Pipelined Java Virtual Machine Interpreters

Jan Hoogerbrugge and Lex Augusteijn

Philips Research Laboratories,
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
{jan.hoogerbrugge,lex.augusteijn}@philips.com

Abstract. The performance of a Java Virtual Machine (JVM) inter-
preter running on a very long instruction word (VLIW) processor can be
improved by means of pipelining. While one bytecode is in its execute
stage, the next bytecode is in its decode stage, and the next bytecode
is in its fetch stage. The paper describes how we implemented thread-
ing and pipelining by rewriting the source code of the interpreter and
several modifications in the compiler. Experiments for evaluating the ef-
fectiveness of pipelining are described. Pipelining improves the execution
speed of a threaded interpreter by 19.4% in terms of instruction count
and 14.4% in terms of cycle count. Most of the simple bytecodes, like
additions and multiplications, execute in four cycles. This number corre-
sponds to the branch latency of our target VLIW processor. Thus most
of the code of the interpreter is executed in branch delay slots.

1 Introduction

One of the most important properties of the Java Platform is its ability to
support mobile code, i.e., code that runs on a large variety of machines, often
transfered over a network [1]. This is realized by an object file format called class
files which contains machine instructions called bytecodes for a virtual machine
called Java Virtual Machine (JVM). JVM is designed so that it can be efficiently
implemented on a large variety of platforms. JVM can be implemented directly in
hardware as a JVM processor [2], by means of a software interpreter, or by means
of a just-in-time compiler [3,4] which compiles bytecodes to native machine code
just before the code is executed and caches it for future execution.

A JVM processor can potentially provide excellent execution speed perfor-
mance, but they usually cannot execute other software that has to run on the
system such as video and audio decoders. Such software would have to be ported
to the JVM processor.

A software interpreter is usually slow, about 5-20 times slower than native
code, but it is portable and has low memory requirements for both code and
data.

A just-in-time compiler could approach the execution speed of optimized na-
tive code but has high memory requirements. A just-in-time compiler will be
larger than an interpreter, and require RAM to store generated native code. A
just-in-time compiler is also more complex to develop, and is not portable. Fur-
thermore, just-in-time compilation requires an investment in compilation time

A. Watt (Ed.): CC/ETAPS 2000, LNCS 1781, pp. 35-49, 2000.
© Springer-Verlag Berlin Heidelberg 2000

36 Jan Hoogerbrugge and Lex Augusteijn

which will only be profitable when the code is executed repeatedly. A compari-
son between JVM processors, interpreters, and just-in-time compilers for JVM
can be found in [5].

In this paper we describe a JVM interpreter for the Philips TriMedia very
long instruction word (VLIW) media processor, which is targeted for embedded
systems in consumer products [6,7]. For these products a dedicated JVM proces-
sor, unable to perform media processing, will not be cost-effective. Furthermore,
the memory requirements of a just-in-time compiler are expected to be too high,
especially for VLIWs, which require instruction scheduling and have a low native
code density. That is why we have opted JVM interpreter for TriMedia.

State-of-the-art compiler technology is not able to sufficiently exploit
instruction-level parallelism (ILP) in a JVM interpreter. All steps required to
execute a bytecode — fetch, decode, and execute — are dependent on each other,
which results in low ILP. Although there is little ILP within a bytecode, there is
much more ILP between successive bytecodes. Exploiting this implies pipelined
execution of the interpreter, a well-known technique employed in all performance-
oriented processors. Although software pipelining [8] has been well-known for
many years, the algorithms developed for it are not able to pipeline the com-
plex, irreducible [9] control flow structure of an interpreter. In this paper we
will show how we managed to pipeline a JVM interpreter with modest compiler
support.

This paper is organized as follows. Section 2 provides background information
on JVM and TriMedia. Section 3 describes pipelining and how we implemented
it. Section 4 describes the experiments we conducted. Section 5 discusses related
work. Finally, section 6 ends the paper with conclusions.

2 Background

In this section we give a brief description of JVM and TriMedia, necessary to
understand the remainder of the paper.

