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Abstract. We present a method that allows to guarantee liveness by
construction of a class of timed systems. The method is based on the use
of a set of structural properties which can be checked locally at low cost.
We provide sufficient conditions for liveness preservation by parallel com-
position and priority choice operators. The latter allow to restrict a sys-
tem’s behavior according to a given priority order on its actions.
We present several examples illustrating the use of the results, in partic-
ular for the construction of live controllers.

1 Introduction

Building systems which satisfy given specifications is a central problem in sys-
tems engineering. Standard engineering practice consists in decomposing the
system to be designed into a set of cooperating components or processes. A
key problem is the coordination of the components so that the global behav-
ior satisfies given specifications. Usually, ad hoc design methodologies are used
leading to solutions that must be validated by verification and testing. In some
cases, it is possible to solve the coordination problem by synthesizing a controller
or supervisor that restricts the behavior of the components [3,1]. Both valida-
tion and synthesis techniques have well-known limitations due to their inherent
complexity or undecidability, and cannot be applied to complex systems. As an
alternative to cope with complexity, compositional description techniques have
been studied. However, the results obtained so far for reactive systems are in
general difficult to exploit. They boil down either to heuristics of limited appli-
cation or to general methods formulated as systems of rules with undecidable
premises.

Timed systems are models of real-time systems consisting of a discrete con-
trol structure (automaton) extended with clocks, variables measuring the time
elapsed since their initialization. At semantic level, they can be considered as
transition systems that can perform either discrete timeless actions or time steps
of some real-valued duration. For a timed system to model a real-time system, it
is necessary that it is timelock-free that is, in any maximal run time diverges. An-
other essential property for timed systems modeling real-time applications such
as controllers, schedulers, etc. is that any maximal run contains infinitely many
actions. We call this property livelock-freedom as it implies deadlock-freedom
and excludes indefinite waiting.

We call live a timed system which is both timelock-free and livelock-free. We
propose a method for building live systems as the composition of live components
by using parallel composition and priorities.
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110 Sébastien Bornot et al.

The method is based on a key idea that motivated several papers on the
compositional description of timed systems [6,7,8]. It consists in enforcing the
satisfaction of properties by appropriate structural restrictions preserved by
composition operations. This leads to consider structural properties, intrinsic
properties of the system which can be checked locally at low cost. We define
a structural property called structural liveness which implies liveness and can
be easily checked on components as the conjunction of three more elementary
structural properties. We combine two kinds of constructs to build structurally
live systems from structurally live components.

– Parallel composition operators defined in [6,7,8]. We provide sufficient struc-
tural liveness preservation conditions for and-synchronization.

– Priorities allowing to restrict the behavior of a timed system according to a
given order relation on its actions. We consider timed systems with priority
orders defined in [6,7,8] and show that priority orders preserve structural
liveness. This is a basic result used to build live timed systems, as priority
orders play a central role in our approach. They are used to achieve coordina-
tion in a system by appropriately restricting the behavior of its components.
As an illustration of this idea, we show how priority orders can be used to
specify mutual exclusion constraints by preserving structural liveness.

The use of the results for the design of live real-time controllers is illustrated
by several examples.

The paper is organized as follows. Section 2 presents the properties of liveness
and structural liveness, as well as sufficient conditions for guaranteeing this prop-
erty. Section 3 presents priority orders, their properties and results about struc-
tural liveness preservation when priorities are applied. Section 4 presents com-
positionality results for systems of communicating processes. Section 5 presents
a method for the compositional description of mutual exclusion properties by
using priorities.

2 Timed Systems and Their Properties

2.1 Background

Let X be a set of real-valued variables called clocks. Clocks will be used as
state variables measuring time progress. Their valuations will be denoted by the
letter v. true (resp. false) denotes the predicate that is true (resp. false) for
any valuation v. For any non-negative real t, we represent by v+ t the valuation
obtained from v by increasing by t the values of all the clocks.

Definition 1 (Left- and right-closure). A predicate p is called left-closed if

∀v . ¬p(v) ⇒ ∃ε > 0 . ∀ε′ ≤ ε . ¬p(v + ε′)

It is called right-closed if it satisfies the previous expression where p(v + ε′) is
replaced by p(v − ε′).
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Notice that these two definitions correspond to the usual notions if we con-
sider p as a function of time, where v is a clock valuation.

Definition 2 (Rising and falling edge). Given a predicate p on clocks X,
we define the rising edge of p, noted p↑ by:

p↑(v) = p(v) ∧ ∃ε > 0 . ∀ε′ ∈ (0, ε] . ¬p(v − ε′) ∨
¬p(v) ∧ ∃ε > 0 . ∀ε′ ∈ (0, ε] . p(v + ε′)

The falling edge of p, noted p↓, is defined by the same formula where v − ε′ and
v + ε′ are exchanged.

