de-
fined on i, their value would be the same on i, as the nodes in partial keys are
unique representations). By construction, the nodes M and N are in strongly
connected graphs. So if one of the keys is not defined on i, there is a q such that
M.piq = M or N.piq = N . If t is the tree represented by both nodes, it means
that t[piq] = t. Suppose kM is defined on i, then there is a node reachable from
kM (i) which represents the same tree as M , and as such it would have been
found by shareWithDone. So the graph defined by M would never have gone
beyond the step 1 of representCycle. It means that another representative is
stored for the cycle (we go on like this until we find one which is equivalent to
N , which means that the test step 3 could not have been false). If kN is defined



Improving the Representation of Infinite Trees to Deal with Sets of Trees 285

on i, by the same argument, we could not have been beyond the step 1, and so
no new node is created.

If no node equivalent to N has been encountered, it is the same for every other
node M in the graph represented by N . It is due to the strong connectivity of
the graph which implies that if M has already been encountered, N has already
been encountered.

5 Complexity Issues

Algorithms on shared trees can be more difficult than standard algorithms on
trees, because we must keep the uniqueness of the representation, and for effi-
ciency, we must do it incrementally. Comparing complexities of algorithms on
the two representations (the naive and the sharing ones) is difficult, though. The
complexity is measured with respect to the size of the inputs of the algorithms,
which can be reduced to the number of nodes of the inputs in our case. In the
case of shared regular trees, the number of nodes is exactly the number of di-
stinct subtrees of the tree, but when the tree is not shared, the number of nodes
can be of any value greater than the number of distinct subtrees. In the sequel,
we denote by n this number of nodes, but we must keep in mind that this n can
be much bigger in the case of non-shared trees.

The basic property of shared trees is the uniqueness of the representation.
Thus, testing tree equality is really immediate: we just compare the memory
location of the root. In the classic case, the best method uses a partitioning
algorithm. Another case where we can avoid such a computation with shared
trees is testing if a tree is a subtree of another one. In the shared case, we just
have to compare the root of the first tree with all the nodes of the second one.
Not only is it linear, but the second tree is very likely to have very less nodes in
the shared case than in the classic representation.

When building finite trees, we need only one operation, which we call root

construction: we give a label f and the nodes (Ni)i<n, and we build
f
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.

Such an operation is constant time in the naive representation and in the sharing
representation for finite trees (assuming hashing is constant time [12, 3]). It is
indeed also constant time for infinite trees, but this operation does not suffice to
build any regular tree. We need also some loop building mechanism. We call this
second operation recursive construction. Considering a tree t and a label x, it
consists in replacing every edge going to x by an edge to the root, and then apply
representCycle to maintain the uniqueness of the representation. Concerning
the complexity of this algorithm, it seems that the prevailing operation is the final
(and unique) call to share, which is applied on the smallest possible subgraph,
but in the worst case, the quadratic complexity of shareWithDone will take
precedence.

Many other operations can be adapted to shared trees while preserving the
uniqueness of the representation by derivation from the representation algo-
rithm. But due to lack of space, we let the reader write their own adaptations.
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sharing representation naive representation
testing t1 = t2 O(1) O ((n1 + n2) log(n1 + n2))
testing t1 subtree of t2 O(n2) O ((n1 + n2) log(n1 + n2))
building t[p] O(|p|) O(|p|)
root construction O(1) O(1)
recursive construction O(n2) O(n)

Fig. 6. Summary of worst case time complexities

The summary suggests that if we are to perform equality testing, it can be
beneficial to perform sharing during the calculus. What we show here are worst
case complexity, though, and the difficult cases are quite pathological, and thanks
to some simple optimizations, they are quite rare. The situation is very similar
to the complexity of operations on BDDs [2] compared to the operations on
boolean formulas. The size of the formula representing a given boolean function
is unbounded, but the basic operations, like conjunctions, are linear in the size
of one of the formulas whereas they are quadratic for the BDDs. Nevertheless,
in practice BDDs are far more efficient.

6 Application: Set-Based Analysis

We propose to use these techniques to improve the representations of sets of trees.
The expressive power of this improved representation is exactly what is needed
in set-based analysis [9], where sets of trees are approximated by ignoring the
dependencies between variables (an idea which was already present in [16, 11]).