2.1 Overview of JVM

The Java Virtual Machine is a stack-based architecture, which means that all
common instructions such as additions and multiplications get their operands
from the evaluation stack and put their result on the evaluation stack. An array
of local variables is available for fast accessible storage of temporary scalar data.
Load and store instructions move data between the evaluation stack and the
local variables. The memory of the JVM consists of a heap for dynamic storage
of objects and arrays. Instructions are available for allocation of objects and
arrays, and for accessing and modifying them. Various kinds of control flow
instructions are available for conditional branching and method invocation.
Whereas real machines have relatively simple instructions, JVM has both
simple as well as several very complex instructions. Examples of the latter are

Pipelined Java Virtual Machine Interpreters 37

instructions for memory allocation, thread synchronization, table jumps, and
method invocation.

The instructions of JVM are called bytecodes. A bytecode consists of a one-
byte opcode followed by zero or more operands. Each operand consists of one or
more bytes. This structure, unlike the structure of a real processor, makes JVM
easy to implement by a software interpreter.

2.2 The TriMedia VLIW Media Processor

The TriMedia VLIW media processor! is a five-issue VLIW processor with an
operation set and peripherals optimized for the processing of audio, video, and
graphics. 28 functional units are available; among which are 2 load/store units,
3 jump units, 5 ALUs, and 4 floating point units. Each instruction holds up to
five operations that can be issued to a subset of the 28 functional units under
certain combination restrictions. All functional units are connected to a central
register file of 128 32-bit registers. The processor has no interlocks and stalls in
cache misses. TriMedia has a 16 kbyte data cache and a 32 kbyte instruction
cache.

All multi-cycle functional units, except the divide functional unit, are fully
pipelined. The load/store units have a latency of three cycles, and the jump
units have a latency of four cycles. A jump latency of four cycles means that
three delayed instructions are executed before a jump operation becomes effec-
tive. Fifteen operations can be scheduled in these three delayed instructions and
another four operations can be scheduled in parallel with the jump operation.
For more information on TriMedia the reader is referred to [6,7].

3 Pipelined Interpreters

A JVM interpreter is a complex piece of software, usually written in (ANSI) C.
In our case, we used both the freely available Kaffee [10] and Sun Microsystems’
Personal Java [11] for the application of our pipelining techniques. In fact, these
techniques are generally applicable to all types of interpreters, and not just to
JVM interpreters.

We assume that an interpreter is written in C and has the following structure:

bytecode bc; /* Current bytecode */
bytecode *pb; /* Bytecode pointer */
for (55) {
bc = *pb; /* Fetch */
switch (bc) { /* Decode */
case ADD:
R U /* Execute bytecode */

! Whenever we mention TriMedia in this paper, the reader should read TriMedia
TM1000 or TM1100. Future generations may have a different architecture.

38 Jan Hoogerbrugge and Lex Augusteijn

pb += 1; /* Increment bytecode pointer */
break;
/* Other cases */
}
}

An optimizing C compiler will implement the switch statement by a table
jump including a range check to test whether the value is in the range of the
table. Assuming that the last case of the switch is the default one, this gives a
control-flow graph as shown in figure la for such an interpreter.

3.1 Threaded Interpreters

An indirect threaded? interpreter [12,13], is an interpreter with which the code
to implement a bytecode jumps directly to the code to implement the next byte
to be executed, rather than to a shared join point. So each bytecode performs
a table jump to its successor. Such a threaded interpreter exhibits the control
flow shown in figure lc.

We have modified the TriMedia C/C++ compiler so that it can transform
the control flow graph of figure la into that of figure lc. This transformation
comprises of two steps.

Removal of the range check. If the switch expression is of type unsigned
char and the number of cases is large enough (> 128), the switch statement
is made complete by adding the missing cases and removing the default case.
This results in a 256-entry jump table and the elimination of the range check.
The resulting control flow graph is shown in figure 1b.

Code duplication. The switch block S in the control flow graph of figure 1b
and the join block J are duplicated for each of the 256 cases. This effectively
yields the threaded interpreter. The compiler is instructed by pragmas at
the end of each switch case where to perform this code duplication. As the
blocks involved contain only a jump (for .J) (which disappears) and two loads
and a table jump (for S), the resulting increase in code size is limited. Note
that the 256 jumps to J disappear.

Another way to create a threaded interpreter is to use first-class labels, as
found in GNU C. In this method, each block ends with a computed goto to
the next block. However, first-class labels are not part of ANSI C and are not
supported by the TriMedia compiler.