Definition 3 (Modal operators). Given a predicate p on real-valued vari-
ables X, we define the modal operator ✸k p (“eventually p within k”) for k ∈
R+ ∪ {∞}.

✸k p (v) if ∃t ∈ R+ 0 ≤ t ≤ k. p(v + t)

We write ✸p for ✸∞ p and ✷p for ¬✸¬p.
Notice that the operators ✸k are just a notation for existential quantifications

over time and should not be confused with temporal logic operators. Expressions
with modal or edge operators can be reduced to predicates on X whenever
quantification over time can be eliminated e.g., when the operators are applied
to linear constraints on X .

2.2 Timed Systems

Definition 4 (Timed systems). A Timed System is:

– An untimed labeled transition system (S,→, A) where
• S is a finite set of control states
• A is a finite vocabulary of actions
• →⊆ S ×A× S is an untimed transition relation

– A finite set X of clocks, real-valued variables defined on the set of non nega-
tive reals R+. The set of the valuations of X, isomorphic to Rn

+ for some n,
is denoted V .

– A labeling function h mapping untimed transitions of → into timed transi-
tions: h(s, a, s′) = (s, (a, g, d, f), s′), where
• g and d are predicates on X called respectively the guard and the deadline

of the transition. We require that d ⇒ g.
• f : V → V is a jump.

According to the above definition, a timed system can be obtained from an
untimed one by associating with each action a, a timed action b = (a, g, d, f).

Definition 5 (Semantics of timed systems). A state of a timed system is a
pair (s, v), where s ∈ S is a control state and v ∈ V . We associate with a timed
system a transition relation →⊆ (S×V )×(A∪R+)×(S×V ). Transitions labeled
by elements of A are discrete transitions while transitions labeled by non-negative
reals are time steps.

Given s ∈ S, if {(s, ai, si)}i∈I is the set of all the untimed transitions issued
from s and h(s, ai, si) = (s, (ai, gi, di, fi), si) then:
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– ∀i ∈ I ∀v ∈ R+ . (s, v) ai→ (si, fi(v)) if gi(v).
– (s, v) t→ (s, v + t) if ∀t′ < t . cs(v + t′) where cs = ¬∨

i∈I di.

For the state s, we denote by guards and deadlines respectively the predicates∨
i∈I gi and

∨
i∈I di.

Notice that for time steps we have the following time additivity property. If
for some t1, t2 ∈ R+ and some state (s, v), (s, v) t1+t2→ (s, v + (t1 + t2)) then
(s, v) t1→ (s, v+ t1)

t2→ (s, v+ (t1 + t2)), and conversely. Due to this property any
sequence of time steps can be reduced into a time step of cumulated duration.
If from some state (s, v) indefinite waiting is allowed, we write (s, v) ∞→ (s,∞).

Timed systems are a variant of TAD [6] with an additional relaxation of
usual syntactical restrictions ensuring decidability. The simplest timed system
is a single transition labeled with the timed action (a, g, d, f). The guard g char-
acterizes the set of states from which the timed transition is possible, while the
deadline d characterizes the subset of these states where the timed transition is
enforced by stopping time progress. The relative position of d within g deter-
mines the urgency of the action. For a given g, the corresponding d may take
two extreme values: d = g meaning that the action is eager, and d = false,
meaning that the action is lazy. A particularly interesting case is the one of a
delayable action where d = g↓ is the falling edge of a right-closed guard g (cannot
be disabled without enforcing the action). The differences between these actions
are illustrated in fig. 1.

g

eagerτ = ε

delayableτ = δ

lazyτ = λ

Fig. 1. Types for guards

It has been shown in [7] that any timed system can be described by a bisim-
ilar system with only eager and lazy timed actions. In practice, we use the
notation gε, gδ and gλ to denote a guard g of an action that is respectively eager
(d = g), delayable (d = g↓) and lazy (d = false).

The containment of deadlines in guards (d ⇒ g) is necessary for avoiding
timelocks as it will be explained later.

Example 1. Consider the timed system of fig. 2 representing a process of period T
and execution time E. The process has three control states s (sleep), w (wait)
and e (execute). The clocks t and x are used to impose the period T > 0 and
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s w

(x = E)τ3

rl

e
aw

(t = T )τ1 , t := 0

go

(t ≤ T − E)τ2 , x := 0

Fig. 2. A simple process

the execution time E ≤ T , respectively. The guards (t = T ), (t ≤ T − E) and
(x = E) specify when discrete transitions can occur. According to the type of
urgency for the actions (denoted by τ1, τ2, and τ3 in the figure), the waiting
times at control states may change. For instance, if all guards are lazy then it
is possible for the system to remain stuck forever at one of the states s, w, or e.
When all guards are eager, discrete transitions are taken as soon as they are
enabled, which means in particular that the action go is always executed when
t = 0 (no waiting allowed at w). On the contrary, when go is delayable, this
action is possible at any time t, 0 ≤ t ≤ T −E. Finally, notice that the behavior
remains unchanged if eager punctual guards such as x = E are considered as
delayable.

