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Abstract. This paper presents a new strict, purely functional imple-
mentation of attribute grammars. Incremental evaluation is obtained via
standard function memoization. Our new implementation of attribute
grammars increases the incremental behaviour of the evaluators by both
reducing the memoization overhead and increasing their potential incre-
mentallity. We present also an attribute grammar transformation, which
increases the incremental performance of the attribute evaluators after
a change that propagates its effects to all parts of the syntax tree.
These techniques have been implemented in a purely functional attribute
grammar system and the first experimental results are presented.

1 Introduction

Developments in programming languages are changing the way in which we con-
struct programs: naive text editors are now replaced by powerful programming
language environments which are specialized for the programming language un-
der consideration and which help the user throughout the editing process. They
use knowledge of the programming language to provide the users with powerful
mechanisms to develop their programs. This knowledge is based on the structure
and the meaning of the language. To be more precise, it is based in the syntac-
tic and (static) semantic characteristics of the language. Having this knowledge
about a language, the language-based environment is not only able to highlight
keywords and beautify programs, but it can also detect features of the pro-
grams being edited that, for example, violate the properties of the underlying
language. Furthermore, a language-based environment may also give informa-
tion to the user about properties of the program under consideration. Finally,
it may hide from the user some peculiarities included in the language that are
relevant only for the programs/computers that process/execute them. All these
features make a language-based environment an effective mechanism to increase
the productivity of users.

After each interaction with the user a language-based environment provides
immediate feedback concerning whether or not such an interaction is legal. That
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is to say, the environment has to react and to provide answers in real-time. Con-
sequently, the delay between the user interaction and the system response is an
extremely important aspect in such interactive systems. Thus, one of the key
features to handle such interactive environments is the ability to perform effi-
cient re-computations. Attribute grammars, and particularly their higher-order
variant, are a suitable formalism to specify such language-based environments.
Furthermore, attribute grammar are executable, i.e., efficient implementations
are automatically obtained.

In this paper we introduce a new strict, purely functional implementation
for ordered attribute grammars [Kas80]. A strict model of attribute evaluation
is attractive for two main reasons: firstly, because we obtain very efficient im-
plementations in terms of memory and time consumption. Secondly, because a
rather efficient and simple incremental attribute evaluator can be derived from
an attribute grammar: incremental evaluation is obtained via standard func-
tion memoization. Our new functional implementation improves the incremen-
tal behaviour of the evaluators in two ways: first, by dynamically specializing
the underlying syntax tree for each of the individual traversal functions, which
increases the sharing of subtrees and consequently the reuse of their shared
decorations. Second, by reducing the interpretative overhead due to the memo-
ization scheme: our technique does not induce any additional parameter/result
to the evaluators functions which “glue” the different traversals. Such parame-
ters have to be tested for equality under the memoization scheme. Consequently,
fewer arguments means fewer equality tests, and as a result, lower interpretative
overhead. A change that propagates its effects to all parts of the syntax tree is
known to give poor performance in all models of incremental attribute evalua-
tion. In this paper we define a simple attribute grammar transformation that
projects attributes and that greatly improves their incremental behaviour when
re-decorating the syntax tree after such a change.

In Section 2 we discuss incremental attribute evaluation, higher-order at-
tribute grammars and the visit-function memoization scheme. In Section 3 our
new functional attribute evaluator is introduced and is briefly compared with
previous approaches. Section 4 presents the grammar transformation. Section 5
presents the first experimental results and Section 6 contains the conclusions.

2 Incremental Attribute Evaluation

Attribute grammars (AG) have been used with great success in the development
of language-based tools since Thomas Reps first used attribute grammars to
model syntax-oriented editors (in Figure 2 we will show a traditional language-
based editor). In such an interactive programming environment, a user slightly
modifies a decorated tree T into T’ (to be more precise, the user changes a “pretty
printed” version of such trees). After that, an incremental attribute evaluator
uses T and its attributes instances to compute the attributes instances of T’,
instead of decorating T’ from scratch. The underlying assumption is that the
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decoration of T’ from scratch is more expensive (i.e., more time consuming)
than an incremental update of T.

Although any non-incremental attribute evaluator can be applied to com-
pletely re-decorate tree T’, the goal of an optimal incremental attribute evaluator
is to limit the amount of work to O(|∆|), where ∆ is the set of affected and new-
born attribute instances. The traditional approach to achieve incremental eval-
uation involves propagating changes of attribute values through the attributed
tree [RTD83,RT89].