The control flow graph of a threaded interpreter as shown in figure 1c is
irreducible [9]. This means that there is no single loop header and control flow
edges cannot be partitioned into forward and backward edges such that the
forward edges form an acyclic graph and heads of backward edges dominate
their tails. The authors are not aware of software pipelining algorithms that can
handle irreducible control flow graphs. Therefore, we have developed our own
technique for pipelining threaded interpreters.

2 In the remainder of the paper we will speak about a threaded interpreter whenever
we mean an indirect threaded interpreter.

Pipelined Java Virtual Machine Interpreters

¥

Fetch
Range
Decode
Execute | Execute, Execute; Execute,,
Increment Increment Increment Increment
Join

y

(a) Control flow graph of a table—jump—based interpreter

¥

S
Fetch
Decode
Execute Execute, Executej Execute,,
Increment Increment Increment Increment
J
Join

y

(b) Control flow graph after range check removal

Fetch

Decode
Execute Execute, Executey Execute |
Increment Increment Increment Increment
Fetch Fetch Fetch Fetch
Decode Decode Decode Decode

Y Y Y y

(c) Control flow graph after duplication of Fetch and Decode

Fig. 1: Control flow graphs of bytecode interpreters

39

40 Jan Hoogerbrugge and Lex Augusteijn

3.2 Pipelined Interpreters

In the threaded interpreter shown in figure 1lc the execute; and the
increment /fetch/decode (IFD) parts are usually independent, because the in-
crement value of the bytecode pointer is a constant for most bytecodes, jumps
being the exception. The IFD part is expressed in pseudo C as:

pb += n; /* Increment */

bc = *pb; /* Fetch next bytecode */

t = table[bc]; /* Fetch target address from jump table */
goto t; /* Jump to next bytecode */

This consists of a sequence of two loads and a jump, which can be executed
parallel to the execute part of the bytecode itself on a VLIW processor like the
TriMedia. For many simple bytecodes, the latency is determined by the IFD
part. Therefore, a key issue in the speeding up of an interpreter on a VLIW is
the decrease of this latency. The solution is to pipeline the two loads, i.e. *pb
and table[bc], and the jump. The first of these loads is under the control of
the programmer, so we obtain its pipelining by restructuring the source of the
interpreter. The second load is compiler-generated from the switch statement.
We have modified the compiler to take care of its pipelining. Without pipelining,
the latency of the IFD part is 2*load+jump = 2*3+4 = 10 cycles on a TriMedia.

The pipelining can also be explained by means of the following diagrams.
Figure 2a shows the sequential execution of bytecodes. The figure illustrates
that the execution time of a bytecode is determined by the IFD part, which
is executed in parallel with the execute part. Figure 2b shows the pipelined
execution. The pipeline comprises three stages: increment/fetch, decode, and
execute/jump. While bytecode ¢ is in its execute/jump stage, bytecode i + 1 is
in its decode stage, and bytecode i + 2 is in its fetch stage.

Pipelining the Bytecode Fetch The bytecode fetch is pipelined by fetching
bytecodes in advance and keeping these prefetched bytecodes in local variables
which will be allocated to machine registers. Because the pipeline has to be two
stages deep (we need to pipeline two loads), the bytecode must be fetched far
enough in advance. Because bytecode instructions are of variable length, several
bytes may need to be fetched in advance. The majority of the bytecodes have
a length of at most three bytes. Since the bytes must be fetched two bytecode
executions in advance, we decided to fetch a total of 2% 3 = 6 bytes in advance.
We depict them by b1 through b6.

The pipelined interpreter code looks like this, for an instruction length of two
bytes.

pb += 2; /* Increment */

bc = b2; /* Fetch next bytecode */

bl = b3; b2 = b4; b3 = b5; b4 = b6; b5 = pb[5]; b6 = pb[6];
t = table[bc]; /* Fetch target address from jump table */

goto t; /* Jump to next bytecode */

Pipelined Java Virtual Machine Interpreters 41

Execute
Bytecode i Incr/Fetch Decode Jump
Execute
Bytecode i+1 Incr/Fetch Decode Jump
(a) Sequential execution
Bytecode i Incr/Fetch | Decode E}‘Sgge/
Bytecode i+1 Incr/Fetch Decode E}‘Sﬁ}ge/
Bytecode i+2 Incr/Fetch Decode E}(&c}%e/
Bytecode i+3 Incr/Fetch Decode E}SICI:EB/

(b) Pipelined execution

Fig. 2: Sequential vs. pipelined bytecode interpretation. In the sequential case
(figure 2a), the operations of the IFD part are dependent on each other
while the IFD part can be executed in parallel with the execute part.
Figure 2a illustrates this.