Definition 6 (Initial clock valuations). Let s be a control state of a timed
system and {(si, bi, s)}i∈I with bi = (ai, gi, di, fi) the non-empty set of the in-
going timed transitions. The set of the initial clock valuations at s is defined as
the predicate

ins =
∨
i∈I

post(bi)

where post(bi) is the most liberal post-condition of the i-th transition defined by

post(bi)(v) = ∃v′, gi(v′) ∧ v = fi(v′)

When I = ∅, we take ins to correspond to the valuation where all the clocks are
set to zero.

Notice that in most practical cases where guards are linear constraints and
jumps are linear functions, the quantifier in the expression of post(bi) can be
eliminated. For the process of fig. 2, ins = (x = E), inw = (t = 0) and ine =
(0 ≤ t ≤ T − E) ∧ (x = 0).

Definition 7 (Run). A run of a timed system is a maximal sequence of al-
ternating time steps and discrete transitions starting from (s0, v0) such that
ins0(v0).

(s0, v0)
t0→ (s0, v0 + t0)

a1→ (s1, v1)
t1→ . . . (si, vi)

ti→ (si, vi + ti)
ai+1→ (si+1, vi+1) . . .

Notice that due to time additivity of the transition system, any execution
sequence of the model can be represented as a run (where some time steps may
be of duration zero).
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2.3 Structurally Live Timed Systems

In this section, we study three basic structural properties of timed systems.

Definition 8 (Timelock-freedom). A timed system is timelock-free if in any
run (s0, v0)

t0→ (s0, v0 + t0)
a1→ . . .

ti→ (si, vi + ti)
ai+1→ . . .,

∑
i ti diverges.

Definition 9 (Livelock-freedom). A timed system is livelock-free if in any
run some action occurs infinitely often.

Definition 10 (Liveness). A timed system is called live if it is both timelock-
free and livelock-free.

Definition 11 (Structural non-Zenoness). A timed system is structurally
non-Zeno if in any circuit of the discrete transition graph at least one clock is
reset, and it is tested against some positive lower bound.

Structural non-Zenoness implies that there is a positive lower bound to the
execution time of any circuit, and is the same as strong non-Zenoness in [16].
The periodic process of fig. 2 is structurally non-Zeno since T > 0.

Definition 12 (Local timelock-freedom). A timed system is called locally
timelock-free if for any state s, for any timed transition (a, g, d, f) exiting from s,
d↑ ⇒ guards.

Notice that timed systems with left-closed deadlines are locally timelock-
free, as d↑ ⇒ d ⇒ g. Consequently, the timed system of fig. 2 is timelock-free
independently of the type of urgency of the actions.

Lemma 1. At any state (s, v) in a locally timelock-free timed system, time can
progress or some action is enabled. (Proof omitted.)

Lemma 2. Any structurally non-Zeno and locally timelock-free timed system is
timelock-free. (Proof omitted.)

Definition 13 (Local livelock-freedom). A timed system is called locally
livelock-free if for any state s, ins ⇒ ✸deadlines, i.e., from any initial state
some transition will be eventually taken.

Proposition 1. Any locally timelock-free and locally livelock-free timed system
is livelock-free. (Proof omitted.)

Definition 14 (Structural liveness). A timed system is structurally live if it
is locally timelock-free, locally livelock-free, and structurally non-Zeno.

Clearly, structural liveness is a particular case of liveness that can be char-
acterized by means of three properties easy to check.

Example 2. The process of fig. 2 is not locally livelock-free if one of the actions is
lazy. Furthermore, even when the actions are delayable or eager, the requirement
for local livelock-freedom fails for state s, since ins = (x = E), which does not
imply ✸(t = T ) = (t ≤ T ). However, if the guard of rl is strengthened to
(x = E ∧ t ≤ T ), the behavior is not modified, and the system is locally livelock-
free. So, the system is structurally live for τi ∈ {δ, ε}, i = 1, 2, 3.
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3 Timed Systems with Priorities

3.1 Motivation

In system specification, it is often convenient to consider that some priority is
applied when from a state several actions are enabled. This amounts to restrict-
ing the guards of the action of lower priority to leave precedence to actions of
higher priority.

Consider for example, two timed transitions (s, (ai, gi, di, fi), si), i = 1, 2
with common source state s. If a1 has lower priority than a2, then the transition
labeled by a1 becomes (s, (a1, g

′
1, d

′
1, f1), s1) with g′1 ⇒ g1 and d′1 ⇒ d1 while the

other remains unchanged. Commonly, g′1 is taken equal to g1∧¬g2 which means
that when a1 and a2 are simultaneously enabled in the system without priorities
only a2 is enabled in the prioritized system. However, for timed systems it is
possible to define priority relations leaving precedence to an action if it is known
that it will be enabled within some finite time.