2.1 Higher-Order Attribute Grammars

Higher-Order Attribute Grammars (HAG) [VSK89] are an important extension
to the attribute grammar formalism. Conventional attribute grammars are aug-
mented with higher-order attributes. Higher-order attributes are attributes whose
value is a tree. We may associate, once again, attributes with such a tree. At-
tributes of these so-called higher-order trees, may be higher-order attributes
again. Higher-order attribute grammars have three main characteristics:

– First, when a computation can not be easily expressed in terms of the induc-
tive structure of the underlying tree, a better suited structure can be com-
puted before. Consider, for example, a language where the abstract grammar
does not match the concrete one. Consider also that the semantic rules of
such a language are easily expressed over the abstract grammar rather than
over the concrete one. The mapping between both grammars can be spec-
ified within the higher-order attribute grammar formalism: the attribute
equations of the concrete grammar define a higher-order attribute represent-
ing the abstract grammar. As a result, the decoration of a concrete syntax
tree constructs a higher-order tree: the abstract syntax tree. The attribute
equations of the abstract grammar define the semantics of the language.

– Secondly, semantic functions are redundant. In higher-order attribute gram-
mars every computation can be modelled through attribution rules. More
specifically, inductive semantic functions can be replaced by higher-order
attributes. For example, a typical application of higher-order attributes is
to model the (recursive) lookup function in an environment. Consequently,
there is no need to have a different notation (or language) to define semantic
functions in AGs.

– The third characteristic is that part of the abstract tree can be used directly
as a value within a semantic equation. That is, grammar symbols can be
moved from the syntactic domain to the semantic domain.

These characteristics make higher-order attribute grammars
particularly suitable to model interactive language-based environments
[TC90,Pen94,KS98,Sar99]. It is known that the incremental attribute evalua-
tor for ordered attribute grammars [Kas80,RT89] can be trivially adapted for
the incremental evaluation of higher-order attribute grammars. The adapted
evaluator, however, decorates every instance of a higher-order attribute sepa-
rately [TC90]. Note that in such traditional evaluators the usual representation
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for an attributed tree is an unshared tree. Higher-order attribute grammars de-
fine higher-order attributes, which instances are higher-order trees. Different
instances of higher-order attributes may be equal trees or share common sub-
trees. Consequently, the most efficient representation for such high-order trees
is a shared tree, i.e., a directed acyclic graph (DAG). Consequently, there is a
clash between the two representations, namely, tree and DAG. There are two
ways to solve this tension: either we use specific techniques to decorate DAGs or
we guarantee that the terms are, in fact, trees that are decorated by an adapted
evaluator.

Let us discuss first the use of adapted evaluators. Teitelbaum [TC90] pro-
poses a simple approach to handle DAGs: whenever a higher-order attribute has
to be instantiated with a higher-order tree (i.e., with a DAG), the tree sharing
is broken and the attribute is actually instantiated with a tree. This tree is a
“tree-copy” of the DAG. After that, the higher-order tree can be easily decorated
by an adapted change propagator since attribute values can be associated with
the tree nodes in the standard way. This approach, however, leads to a non-
optimal incremental behaviour when higher-order attributes are affected by tree
transformations, as shown in [CP96]. Note that as a result of breaking the shar-
ing, different instantiations of higher-order attributes are, indeed, different trees.
Such trees have to be decorated separately, without the possibility of reusing at-
tribute values across the different decorations of those attributed trees. Note
that instances of the same higher-order attribute are likely to be (completely
or partially) decorated with the same attribute values. In order to efficiently
(and incrementally) evaluate such instances, the reuse of those values should be
achieved.

2.2 Visit-Function Memoization

The visit-function memoization proposed by Pennings [Pen94] is based on the
following combination of ideas:

Purely functional attribute evaluators: Syntax trees are decorated by bind-
ing-tree based attribute evaluators [Pen94]. Such evaluators are strict, purely
functional attribute evaluators. Attribute instances are not stored in the tree
nodes, but, instead, they are the arguments and the results of (side-effect free)
functions: the visit-functions. Binding-trees are used with the single purpose
to “glue” the different traversal functions of the evaluator, i.e., they convey
information between traversals.