The result of this pipelining is that the decode load (of the jump target) is
no longer dependent on any bytecode fetch. The latency of the IFD part is thus
reduced to load+jump = 7 cycles on a TriMedia.

Pipelining Decode Load Recall that the decode load of the branch target
table[bc] is compiler-generated. The compiler can move this load from each
of the bytecode blocks into each of its predecessors. Since they are each others’
predecessors, each bytecode block gets 256 of these decode loads. Fortunately,
they are all equal apart from a difference in the instruction length n. So, for
each value of n, a version is copied to each predecessor block. In practice, this is
limited to 3 versions. This corresponds to the speculated decoding of bytecodes
due to the variable instruction length.
The result in pseudo C looks like this:

pb += 2; /* Increment */

bc = b2; /* Fetch next bytecode */

bl = b3; b2 = b4; b3 = b5; b4 = b6; b5 = pb[5]; b6 = pb[6];

t = t2;

tl = table[bl]; /* Fetch target address 1 from jump table */
t2 = table[b2]; /* Fetch target address 2 from jump table */
t3 = table[b3]; /* Fetch target address 3 from jump table */
goto t; /* Jump to next bytecode */

This code can be optimized by combining the shifting of the bytecodes with
the table loads, so that they can be shifted too. To this end, the compiler per-

42 Jan Hoogerbrugge and Lex Augusteijn

forms an extensive analysis to prove that t1 always equals table[b1], etc. It
then transforms the code as follows:

pb += 2; /* Increment */

bc = b2; /* Fetch next bytecode */

bl = b3; b2 = b4; b3 = b5; b4 = b6; b5 = pb[5]; b6 = pb[6];

t = t2;

tl = t3; /* Shift target address 1 x/

t2 = table[b2]; /* Fetch target address 2 from jump table */
t3 = table[b3]; /* Fetch target address 3 from jump table */
goto t; /* Jump to next bytecode */

The net result of this pipelining process is that, on a VLIW, a simple bytecode
can start with a jump to its successor, and perform its actual computation in
parallel with the jump. This reduces the minimum latency of a bytecode on a
TriMedia to 4 cycles, the value of the branch delay.

Pipelining also increases the required number of registers to store the vari-
ables, and increases the code size of the interpreter loop. For TriMedia, the
interpreter loop uses fewer than 20 registers and 30 kbyte of code. Recall that
TriMedia has 128 registers and a 32 kbyte instruction cache.

3.3 Stack Caching

After pipelining, the execution time of the control flow part (IFD) of a bytecode
is reduced from the sum of the latencies of two loads and a jump to the maximum
of those latencies. In the case of TriMedia, the reduction is from 10 to 4 cycles.
After this reduction however, the execute part usually has a longer latency,
especially due to the evaluation stack accesses in a Java interpreter, which are
always memory accesses.

This latency is easily reduced by caching the top s elements of the stack
in local variables, which are mapped onto registers by the compiler. The best
value for s is a trade-off between limiting the number of memory accesses to
the evaluation stack on the one hand, and minimizing the register pressure and
book-keeping operations relating to pipelining and stack-caching on the other,
because driving these techniques too far results in too much code to implement
it, which fills up the available issue slots. In practice, a value of s = 2 performs
best on a TriMedia.

The following C code illustrates stack caching for the iadd bytecode, which
takes two integers from the stack, adds them, and puts the result back on the
stack:

tos = tos + nos; /* Add top two elements on stack */
nos = sp[2]; /* Fetch new data into stack cache */
sp += 1; /* Update stack pointer */

/* IFD part */

The two local variables holding the top two stack elements are called tos
(top of stack) and nos (next on stack). Unlike in previously published stack

Pipelined Java Virtual Machine Interpreters 43

caching techniques [14], the primary goal of stack caching for us is to reduce the
dependence height in the execute part of the bytecode and not to reduce the
number of operations. Unlike [14], we do not maintain how many cache elements
are valid by means of interpreter state. In our case, tos contains valid data when
there is at least one element on the stack, and nos contains valid data when there
are at least two elements on the stack.