Coming back to the previous example, we can take g′1 = g1∧¬✸kg2 for some
finite k, or even g′1 = g1 ∧ ¬✸g2. In the former case a1 gives priority up to a2

if a2 is eventually enabled within k time units. In the latter case, a1 is enabled
if a2 is disabled forever.

This motivates a notion of priority within a given delay. As an example,
consider that g1 = 0 ≤ x ≤ 3∨ 5 ≤ x ≤ 8 and g2 = 2 ≤ x ≤ 7 for some clock x.
We get the following decreasing values for g′1 as the priority delay increases.

1 2 3 4 5 6 7 8 90

g1

g2

a1 ≺1 a2

a1 ≺∞ a2

a1 ≺0 a2g1
′

g1
′

g1
′

Fig. 3. Different priorities for a2 over a1

g′1 = g1 ∧ ¬g2 = 0 ≤ x < 2 ∨ 7 < x ≤ 8 (immediate priority)
g′1 = g1 ∧ ¬✸1g2 = 0 ≤ x < 1 ∨ 7 < x ≤ 8 (priority within a delay of 1)
g′1 = g1 ∧ ¬✸g2 = 7 < x ≤ 8 (priority within an unbounded delay).
Fig. 3 illustrates the above example.
The following definition of priority order has been introduced and studied

in [7].
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Definition 15 (Priority order). Consider the relation ≺⊆ A× (R+∪{∞})×
A. We write a1 ≺k a2 for (a1, k, a2) ∈≺ and suppose that ∀k ∈ R+ ∪ {∞}:
– ≺k is a partial order
– a1 ≺k a2 implies ∀k′ < k. a1 ≺k′ a2

– a1 ≺k a2 ∧ a2 ≺l a3 implies a1 ≺k+l a3 for all l ∈ R+ ∪ {∞}
Property: The relation a1 ≺≺ a2 = ∃k a1 ≺k a2 is a partial order relation.

Definition 16 (Timed system with priorities). A timed system with pri-
orities is a timed system TS = (S,→, A,X, h) having all its guards and dead-
lines left- and right-closed, equipped with a priority function pr. The priority
function pr associates with each state s ∈ S a priority order pr(s) such that
if {(ai, gi, di, fi)}i∈I is the set of the timed actions labeling transitions issued
from s, then ✸gi ⇒ ✸di for any ai which is not a minimal element of pr(s).

A timed system with priorities (TS, pr) represents the timed system TS′ =
(S,→, A,X, h′) with the same discrete transition structure and such that if
h(s1, a, s2) = (s1, (a, g, d, f), s2) then h′(s1, a, s2) = (s1, (a, g′, d′, f), s2) where g′

is defined in the following manner.
For a given state s, let ≺ denote the priority order pr(s), and

{(ai, gi, di, fi)}i∈I be the set of the timed actions labeling transitions of TS ex-
iting from s. The corresponding set of prioritized timed actions in TS′ is then
{(ai, g

′
i, d

′
i, fi}i∈I defined by

g′i = gi ∧
∧

aj∈I, k∈R+∪{∞}
ai≺kaj

¬✸kgj d′i = di ∧ g′i

This definition simply says that the guard g′i of a prioritized action ai is not
enabled if there is some action aj such that ai ≺k aj that will become enabled
within k time units.

The requirement ✸g ⇒ ✸d for non-minimal actions means that they cannot
be disabled forever without becoming urgent. It is necessary to avoid overriding
of deadlines to preserve local livelock-freedom. In fact, the restriction of guards
(and deadlines) of low priority would violate local livelock-freedom if actions of
higher priority were lazy. Notice that for typed timed actions, it is sufficient to
consider priority orders where non-minimal elements are either eager or delayable
actions.

We call TS′ the prioritized timed system corresponding to (TS, pr). We de-
note by guard′s and deadline′s the restrictions of guards and deadlines in TS′.

3.2 Preservation of the Structural Properties

Theorem 1. If TS satisfies one of the structural properties local timelock-free-
dom, local livelock-freedom, or structural non-Zenoness, then (TS, pr) satisfies
the same property. Thus, priority orders preserve structural liveness.
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Proof. – Local timelock-freedom: priority orders transform a left-closed
guard g either into left-closed guards g′ or into a guard g′ such that another
guard g1 of higher priority is true at the rising edge of g′ (see definition of
timed system with priorities). Thus d↑ ⇒ g∨g1. By induction on the priority
order it is then possible to show that local timelock-freedom is preserved.