Data constructor memoization: Since attribute values are not stored in the
syntax tree, multiple instances of the syntax tree can be shared. That is, trees are
collapsed into minimal direct acyclic graphs. DAGs are obtained by constructing
trees bottom-up and by using constructor memoization to eliminate replication
of common sub-expressions. This technique, also called hash-consing, guarantees
that two identical objects share the same records on the heap, and thus are
represented by the same pointer.
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The basic idea of hash-consing is very simple: whenever a new node is allo-
cated (or “consed”) we check whether there exists already an identical record in
the heap. If so, we avoid the allocation and simply use the existing one. Oth-
erwise, we perform the allocation as usual. Generally, a hash table is used to
search the heap for a duplicated record. Hash-consing can be applied to pure
values only, i.e., values that never change during the execution of a program:
for if two updatable records have identical values now, they might not be iden-
tical later, and so merging them could lead to incorrect values. Observe that
this is the case if attributes are stored in the tree nodes, because shared nodes
may have to store different attribute values induced by different, but shared,
attribute instances (and most probably will).

Attribute values may be large structures (e.g., symbol tables, higher-order
attributes, etc). Therefore, the constructors for user defined types are also shared.
This technique solves the problem of expensive attribute equality test during
evaluation and it also settles the problem of huge memory consumption due to
multiple instances of the same attribute value in a syntax tree.

Function memoization: Due to the pure nature of the visit-functions, incre-
mental evaluation can now be obtained by memoizing calls to visit-functions. The
binding-tree based attribute evaluators are constructed as a set of strict func-
tions. Thus, standard function memoization techniques can be used to memoize
their calls. Memoization is obtained by storing in a memo table calls to visit-
functions. Every call corresponds to a memo entry, in the memo table, that
records both the arguments and the results of one call to a visit-function.

Let us describe the binding-tree attribute evaluators in more detail. Such
evaluators are based on the visit-sequence paradigm [Kas80]: the visit-sequences
induce a set of visit-functions, each of them performing the computations sched-
ule for a particular traversal of the evaluator. The different traversal functions are
“glued” by intermediate data structures: the binding-trees. The visit-functions
and the binding-tree data types are automatically induced by a binding analysis
of the visit-sequences [Pen94].

As a result of the binding analysis, a visit-function visitvX is constructed
for every terminal X and every visit v such that 1 ≤ v ≤ n, with n the number of
visits to X. The arguments of the visit-function are the subtree labelled X, the
inherited attributes of visit v and the binding-trees computed in previous visits
that are destructed by visit v. The results are the binding-trees for following
visits and the synthesized attributes of visit v. The first visit does not inherit
any binding-tree, and the last one does not synthesize them. The introduction of
binding-trees is reflected in the types of the visit-functions: they are additional
arguments/results.

visit1X :: X → ”Ainh v(X, 1)”→ (X1→2, . . . ,X1→n, ”Asyn v(X, 1)”)
visitkX :: X → ”Ainh v(X, k)” → X1→k → · · · → Xk−1→k →

(Xk→k+1, . . . ,Xk→n, ”Asyn v(X, k)”)
visitnX :: X → ”Ainh v(X,n)” → X1→n → · · · → Xn−1→n → (”Asyn v(X,n)”)
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where Ainh v(X, i) (Asyn v(X, i)) denotes the set of inherited (synthesized) at-
tributes that are schedule to be used (computed) during visit i. The quotes
around the set of inherited and synthesized attributes of a particular visit should
be interpreted as the types of the elements of those sets. Superscripts are used
to denote the origins and the targets of binding-trees. Thus, Xv→w denotes the
constructor type of a binding-tree with origin in traversal v (1 ≤ v ≤ n) and
target in traversal w (v < w ≤ n). The original syntax tree does not change dur-
ing the different traversals of the evaluator. Attribute values are passed between
traversals, as arguments and as results of visit-functions, or within binding-
trees. Consider the following simplified visit-sequence for production named
Prod : X → Y Z.

plan Prod
begin 1 inh(X.inh1)
visit (Y, 1)
eval (Y.inh1) uses(X.inh1, Y.syn1),
visit (Y, 2)
eval (X.syn1) uses(Y.syn2),

end 1 syn(X.syn1)

begin 2 inh(X.inh2)
visit (Z, 1)
eval (X.syn2)

uses(X.inh1, Z.syn1)
end 2 syn(X.syn2)