After execution of a bytecode that consumes a variable number of stack
elements, such as the invoke bytecodes, the cache is refilled by executing:

tos = spl[0]; /* load top-of-stack into cache */
nos = spl[1]; /* load next-on-stack into cache */

After using pipelining and stack caching, sufficient parallelism has been ex-
posed that can be exploited by the global instruction scheduler of the TriMedia
compiler [15].

3.4 Control Flow Bytecodes

In the case of control flow bytecodes, the IFD part is dependent on the execute
part. In the case of a non-taken jump the pipeline is updated normally, but in the
case of a taken jump the pipeline has to be flushed and has to be restarted at the
jump target. The result is that taken jumps require more execution time than
non-taken jumps. Pipelined processors without delay slots or branch prediction
exhibit the same behavior in this respect.

3.5 Example TriMedia Assembly Code

Figure 3 shows the TriMedia assembly code for the iadd bytecode. It was pro-
duced by our compiler and slightly modified to improve clarity. Figure 3 shows
four instructions, each containing five operations, in which empty issue slots
are filled with nop operations. Immediate operands appear between parentheses.
Register moves are implemented by an iadd operation with r0, containing a
hard-wired zero value, as first operand.

Note that the jump operation is scheduled in the first instruction of the block
and that the other operations are scheduled in parallel with the jump or in the
three delay slots of the jump operation. To understand the code in figure 3,
the reader should be aware that all operations in an instruction are issued in
parallel and that the results of three-cycle latency load operations are written
to registers three instructions after being issued. For example, the values that
are moved from r14 and r21 in instruction 3 are not the values that are loaded
in instruction 2, but the values that will be overwritten by the two loads, in the
cycle after instruction 4.

4 Evaluation

In this section we describe several measurements to evaluate the presented tech-
niques. As our evaluation platform we used Sun’s Personal Java [11] running on

44 Jan Hoogerbrugge and Lex Augusteijn

(* instruction 1 *)

iadd r22 r23 -> r22, /* tos = tos + nos */
ijmpt rl ri3, /* goto tl %/

iadd r0 r16 -> r9, /* bl = b2 x/
1d32d(4) ri12 -> r23, /* nos = sp[1] */
nop;

(* instruction 2 *)

iadd r0 r17 -> rié6, /* b2 = b3 */

iadd r0 ri0 -> ri17, /* b3 = bd x/

iadd r0 r20 -> ri1o0, /* b4 = b5 */

1d32x r18 r20 -> ri4, /* t3 = table[b4] */
uld8d(6) ri1l -> r21; /* b6 = pbl[6] */

(* instruction 3 *)

iadd r0 ri15 -> ri13, /* tl = t2 %/

jadd r0 r14 -> ri5, /* t2 = t3 */
isubi(4) ri12 -> ri2, /* decrement stack pointer */
iadd r0 r21 -> r20, /* b5 = b6 */

nop;

(* instruction 4 *)
iaddi(1) ri11 -> ri1, /* increment bytecode counter */
nop, nop, nop, nop;

Fig. 3: TriMedia assembly code for the iadd bytecode

top of the pSOS real-time operating system. Furthermore, we used a cycle-true
simulator of TriMedia that is configured for 128 MByte of main memory. We use
SPEC JVM98 for benchmarking. The seven benchmarks of SPEC JVMO98 are
listed in table 1.

4.1 Execution Speed

First we are interested in the execution times of individual bytecodes. We deter-
mined this by inspecting the TriMedia assembly code. Table 2 shows the number
of VLIW instructions required to execute a bytecode. In the absence of cache
misses, the number of VLIW instructions corresponds to the number of ma-
chine cycles required to execute the bytecode. Since pipelining is intended to
reduce the interpretation overhead of simple bytecodes, we only list the simple
bytecodes in table 2. Long integer and double precision floating point are not
supported by the TriMedia architecture and are implemented by library calls.
They are therefore regarded as complex bytecodes and have consequently not
been included in table 2.