– Local livelock-freedom: priority orders do not change the discrete transition
structure of timed systems, and restrict guards of timed actions. Conse-
quently, for each state s, the set of transitions entering s does not change,
and ins is restricted. If we note in′

s the set of initial clock values of s in the
prioritized system, and as the non prioritized system is locally livelock-free,
we have in′

s ⇒ ins ⇒ ✸deadlines.
If a deadline d of an action a is restricted to a deadline d′ �= d, then it
is restricted by some transition (a1, g1, d1, f1) such that a ≺k a1, for some
k ∈ R+∪{∞}. This implies d∧¬d′ ⇒ ✸kg1 ⇒ ✸g1. Since a1 is not minimal,
✸g1 = ✸d1. Thus d ⇒ d′ ∨ ✸d1. It follows that ✸deadlines = ✸deadline′s.
Thus local livelock-freedom is preserved.

– Strong non-Zenoness: priority orders do not change the discrete transition
structure of timed systems, and do not affect jumps. So any circuit in the
prioritized system is a circuit in the initial one, and the clock resets are the
same. Moreover, guards are restricted by priority orders, so a lower bound
in a guard may only increase. Consequently, if the non prioritized system
is structurally non-Zeno, then the prioritized one is structurally non-Zeno,
too.

It is often desirable to restrict a timed system TS with respect to several
priority functions pri. At this end, we define a partial operation on priority
orders.

Given ≺1, ≺2 priority orders on A, we represent by ≺1 ⊕ ≺2 the least priority
order, if it exists, that contains both ≺1 and ≺2, i.e.,

– ≺1 ∪ ≺2⊆≺1 ⊕ ≺2

– if (a1, k1, a2), (a2, k2, a3) ∈≺1 ⊕ ≺2, then (a1, k1 + k2, a3) ∈≺1 ⊕ ≺2.

The partially defined operator ⊕ is associative and commutative. We extend ⊕
on priority functions pri: ∀s ∈ S.(pr1 ⊕ pr2)(s) = pr1(s) ⊕ pr2(s).

In order to simplify notations, we extend priority orders to sets of actions:
A1 ≺k A2 :⇔ ∀a1 ∈ A1∀a2 ∈ A2.a1 ≺k a2.

In the rest of the paper, we show how to build live systems from live compo-
nents.

4 Systems of Communicating Processes

We use the following general framework for the composition of timed systems
studied in [6,7] and based on the use of an associative and commutative parallel
composition operator ‖.

Consider timed systems of the form TSi = (Si, Ai,→i, Xi, hi). For sake of
simplicity, we assume that they have disjoint sets of control states Si, disjoint sets
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of actions Ai, and disjoint sets of clocks Xi. Furthermore, we consider an action
vocabulary A, Ai ⊆ A, with an operator | such that (A, |) is a commutative semi-
group with a distinguished absorbing element ⊥. The action a1|a2 represents the
action resulting from the synchronization of a1 and a2 (if a1|a2 �= ⊥).

Definition 17 (Parallel composition). The parallel composition (TS1, pr1)‖
(TS2, prs) of two timed systems with priorities (TS1, pr1) and (TS2, pr2) is the
timed system with priorities (TS, pr) defined by

– TS = (S1 × S2, A,→, X1 ∪ X2, h) where if si
ai→i s′i and hi(si, ai, s

′
i) =

(si, bi, s
′
i) with bi = (ai, gi, di, fi), i = 1, 2, then

• (s1, s2)
a1→ (s′1, s2), (s1, s2)

a2→ (s1, s′2), and (s1, s2)
a1|a2→ (s′1, s

′
2) if a1|a2 �=

⊥. That is, the transitions of → are obtained by interleaving or by syn-
chronization.

• If a1|a2 �= ⊥, then ✸gi = ✸di, i = 1, 2.
• h((s1, s2), a1, (s′1, s2)) = ((s1, s2), b1, (s′1, s2))
h((s1, s2), a2, (s1, s′2)) = ((s1, s2), b2, (s1, s′2))
h((s1, s2), a1|a2, (s′1, s

′
2)) = ((s1, s2), b1|b2, (s′1, s′2))

where b1|b2 is an extension of | on timed actions, defined later.
– pr = pr1 ⊕ pr2 ⊕ pr12, where ∀(s1, s2) ∈ S1 × S2 .

pr12(s1, s2) = {{a1, a2} ≺∞ a1|a2 | a1|a2 �= ⊥∧∃s′1, s′2 . s1 a1→ s′1∧s2 a2→ s′2}
if pr1 ⊕ pr2 ⊕ pr12 is defined.

The composition principle is illustrated in fig. 4. Priorities are used to achieve

	∞

s1 s2

b1 b2

s′
1 s′

2

b2

(s1, s2)

≺∞

b1|b2

b1

(s′
1, s′

2)

(s1, s′
2) (s1, s′

2)

Fig. 4. Composition principle

maximal progress, that is, interleaving transitions will be taken only when syn-
chronization is not possible.