According to this visit-sequences, the inherited attribute X.inh1 must be
explicitly passed from the first visit to X (where it is defined) to the second one
(where it is used). The nonterminal Y is visited twice, with both visits occurring
in the first visit to X. Next, we present the memoized visit-functions (using the
Haskell notation1) induced by this visit-sequence. Productions’ name are used
as constructor functions.
visit1X (Prod tY tZ ) tXinh1 = (Prod1→2 tXinh1 , tXsyn1)

where (tY1→2, tY syn1) = memo visit1Y tY 1

tY inh1 = f (tXinh1, tY syn1)
tY syn2 = memo visit2Y tY tY inh1 tY

1→2

tXsyn1 = tY syn2

visit2X (Prod tY tZ ) tXinh2 (Prod1→2 tXinh1 ) = tXsyn2

where tZsyn1 = memo visit1Z tZ tXinh2

tXsyn2 = g ( tXinh1 , tZsyn1)

tXinh1 defined in visit1X

used in visit2X

The function memoization efficiently handles higher-order attribute gram-
mars. Furthermore, the original attribute evaluator needs virtually no change:
it does not need any specific purpose algorithm to keep track of which attribute
values are affected by a tree change. The memoization mechanism takes care of
the incremental evaluation. However, the binding-tree based function memoiza-
tion has two main drawbacks. Firstly, the memoization mechanism has an in-
terpretative overhead: aiming at improving the potential incremental behaviour
of the evaluators, Pennings proposes the use of binding-trees that are quadratic
in the number of traversals. Although this approach yields binding-tree evalua-
tors which maximize the number of cache hits, such behaviour comes at a price:
1 The memo annotation that we use corresponds to a primitive function of the gofer
system [M.P94] that was extended with a (lazy) memoization mechanism [vD92].
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first, many binding-tree constructor functions may have to be memoized, which
may fill the memo table, and, consequently, increase the overhead of its search
operation [AG93]. Second, the binding-trees induce additional arguments (and
results) to the visit-functions. In our simple example, the functions visit2X and
visit2Y get an additional argument: the binding-trees. When a large number
of traversals is induced by the AG scheduling algorithm, then the visit-functions
may be extended with a large number of arguments. That is to say, having more
binding-trees means having more (argument) values to test for equality, when
looking for a memoized call in the memo table. Although the equality test among
“hash-consed” binging-trees per se is cheap, a large number of tests leads to a
not negligible impact in searching the memo table.

Secondly, no total traversal of a binding-tree evaluator can be avoided after
a tree transformation: the underlying syntax tree changes and, consequently, all
the visit-functions applied to the newly created nodes (i.e., the nodes in the
path from the root to the modified subtrees) have to be (re)computed. The
first argument of all the visit-functions that perform the different traversals has
changed and, so, no previous calls can be found in the memo table.

3 The Visit-Tree Based Attribute Evaluators

In this section we present a new approach for purely functional implementa-
tion of attribute grammars that overcomes the two drawbacks presented by the
binding-tree approach. First, it reduces the interpretative overhead due to the
memoization scheme by not inducing additional “gluing” arguments to the visit-
functions. Second, the syntax trees that guide our evaluators are dynamically
specialized for each visit of the evaluator. This feature allows for entire traver-
sals of the evaluator to be skipped: the traversal functions whose underlying
specialized trees do not refer to changed subtrees can be reused.

Basically, our new approach, called visit-tree based attribute evaluator, mim-
ics the imperative approach: attribute values defined in one traversal and used
in the following ones are stored in a new tree, the so-called visit-tree. Such values
have to be preserved in the (visit-)tree from the traversal that creates them until
the last traversal that uses them. Each traversal builds a new visit-tree for the
next traversal, with the additional values stored in its nodes. The functions that
perform the subsequent traversals find the values they need, either in their argu-
ments or in the nodes of the (visit-)tree, exactly as in the imperative approach.
A set of visit-tree types is defined, one per traversal. A visit-tree for one traver-
sal, say v, is specialized for that particular traversal of the evaluator: it contains
only the attribute values which are really needed in traversal v and the following
ones. The visit-trees are constructed dynamically, i.e., during attribute evalu-
ation. Consequently, the underlying data structure which guides the attribute
evaluator is not fixed during evaluation. This dynamic construction/destruction
of the visit-trees allows for an important optimization: subtrees that are not
needed in future traversals are discarded from the visit-trees concerned. As re-
sult, any data no longer needed, no longer is referenced.
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The formal derivation of visit-tree based attribute evaluators from higher-
order attribute grammars is presented in [Sar99]. In this paper we present the
visit-tree approach by informally analysing the production Prod and its visit-
sequence.