Table 2 clearly shows that most simple bytecodes are executed by four VLIW
instructions or close to it. Taken jumps require more cycles because the inter-

Pipelined Java Virtual Machine Interpreters 45

Benchmark Description Input description Bytecodes
_201_compress LZH data compression ~ SPEC JVMO8 -s1 option 27,993,191
~202_jess Expert shell system SPEC JVM98 -s1 option 8,151,873
_209_db Data management SPEC JVM98 -s1 option 1,773,230
_213_javac The JDK Java compiler SPEC JVM98 -s1 option 6,151,375
-222_mpegaudio MPEG-3 audio decode =~ SPEC JVMO98 -s1 option 115,891,206
_227 mtrt Raytracer SPEC JVMO98 -sl option 33,842,764
_228_jack Parser generator SPEC JVM98 -s1 option 176,706,788

Table 1: Benchmarks used for evaluation

Bytecode type Instruc- Example bytecodes
tions

Simple arithmetic 4 iadd, fadd, isub, fsub, imul, fmul, ineg, fneg, ishl
Taken/non-taken jump 15/7 ifeq, ifne, iflt, ifge, if_icmpeq, if_icmpne
Load constant 4 aconst_null, iconst_m1, iconst_0, iconst_1, fconst_0

5 dconst_0, dconst_1, ldc_quick

6 ldc_w_quick

8 ldc2_w_quick
Push constant 4 bipush

6 sipush
Load 5 iload, lload, fload, dload, aload

4 iload_0, iload_1, iload_2, fload 0, fload_1, fload 2
Store 5 istore, Istore, fstore, dstore, astore

4 istore_0, istore_1, istore_2, dstore_0, dstore_1
Array load 9 iaload, laload, faload, daload, aaload, baload
Array store 16 iastore, lastore, fastore, dastore, bastore
Stack manipulation 4 pop, pop2, dup, dupx1, dupx2, dup2, swap
Local increment 6 iinc
Control flow 12 goto, jsr, goto_w, jsr-w
Field access 7 getfield_quick, putfield_quick

8 getfield2_quick, putfield2_quick

21 getstatic_quick, putstatic_quick, getstatic2_quick

Table 2: Overview of execution times of simple bytecodes

preter pipeline has to be flushed and reloaded with bytecodes at the jump target,
as described in section 3.4.

Various heap access bytecodes are relatively slow because of the internal data
structures used by Sun Personal Java. All accesses to heap objects (class objects
as well as array objects) are performed via handles. Although this facilitates heap
compaction, an extra indirection, i.e. a load operation, is required to access data.

Static field accesses are relatively slow because each reference requires an
expensive test to determine whether static initializers have to be called. Several
sequential loads are required to perform this test in Personal Java.

46 Jan Hoogerbrugge and Lex Augusteijn

Array stores are also relatively slow. This is caused by the run-time checks
that have to be performed (null pointer check and bound check) and by the fact
that the array reference operand is the third stack operand which is not cached
in the stack cache. This operand is the most time-critical of the three operands
of array store bytecodes (array reference, index, and data to be stored). A stack
cache of three elements will improve the speed of array stores, but several other
bytecodes are likely to take more time.

4.2 Individual Contributions of Different Techniques

In order to measure the individual contributions of the techniques described in
section 3, we compiled the JVM in three different ways: (1) no threading and
pipelining, (2) threading but no pipelining, and (3) threading and pipelining. In
all three cases stack caching was enabled. Table 3 shows the instruction count
reduction: on average, threading reduces the instruction count by 16.6%, pipelin-
ing gives a further reduction of 19.4% over the threaded version. The combined
reduction is 32.5%. Furthermore, table 4 shows the cycle count reduction: on
average, threading reduces the cycle count by 14.4%, pipelining gives a further
reduction of 14.6% over the threaded version. The combined reduction is 26.4%.

The reduction in cycle count is obviously less than the reduction in instruc-
tion count because threading and pipelining does only reduce the number of
compute cycles and not the number of stall cycles where the processor is waiting
on the memory. In fact, threading and pipelining may increase the number of
memory cycles because they increase the code size of the interpreter, which leads
to more instruction cache misses, and pipelining results in speculative decoding,
which causes more data cache references and misses.