In [6,7] a general method is provided to extend the operator | on timed ac-
tions, preserving associativity and commutativity. We consider here a particular
case of timed action synchronization, called and-synchronization, which is de-
fined as follows:

For bi = (ai, gi, di, fi), i = 1, 2 if a1|a2 �= ⊥, then b1|b2 = (a1|a2, g1 ∧ g2, (g1 ∧
g2) ∧ (d1 ∨ d2), f1 ∪ f2). This simply means that synchronization takes place
only when both actions are enabled. The synchronization action becomes urgent
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whenever it is enabled, and one of the synchronizing actions becomes urgent.
Finally, f1∪f2 denotes the composition of jumps (for disjoint state spaces of the
components).

Notice that ‖ is an associative and commutative partial operation on timed
systems with priorities. We trivially consider a timed system TS as a timed
system with priorities (TS, pr∅), where pr∅ is the priority function associating
the empty priority order with any state.

Theorem 2. If TS1 and TS2 are structurally live, then TS1 ‖ TS2 is struc-
turally live.

Proof. If (TS, pr) = TS1‖TS2, then it is sufficient to consider TS by application
of Theorem 1, as for synchronizing actions (which are not minimal in pr(s) for
all s), ✸gi = ✸di. We show that if TS1 and TS2 are structurally live, then TS
is structurally live.

– Structural non-Zenoness: since each transition (interleaving or synchroniza-
tion) corresponds to a transition in TS1 or TS2 or both, each circuit in the
product contains a set of transitions forming a circuit in TS1 or TS2. If TS1

and TS2 are structurally non-Zeno, then in all these circuits some clock is
reset and tested against a positive lower bound. Then this is the case for all
the circuits of TS too. The bounds of a synchronization action may increase,
but can not decrease.

– Local timelock-freedom: conjunction and disjunction preserve closure of
guards and deadlines, so guards and deadlines of synchronizations are closed
as well as those of interleaving actions. This guarantees local time-lock free-
dom.

– Local livelock-freedom: since interleaving transitions are transitions of the
components, and synchronization guards are conjunctions of guards of the
components, if TS1 and TS2 are locally livelock-free we have

in(s1,s2) ⇒ ins1 ∨ ins2 ⇒ ✸deadlines1 ∨ ✸deadlines2

⇒ ✸deadline(s1,s2)

Thus, the product system is locally livelock-free.

Example 3. Consider two structurally live processes P1 and P2 with execution
times Ei and periods Ti, i = 1, 2, running in parallel, as shown in fig. 5. Each pro-
cess Pi can procrastinate the goi action, which models the start of its execution,
as long as enough time remains for execution before the end of the period.

In order to let the processes exchange data, however, one wishes to coordinate
them by a common go1|go2 action whenever this is possible without violating
the timing constraints of any of P1 and P2. This is done by synchronizing the
go1 and go2 actions. Maximal progress is ensured in (w1, w2) by the priorities
go1 ≺∞ go1|go2 and go2 ≺∞ go1|go2, and guarantees that the two processes will
synchronize if they manage to be in (w1, w2) at the same time. The resulting
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x2 := 0
(t2 ≤ T2 − E2)δ(t1 ≤ T1 − E1)δ

x1 := 0

w1

e1

s1

t1 := 0

w2

s2

e2

t2 := 0
(t1 = T1)δ (t2 = T2)δ

(x1 = E1 ∧ t1 ≤ T1)δ

aw1

rl1

go1

aw2

go2

rl2
(x2 = E2 ∧ t2 ≤ T2)δ

Fig. 5. Two processes with flexible synchronization

timed actions in the product system with priorities have typed guards g′1, g
′
2,

and g12, respectively, for go1, go2, and go1|go2:

g′
1 = ((x1 ≤ T1 − E1) ∧ ¬✸(x2 ≤ T2 − E2))

δ = ((x1 ≤ T1 − E1) ∧ (x2 > T2 − E2))
δ

g′
2 = ((x2 ≤ T2 − E2) ∧ ¬✸(x1 ≤ T1 − E1))

δ = ((x2 ≤ T2 − E2) ∧ (x1 > T1 − E1))
δ

g12 = ((x1 ≤ T1 − E1) ∧ (x2 ≤ T2 − E2))
δ.

The product system is structurally live.

An important property in the previous example is individual livelock-freedom
of the components in the product system. Liveness of the product does not imply
that in any run, an action of some component occurs infinitely often. This remark
motivates the following definition and theorem.

Definition 18 (Individual livelock-freedom). A component (TSi, pri) is
livelock-free in a timed system (TS, pr) = (TS1, pr1)‖(TS2, pr2) if in each run
of (TS, pr), some action of (TSi, pri) occurs infinitely often.