Let us consider again the attribute X.inh1. In the visit-tree approach, the
value of attribute X.inh1 is passed to the second traversal in one visit-tree.
This visit-tree is one result of the first traversal of the evaluator. So, we have
to define two tree data types: one for the first traversal, and another for the
second one. These data types, called visit-tree data types, are defined next. We
use superscripts to distinguish the traversal they are intended to.

data X1 = Prod1 Y1 Z1

data X2 = Prod2 “X.inh1” Z1

In the first visit to X, the nonterminal Y is visited twice. The visit-tree data
type X1 includes a reference to the first visit (the visit-tree type Y1) only. The
second visit-tree is constructed when visiting the first one (see the visit-functions
below). Thus, a reference to the earliest visit suffices. Nonterminal Y is not used
in the second visit to Prod. So, no reference to Y has to be included in X2.
Consequently, subtrees labelled Y are discarded from the second traversal of the
evaluator. The visit-trees are arguments and results of the visit-functions. Thus,
the visit-functions must explicitly destruct/construct the visit-trees.

visit1X (Prod1 tY 1 tZ1) tXinh1 = (Prod2 tXinh1 tZ1, tXsyn1)

where (tY 2, tY syn1) = memo visit1Y tY 1

tY inh1 = f (tXinh1, tY syn1)
tY syn2 = memo visit2Y tY 2 tY inh1

tXsyn1 = tY syn2

visit2X (Prod2 tXinh1 tZ1) tXinh2 = tXsyn2

where tZsyn1 = memo visit1Z tZ1 tXinh2

tXsyn2 = g ( tXinh1 , tZsyn1)

tXinh1 defined in visit1X

used in visit2X

tY 2 visit-tree constructed in
the first traversal and
used in the second.

In the first traversal the attribute value tXinh1 is computed, and a visit-tree
node Prod2 (which stores this value) is constructed. In the second traversal,
that node is destructed and the value of tXinh1 is ready to be used. The visit-
function visit1Y returns the visit-tree for the next traversal (performed by
visit2Y). Observe that the visit-functions visit2X and visit2Y do not get
any gluing arguments. The (visit-)tree and the inherited attributes are the only
arguments of the functions.

In order to compare the visit-tree based evaluators with the binding-tree
ones, we shall present the induced types of the visit-functions. For each traversal
v, with 1 ≤ v ≤ n, of a nonterminal symbol X, a visit-function visitvX is
generated. Its arguments are a visit-tree of type Xv, and an additional argument
for each attribute in Ainh v(X, v). The result is a tuple, whose first element is
the visit-tree for the next traversal and the other elements are the attributes
in Asyn v(X, v). The visit-function that performs the last traversal n does not
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construct any visit-tree. So, the visit-functions have a signature of the following
form:

visitvX :: Xv → ”Ainh v(X, v)”→ (Xv+1, ”Asyn v(X, v)”)
visitnX :: Xn → ”Ainh v(X,n)”→ (”Asyn v(X,n)”)

As expected no additional arguments are included in the visit-functions of
our evaluators. The visit-tree based attribute evaluators have the following prop-
erties:

– The number of visit-trees is linear in the number of traversals.
– No additional arguments/results in the visit-functions are used to explicitly

pass attribute values between traversal functions.
– The visit-functions are strict in all their arguments, as a result of the order

computed by the AG ordered scheduling algorithm. Thus, standard function
memoization techniques can be used to achieve incremental evaluation.

– Efficient memory usage: data not needed is no longer referenced. References
to grammar symbols and attribute instances can efficiently be discarded as
soon as they have played their semantic role.

3.1 Combining the Binding and Visit-Tree Approaches

Although the visit-tree approach solves some of the problems of the binding-
tree approach, in some situations, it can yield less efficient incremental evalua-
tors than the binding-tree one. This situation occurs when values of attribute
instances that have to be passed to following traversals are affected by tree
transformations. Recall that under the visit-tree approach these attribute values
remain in the tree from when they are created until their last use. Consequently,
unnecessary intermediate visits may have to be performed, because the visit-tree
is used to pass on such changed values.