The results listed in tables 3 and 4 show a clear correlation between the ef-
fectiveness of threading and pipelining. These techniques are most effective for
applications in which the majority of the execution time is spent by interpreta-
tion of the simple bytecodes. Profile analysis shows that this is indeed the case:
_202_jess, -209_db, _213_javac, and _227_mtrt spend a lot of their time in complex
bytecodes, the run-time system, garbage collector, and long integer arithmetic
emulation code.

5 Related Work

Ertl suggests in his thesis to move part of the dispatch code of the interpreter
to earlier bytecodes for machine with sufficient instruction level parallelism [16].
This is a first step into the direction of pipelined interpreters which results in a
pipeline of two stages.

Proebsting proposes superoperators to reduce the interpretation
overhead [17]. Several of operators are combined together into one superoperator.
The interpretation overhead is shared between several operations.

The same idea is used by Piumarta and Riccardi with the difference that their
interpreter is dynamically extended with superoperators [18]. They implemented

Pipelined Java Virtual Machine Interpreters 47

Benchmark Threading off/ Threading on/ Threading on/
Pipelining off Pipelining off Pipelining on
—201_compress 548,294,965 419,622,175 (23.4%) 291,935,454 (30.3%)
—202_jess 315,140,012 278,841,909 (11.5%) 242,821,721 (12.9%)
-209_db 64,614,881 56,152,260 (13.0%) 48,126,498 (14.2%)
—213_javac 235,200,152 206,235,014 (12.3%) 178,900,872 (13.2%)
_222_mpegaudio 2,785,393,145 2,157,813,532 (22.5%) 1,623,357,369 (24.7%)
_227_mtrt 1,319,173,260 1,163,465,508 (11.8%) 1,023,474,854 (12.0%)
-228_jack 3,676,668,870 2,882,897,278 (21.5%) 2,056,280,297 (28.6%)
Average (16.6%) (19.4%)

Table 3: The effects of threading and pipelining on instruction count. The
instruction count reduction with respect to the previous column is
shown between parentheses. The combined reduction of threading and
pipelining is 32.5%.

Benchmark Threading off/ Threading on/ Threading on/
Pipelining off Pipelining off Pipelining on
—201_compress 582,876,139 455,567,117 (21.8%) 334,036,387 (26.7%)
—202_jess 424,461,155 390,515,530 (8.0%) 364,608,239 (6.6%)
-209_db 92,906,063 84,712,746 (8.1%) 78,876,026 (6.9%)
_213_javac 303,094,306 270,041,792 (10.9%) 248,756,893 (7.9%)
_222_mpegaudio 2,860,981,158 2,247,040,013 (21.4%) 1,718,591,626 (23.5%)
_227_mtrt 1,471,970,773 1,319,425,388 (10.4%) 1,195,740,789 (9.3%)
_228_jack 4,135,817,332 3,333,366,670 (19.4%) 2,624,348,279 (21.2%)
Average (14.4%) (14.6%)

Table 4: The effects of threading and pipelining on cycle count. The cycle count
reduction with respect to the previous column is shown between paren-
theses. The combined reduction of threading and pipelining is 26.4%.

this by a ‘cut-and-past’ style of code generation where the code to implement a
superoperator is generated by concatenating the code of the elementary opera-
tors.

We have also used pipelined interpreter technology for other purposes than
JVM. We implemented a code compaction system which compiles code to a very
dense bytecode-based application-specific virtual machine [19]. Like the JVM
interpreter, we used a three-stage pipeline for this.

In another project, we studied a pipelined interpreter for the MIPS instruc-
tion set; using only four pipeline stages it was capable of executing many of the
MIPS instructions in six clock cycles on TriMedia without any pre-decoding.
The first pipeline stage fetches the MIPS instruction, the second stage maps all
opcode fields of a MIPS instruction onto one bytecode, the third stage performs
the decode by means of a table lookup, and the fourth stage is the jump/execute
stage.

48 Jan Hoogerbrugge and Lex Augusteijn

We expect that pipelining of threaded interpreters will be useful for super-
scalars and explicitly parallel instruction computers (EPIC), such as the TA64
architecture [20], as well. In case of TA-64, the rotating register file can be used
for shifting bytecodes and the prepare-to-branch instructions can be used to
improve the predictability of the jump to the next block.