Theorem 3. If both (TS1, pr1) and (TS2, pr2) are structurally live and each
synchronizing guard g is bounded (that is, ✸✷¬g), then both TS1 and TS2 are
livelock-free in (TS1, pr1)‖(TS2, pr2). (Proof omitted.)

Example 4. Both processes of Example 3 are livelock-free in the product system.

Remark 1. Notice that for liveness preservation, the systematic use of “escape”
actions (aborted communications) in the product system is instrumental. Our
parallel composition operator allows a process to proceed unsynchronized on
any action for which the communication will not be ready in its current state
sometime in the future. This is different from usual “strong” parallel compo-
sition where synchronization is enforced by the use of restriction operators as
in CCS [15] or by allowing interleaving only for internal (non communicating)
actions as in CSP [12]. Such operators enforce synchronization at the risk of
deadlock, particularly in the case of timed systems.
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5 Mutual Exclusion

Consider a timed system initially composed of a set of interacting components.
The goal is to restrict the behavior of the components by using priorities so
that the global behavior satisfies a given mutual exclusion constraint. We study
a method to obtain a structurally live system satisfying mutual exclusion from
structurally live components.

The following notion of persistence will be central in this section.

Definition 19 (Persistence). A control state s is called persistent if ins ⇒
✸✷guards.

This property means that at state s, maybe after some waiting, it is always
possible to execute an action. It is instrumental for avoiding deadlocks when
guards are restricted by using priorities.

Consider a timed system (TS, pr) = TS1‖ . . . ‖TSn, where TSi = (Si, Ai,→i,
Xi, hi), and TS = (S,A,→, X, h), as in section 4. We suppose that a mutual
exclusion constraint is specified as a set M ⊆ ⋃

i Si containing pairwise mutually
exclusive states. We define two predicates on the product space S:

– badM (s1, . . . , sn) = ∃i, j, i �= j.si ∈ M ∧ sj ∈ M
– criticalM (s1, . . . , sn) = ¬badM (s1, . . . , sm) ∧

∃a ∈ A, (s′1, . . . , s
′
n) ∈ S . (s1, . . . , sn) a→ (s′1, . . . , s

′
n) ∧ badM (s′1, . . . , s

′
n).

badM characterizes all the states violating the mutual exclusion constraint,
whereas criticalM characterizes all the legal states from which mutual exclu-
sion can be violated by executing one transition.

For a given M ⊆ ⋃
i Si we define •M and M◦ as the set of actions entering M

and the set of actions originating in M :

•M = {a | ∃i ∃s, s′ ∈ Si, s �∈ M ∧ s′ ∈ M ∧ s
a→i s

′}
M◦ = {a | ∃i ∃s, s′ ∈ Si, s ∈ M ∧ s

a→i s
′}

The set of waiting states of component Si with respect to M is the set of
states from which some action entering M is issued: {s ∈ Si −M |∃a ∈ Ai, s

′ ∈
Si ∩M s.t. s

a→i s
′}.

Theorem 4 (Mutual exclusion). Let TS1 . . . , TSn be a set of structurally live
timed systems with persistent waiting states w.r.t. a mutual exclusion constraint
M ⊆ ⋃

i Si, and (TS, pr) = TS1‖ . . . ‖TSn be the parallel composition of the
components with ∀a1 ∈ •M ∀a2 ∈ A.a1|a2 = ⊥. Then, the timed system with
priorities (TS, pr ⊕ prM ), where

∀s ∈ S . prM (s) =
{•M ≺∞ M◦ if criticalM (s)

∅ otherwise (1)

is structurally live, and satisfies the mutual exclusion constraint.
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Proof (sketch).

– Structural liveness: Let us first show that (pr⊕prM )(s) is a partial order for
all s ∈ S.¬badM (s). Suppose that a1 ≺∞ a2 ∈ pr (i.e., a2 is a synchronizing
action), and that a2 ≺∞ a1 ∈ prM . This is not possible, since synchronizing
actions are maximal in prM . Hence, pr⊕prM is a priority function. Structural
liveness follows from Theorems 2 and 1.