To be more precise, let T’ be an abstract syntax tree resulting from a tree
replacement at node N in tree T. Without loss of generality, consider that a
strict evaluator performs three traversals to decorate T’. Consider also that an
attribute instance α is affected by the tree replacement and that α is defined in
the first traversal and used in the third one only. Under the visit-tree approach
no traversal of the evaluator can be skipped: all the visit-trees of the evaluator
are affected by the tree replacement, since all the trees store the changed instance
α. Although the second traversal may not be “directly” affected by the change,
the visit-functions applied to the nodes in the path from the root to the node
where α is stored have to be recomputed because the visit-tree for this traversal
has changed. This is represented graphically in Figure 1.

Under the binding-tree approach, the binding-tree makes a “bridge” from the
first (origin) to the third (destination) traversal, in order to pass the value of
attribute α. As a result, the instance α does not force the re-decoration of part
of the second traversal of the evaluator. Nevertheless, part of this traversal has
to be decorated because the syntax tree T has changed.

We can also improve the potential incremental behaviour of our evaluators by
combining visit-trees with binding-trees. The basic idea is that some values are
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α α

T’2 T’3T’

α α α

T1→3

N NN

T’ T’ T’

N

α

Fig. 1. Passing an attribute value between two non-consecutive traversals: the
binding-trees (left) make a “bridge” between the origin and the destination
traversal. The visit-tree (right) passes the attribute values “through” the in-
termediate traversal.

passed to the following traversals in visit-trees, and others, in binding-trees. Let
us be more precise: during visit v of the evaluator, the attribute values that are
alive in v and are used in v+1 are passed in a visit-tree. Values alive in visit v and
which are used in visit w, with w > v+1 are passed in a binding-tree. That is, the
binding-trees make the bridge for values used in non-consecutive traversals. For
example, this approach will efficiently handle the situation presented in Figure 1.

3.2 Semantic Function Memoization

Pugh [PT89] proposes the memoization of the semantic function calls only. In
a traditional non-functional setting Pugh’s semantic function memoization has
the problem of storing attributes in the tree nodes and, consequently, there is
no possibility of having tree sharing. Consequently, under a traditional imple-
mentation of AGs, Pugh’s approach does not handle HAGs efficiently. Besides,
in a functional setting, the visit-function memoization is more efficient since the
reuse of a visit-function call means that an entire visit to an arbitrarily large
tree can be skipped. Such incremental behaviour is not possible under Pugh’s
approach because all the visits of the evaluator always have to be performed.
Nevertheless, Pugh’s approach can be easily implemented with the visit-function
memoization if one memoizes the calls to semantic functions exactly in the same
way as visit-functions.

4 Projection of Attributes

A change that propagates its effects to all parts of the tree causes inefficient
behaviour in all the models of incremental atribute evaluation [Pen94,SKS97].
Nevertheless, incremental evaluation can be enhanced greatly by performing
a simple transformation on the AG: the projection of attributes. Consider, for
example, a block structured language. Typically, every inner block inherits the
context of its outer block, so, any small change in that context requires the
redecoration of the inner blocks, regardless of the irrelevance of the change, i.e.,
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even if the change is confined to a symbol that is not mentioned in the inner
blocks. However, if every block synthesizes a list of used variables, the inherited
context could be projected on that list, yielding better incremental behaviour.

Next we present an AG fragment defining the projection of the environment
in a block structued language. We use a standard AG notation: productions are
labelled for future references and subscripts are used to distinguish different non-
terminal occurrences. Inherited (synthesized) attributes are prefixed by the down
(up) arrow ↓ (↑). The attribution rules are written as Haskell-like expressions.

Its, It <↑ uses : [Name] >
Its = NilIts

Its.uses = []

| ConsIts It Its
Its1.uses = It.uses ++ Its2.uses

It → Decl Name
It.uses = [Name]
| Use Name
It.uses = [Name]
| Block Its
It.uses = Its.uses

It → Block Its

Its.env = project Its.uses It.env

project :: [Name]→ Env → Env
project [] = []

project (n:us) env = (getentries n env)++
(project us env)

Fragment 1: The projection of the environment for the inner blocks.