6 Conclusions

The paper has describes how the execution speed of a JVM interpreter on a
VLIW processor can be improved substantially by pipelining. While one byte-
code is in its execute stage, the next bytecode is in its decode stage, and the next
bytecode of that is in its fetch stage. Pipelining is implemented by both source
code rewriting and compiler modifications. Rewriting of the interpreter source
code requires compiler expertise. This is not a severe problem because compiler
and interpreter technology are very related to each other.

On the TriMedia VLIW processor, with load and jump latencies of three
and four cycles, respectively, pipelining makes it possible to execute many of the
simple bytecodes, such as additions and multiplications, in four clock cycles.

References

1. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, Reading, Massachusetts, 1996. 35

2. Harlan McGhan and Mike O’Conner. PicoJava: A Direct Execution Engine for
Java Bytecode. IEEE Computer, 31(10):22-30, October 1998. 35

3. Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh,
and James M. Stichnoth. Fast, Effective Code Generation in a Just-In-Time Java
Compiler. In Proceedings of the 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 280—290, Montreal, Canada, 1998. 35

4. Andreas Krall. Efficient JavaVM Just-in-Time Compilation. In Proceedings of the
1998 International Conference on Parallel Architectures and Compilation Tech-
niques, pages 205-212, Paris, France, October 1998. 35

5. Andreas Krall, Anton Ertl, and Michael Gschwind. JavaVM Implementation: Com-
pilers versus Hardware. In John Morris, editor, Computer Architecture 98 (ACAC
’98), Australian Computer Science Communications, pages 101-110, Perth, 1998.
Springer. 36

6. Gert A. Slavenburg. TM1000 Databook. TriMedia Division, Philips Semicon-
ductors, TriMedia Product Group, 811 E. Arques Avenue, Sunnyvale, CA 94088,
www.trimedia.philips.com, 1997. 36, 37

7. Gerrit A. Slavenburg, Selliah Rathnam, and Henk Dijkstra. The TriMedia TM-1
PCI VLIW Mediaprocessor. In Hot Chips 8, Stanford, California, August 1996.
36, 37

8. Vicky H. Allan, Reese B. Jones, Randall M. Lee, and Stephan J. Allan. Software
Pipelining. ACM Computing Surveys, 27(3), September 1995. 36

9. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley Series in Computer Science. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1985. 36, 38

10.
11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

Pipelined Java Virtual Machine Interpreters 49

The Kaffe Homepage: www.kaffe.org. 37

The Personal Java Homepage: java.sun.com/products/personaljava. 37, 43
James R. Bell. Threaded Code. Communications of the ACM, 16(6):370-372, 1973.
38

Paul Klint. Interpretation Techniques. Software — Practice & Experience,
11(9):963-973, September 1981. 38

M. Anton Ertl. Stack Caching for Interpreters. In Proceedings of the SIGPLAN 95
Conference on Programming Language Design and Implementation, pages 315-327,
La Jolla, California, June 1995. 43

Jan Hoogerbrugge and Lex Augusteijn. Instruction Scheduling for TriMedia. Jour-
nal of Instruction-Level Parallelism, 1(1), February 1999. 43

M. Anton Ertl. Implementation of Stack-Based Languages on Register Machines.
PhD thesis, Technische Universitat Wien, Austria, 1996. 46

Todd A. Proebsting. Optimizing an ANSI C Interpreter with Superoperators. In
Proceedings of the Fifteenth Annual ACM Symposium on Principles of Program-
ming Languages, pages 322-332, 1995. 46

Tan Piumarta and Fabio Riccardi. Optimizing direct threaded code by selective
inlining. In Proceedings of the 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation, Montreal, Canada, June 1998. 46

Jan Hoogerbrugge, Lex Augusteijn, Jeroen Trum, and Rik van de Wiel. A Code
Compression System Based on Pipelined Interpreters. Software — Practice &
Ezperience, 29(11):1005-1023, September 1999. 47

Intel, Santa Clara, CA. [A-64 Application Developer’s Architecture Guide, 1999.
48

	Introduction
	Background
	Overview of JVM
	The TriMedia VLIW Media Processor

	Pipelined Interpreters
	Threaded Interpreters
	Pipelined Interpreters
	Stack Caching
	Control Flow Bytecodes
	Example TriMedia Assembly Code

	Evaluation
	Execution Speed
	Individual Contributions of Di .erent Techniques

	Related Work
	Conclusions
	References