6.1 Tree Automata and Graphs

Because the cartesian approximation eliminates any dependencies between child-
ren of a tree, we can use deterministic top-down tree automata in set-based ana-
lysis. The idea we use here is that deterministic top-down tree automata can be
seen as graphs, where the only properties that matter are path properties, and
so it can be represented efficiently as a regular infinite tree.

A deterministic top-down tree automaton [17, 8] is a tuple (Q, I, δ, F ) where
Q is a finite set of states, I ∈ Q is the initial state, F ⊂ Q is a set of final
states, and δ : A × Q→ Q × . . . × Q is the transition function which takes a
label in A and a state, and returns a sequence of states (as many as the arity of
the label). The corresponding graph G is such that GN = Q, GE = {(q, q′, ai) |
δ(a, q) = (. . . , q′, . . .) and q′ in ith position }. This connection means that we
can represent the sets used in set-based analysis without any variable name in
the representation, and in a shared way.
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6.2 Tree Skeletons

In order to represent the sets of set-based analysis as trees, we use a new label
to represent the anonymous states of the tree automata. This label, which we
call a choice label corresponds to a possible union in the interpretation of the
infinite tree. We denote this label ©. We call the infinite trees with this extra
label a tree skeleton. The set of trees represented by a tree skeleton is defined3

by:

Set

(
f

���� ��
66

t0 tn−1

)
def=

{
f

���� ��
99

u0 un−1

∣∣∣∣∣ ∀i < n, ui ∈ Set (ti)

}

Set

(
©
���� ��

99

t0 tn−1

)
def=
⋃
i<n

Set (ti)

In order to have a unique representation of the sets of trees (and so keep
the constant time equality testing and memoizing properties), we make some
restrictions on what infinite trees are considered valid tree skeletons. First we
eliminate unnecessary choices: if a choice node has only one child, it is replaced
by its child. If a choice node is the child of a choice node, it is replaced by its
children. We perform the cartesian approximation: if two children of a choice
node have the same label, they are merged (replaced by their cartesian upper
approximation). Finally, the children of a choice node are ordered according to
their labels. See the summary of figure 7.
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⇒ all ti(ε) are in strict order.

Fig. 7. Rules to obtain a valid tree skeleton

Any deterministic top-down tree automaton can be represented by a valid
tree skeleton. Consider an automaton (Q, I, δ, F ). We first build the infinite tree
labeled by Q and A, such that the root is labeled by I, the children of a given
3 Set is defined as the least fixpoint of this set of equations. The ordering is the

pointwise ordering of the inclusion of the images. If we wanted to include infinite
trees (as in [5]), we would take the greatest fixpoint.



288 L. Mauborgne

state q are the different a such that δ(q, a) is defined, an the children of such a a
are the δ(q, a). This tree is regular because there is at most one subtree labeled
by a given q ∈ Q, and at most |Q| subtrees labeled by a given a ∈ A. The second
step consists in removing every label of arity 0 which does not come from a state
in F , and in replacing every state by ©. Then we derive the valid tree skeleton.

6.3 Using Tree Skeletons in Analysis

Manipulation of tree skeletons uses basic algorithms on shared infinite regular
trees. Once we can keep the maximal sharing property, it is easy to keep track of
the other rules for tree skeletons. Then tree skeletons can be used everywhere we
consider a set of trees in the analysis. It can replace some of the tree automata
of [7] (if we keep the original restrictions of set-based analysis), or the tree
grammars of [13], as the approximation on union corresponds indeed to cartesian
approximation.

In practice, you can try to use the toolbox under development at the following
address: http://www.di.ens.fr/˜mauborgn/skeleton.tar.gz.

7 Conclusion

While trying to improve the representation of sets of trees in set-based analysis,
we presented generic algorithms to manipulate efficiently any structure encoded
as infinite regular trees. These algorithms allow a very compact representation
of such structures and a constant time equality testing. One of their advantages
is their incrementality which allows their use on dynamic structures. The com-
plexity analysis cannot describe the potential benefit of this new representation,
but it suggests the same gain as for Binary Decision Diagrams which use similar
techniques.

We also described a new way of representing sets of trees using infinite regular
trees. This new representation is sharing, incremental and unique. Current work
includes the integration of the representation in an actual analyzer to show
experimentally its benefits.
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