The semantic function project projects the environment of the outer most
block on the list of identifiers synthesized for each inner block. The seman-
tic function getentries is a primitive function defined on environments: given an
identifier (i.e., a key), it returns the entries associated with that identifier. These
two inductive functions can be efficiently defined within the higher-order at-
tribute grammar formalism. Next, we modelled both functions as a higher-order
attribute using the technique of accumulating parameters. Attribute equations
are given for nonterminals Env and Uses which replace the getentries and project
functions. Two higher-order attributes are defined: getentries and project.

Env <↓ envi : Env, ↑ envo : Env >
Env = NilEnv

Env1.envo = Env1.envi
| CEnv Name Env
Env2.envi = if (Name == Env1.id)

then CEnv Name Env1.envi
else Env1.envi

Env1.envo = Env2.envo
It → Block Its

ata project : Uses
project = Its.uses
project.penvi = NilEnv
project.env = Its.dclo

Its.env = project.penvo

Uses <↓ env : Env, ↓ penvi : Env
, ↑ penvo : Env >

Uses = NilUses
Uses1.penvo = Uses1.penvi
| ConsUses Name Uses
ata getentries : Env
getentries = Uses1.env
getentries.id = Name
getentries.lev = 0
getentries.envi = Uses1.penvi
Uses2.penvi = getentries.envo
Uses2.env = Uses1.env
Uses1.penvo = Uses2.penvo

Fragment 2: The environment projection modelled as higher-order attributes.
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Fig. 2. A language-based environment for microC.

Observe that in the higher-order variant we inherit the advantages of the
HAG formalism: we are no longer restricted to the implicit positional argument
style that is enforced by the conventional functional languages (see the equations
of production Block of the previous two fragments). One key aspect of modeling
inductive functions as higher-order attributes is the fact that their evaluation
becomes automatically incremental. Furthermore, as a result of the ordering
computed by standard AG techniques we also guarantee that the underlying
inductive computation terminates, which is not ensured when functions are used.

5 Performance Results

The visit-function memoization is the model of incremental evaluation used by
the Lrc system [KS98]: a generator for incremental language-oriented tools.
It produces purely functional c and Haskell based attribute evaluators using
the techniques described in this paper. It generates also lazy circular attribute
evaluators and deforested attribute evaluators [SS99].

To benchmark the memoization scheme we consider the c based attribute
evaluators and the (strict) incremental engine included in Lrc. As input for the
beanchmark, we use a traditional language-based editor and a block-structured
language, the microC language. The microC language is a tiny c based pro-
gramming language. Figure 2 shows the language-based environment of mi-
croC constructed with Lrc.

The binding and the visit-tree based attribute evaluators generated by Lrc
for the microC HAG perform two traversals over the syntax tree. Two traver-
sals are induced by the AG scheduling algorithm because a use-before-declare
discipline is allowed in microC: declaration of global variables and definition of
functions are not required to occur before their first use. Thus, a first traver-
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sal collects the environment and a second traversal uses such an environment to
detect invalid uses of identifiers. The binding-tree approach uses a single binding-
tree to glue together the two traversal functions, while the visit-tree approach
uses a visit-tree. Both evaluators construct the same syntax tree in their first
traversal. It is worthwhile to note that under a two traversal scheme the binding-
tree and the visit-tree approach induce the same number of intermediate trees:
a single binding or visit-tree. The overhead due to construct/memoing a large
number of intermediate data structures used by the binding-tree approach is not
reflected in such evaluators and, thus, in the next results.

Next, we present results obtained when executing the binding-tree and the
visit-tree attribute evaluators. We present the number of cache misses (functions
evaluated), cache hits (functions reused), the number of equality tests performed
between (shared) terms and the execution time in seconds. We have clocked the
execution time on a plain Silicon Graphics workstation.

Model of Attribute Hash Cache Equality Runtime
Evaluation Evaluator Array Misses Hits Tests (sec.)

Exhaustive Binding-tree - - - - 0.23
Evaluation Visit-tree - - - - 0.21

Incremental Binding-tree 10007 4323 1626 9373 0.34
Evaluation Visit-tree 10007 3984 910 7232 0.30

The above table presents results obtained both with exhaustive evaluation,
i.e., without memoization of the calls to the visit-functions, and with incremental
evaluation, i.e., with memoization of the visit-function calls. The results of ex-
haustive evaluation are very similar. As we explained above, under a two traversal
the binding-tree approach does not induce a large of intermediate binding-trees.
It should be noticed, however, that the visit-functions that perform the second
traversal of the binding-tree evaluator get an additional argument: the binding-
tree gluing the traversal functions. As a result, this incremental evaluator has
to compare more argument values than the visit-tree based evaluator (see the
difference in the number of equality tests). Furthermore, the visit-tree induces
fewer misses than the binding-tree approach. That is, fewer visit-functions have
to be computed (8% fewer functions are computed). Note that the visit-trees are
being specialized for each individual traversal of the evaluator and, thus, they
are more likely to share subtrees and, consequently, to share their decorations.

Edit actions: To profile the incremental behaviour of our attribute evaluators
we have considered two kinds of modification to the input microC: we consider
a modification local to the body of a function and a modification that is global
to the whole program. To be more precise, we modified the program in two ways:
by adding a statement to a function and by adding a global variable. Next, we
present the result of the incremental evaluation after the four modifications.
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Edit Action Binding-Tree Visit-Tree
Misses Hits Tests Time Misses Hits Tests Time

Add a statement 434 432 14376 0.03 434 429 11413 0.03
Add a global variable 3874 1949 165674 0.26 3752 1034 138507 0.24

As expected, the functional incremental evaluators handle local changes ex-
tremely well. The execution time in both evaluators is almost negligible. On the
contrary, adding a global variable gives poor incremental behaviour. No gain is
obtained with the incremental evaluation since almost the same visit-functions
are being computed. The exhaustive evaluator achieves a better execution time,
since it is not influenced by the interpretative overhead due to the memoization
scheme. The incremental behaviour of the microC environment can be greatly
improved if we consider the grammar transformation presented in Section 4.
Thus, we have transformed the AG in order to project the attribute that defines
the environment passed to the body of the microC functions. The environment
is projected on the list of identifiers used by the functions.

Edit Action Binding-Tree Visit-Tree
Misses Hits Tests Time Misses Hits Tests Time

Add a statement 443 441 19445 0.03 432 431 16175 0.03
Add a global variable 644 813 31444 0.11 522 509 16993 0.10

The projection of the environment drastically improved the performance of
both incremental evaluators after a global modification in the input. The number
of cache misses and equality tests decreased considerably. As a result, using the
projection of attributes, the incremental evaluator gives a speed-up of 2 for global
changes when compared to the exhaustive evaluator.

These results show that, even for a simple two traversal evaluator the visit-
tree approach presents a better incremental performance. For evaluators that
require a large number of traversals, we expect greater differences in perfor-
mance. For example, the attribute evaluator derived from the Lrc AG (Lrc is a
bootstrap system) performs eleven traversals over the tree. Under the binding-
tree approach a single nonterminal induces thirty four binding-tree data types.
Such binding-trees induce additional arguments to the visit-functions: for exam-
ple, the visit-function that performs the last visit to that nonterminal symbol
gets nine additional arguments. Recall that such arguments have to be tested for
equality during incremental evaluation. Under the visit-tree approach, although
eleven visit-tree data types still have to be defined, the visit-functions do not get
any additional arguments. The Lrc bootstrap grammar also shows how difficult
it can be to hand-write a strict, functional attribute evaluator: the writer has to
concern himself with partitioning the evaluator into different traversals and to
glue the traversal functions.
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6 Conclusions

This paper presented two techniques to improve the incremental behaviour of
attribute grammars and their functional implementations. Firstly, we defined
a new strict, functional implementation of attribute grammars, where a visit-
tree is used to convey information between different traversal functions. This
technique was implemented in a purely functional attribute grammar. The first
experimental results show that our new approach improves the incremental per-
formance of the evaluators by increasing the number of function calls reused,
and by decreasing the interpretative overhead of the memoization scheme, when
compared to previous functional implementations of AGs.

Secondly, we have defined a transformation for attribute grammars that im-
proves their potential incremental behaviour after a global tree transformation,
for all models of incremental evaluation. Our first results show that it drastically
increases the performance of the AG. In our experiments we have transformed
ourselves the AG. However, an attribute grammar system should apply such
transformation automatically.
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