– Mutual exclusion: No synchronization action can lead (TS, pr ⊕ prM ) from
a safe state s ∈ S.¬(criticalM (s) ∨ badM (s)) into a badM state violating
mutual exclusion.
Let s = (s1, . . . , sn) be a state of TS with criticalM (s), such that there
exist sk, si, sk ∈ M and ∃a ∈ Ai.si

a→ s′i with s′i ∈ M . Thus, a is an action
leading (TS, pr) into a bad state. Since a ∈ •M , we have ai ≺∞ {sk}◦ ⊆
prM (s). Let us show that from any initial clock valuation of sk, some action
issued from sk will eventually be enabled, which means that a is disabled
due to priority choice semantics.
From the livelock-freedom assumption about TSk, insk

⇒ ✸deadlinesk
, one

can deduce that in the product (TS, pr), for any state satisfying insk
there

exists an action in Ask
= {sk} ◦ ∪{a1|a2 | a1 ∈ {sk} ◦ ∧a2 ∈ A ∧ a1|a2 �=

⊥} with deadline d such that ✸d. This property remains true as long as
TSk is in state sk in (TS, pr). The same argument can be applied for sk

in (TS, pr ⊕ prM ), as the actions of Ask
are not restricted by the priority

function prM .

Intuitively, equation (1) says that from critical states, M must be left before a
new process can enter. The persistence of the waiting states makes sure that no
process becomes deadlocked while waiting to enter M .

Remark 2. Notice that the above construction minimally restricts the untimed
transition structure in the following manner: if from a state s = (s1, . . . , sn),
¬badM (s) there exist transitions s a1→ s′ and s

a2→ s′′ with a1 ∈ •M and a2 ∈ M◦,
then criticalM (s), and badM (s′).

Definition 20 (Individual deadlock-freedom). A component TSi of a timed
system (TS, pr) = TS1‖ . . . ‖TSn is deadlock-free in TS if for each run of TS,
some action of TSi is enabled infinitely often.

Theorem 5. Let TS1 . . . , TSn be a set of structurally live timed systems, and
M ⊆ ⋃

i Si a mutual exclusion constraint, as in Theorem 4. If for each TSi, any
run of TSi contains infinitely many occurrences of states in Si −M , the actions
in M◦ do not synchronize, and TSi is livelock-free in (TS, pr) = TS1‖ . . . ‖TSn,
then all components are deadlock-free in (TS, pr ⊕ prM ). (Proof omitted.)

Remark 3. Let TSi be a structurally live timed system, and M a mutual exclu-
sion constraint. A sufficient structural condition for the runs of TSi to contain
infinitely many occurrences of states in Si −M is that the untimed transition
graph of TSi has no cycles in M .
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Theorem 6. Let {Mi}i∈I be a set of mutual exclusion constraints on a struc-
turally live timed system (TS, pr). If prMi are the priority functions ensuring
mutual exclusion according to Theorem 4, and π = pr ⊕ ⊕

i∈I prMi is a prior-
ity function, then (TS, π) is structurally live and respects all mutual exclusion
constraints Mi. (Proof omitted.)

Example 5. Consider two processes of periods T1, T2 and execution times E1, E2

as in fig. 6. Each one of the processes is structurally live and remains livelock-

#

w1

e1

s1

t1 := 0

w2

s2

e2

t2 := 0

aw1 aw2

rl2rl1

(t1 ≥ T1)ε (t2 ≥ T2)ε

(x1 = E1)δ (x2 = E2)δ

go1
(t1 ≤ T1 − E1)δ ∪ (t1 ≥ T1 − E1)ε

x1 := 0

x2 := 0
(t2 ≤ T2 − E2)δ ∪ (t2 ≥ T2 − E2)ε

go2

Fig. 6. Two processes with mutual exclusion between e1 and e2

free in the interleaving product of the two processes, which is structurally live.
We apply the mutual exclusion constraintM = {e1, e2} on the interleaving prod-
uct and obtain •M ≺∞ M◦, i.e., {go1, go2} ≺∞ {rl1, rl2} for the critical states
(w1, e2), (e1, w2). This practically means that release-actions rl have higher pri-
ority than begin-actions go. According to Theorem 4, the product system with
priorities is structurally live, and both processes are deadlock-free in it, due to
the persistent waiting states w1 and w2.

Notice that in order to compute (TS1‖ . . . ‖TSn, pr), it is not necessary to
compute explicitly the product T1‖ . . . ‖Tn. Priority choice can be applied “on
the fly” to states of the product.

The construction of Theorem 4 can be generalized for mutual exclusion con-
straints of the type m-out-of-n for m < n, where criticalM (s) (badM (s)) denotes
the set of control states where exactly m (more than m) components are in M .

Example 6 (Resource allocation). Consider the well-known example of fig. 7,
where two interleaving processes P1 and P2 use two shared resources R1 and R2.
P1 allocates resource R1, then R2, while it still holds R1, before releasing both
resources. P2 tries to allocate the resources in the inverse order.

An action pij means that process Pi allocates resource Rj , and a vi-action
means that process Pi frees both resources. Mutual exclusion over R1 is modeled
by the set M1 = {s2, s3, s7}, and mutual exclusion over R2 by M2 = {s3, s6, s7},
as indicated by arrows in the figure. Critical states are those characterized by
criticalM1 = (s2 ∨ s3) ∧ s6 ∨ s1 ∧ s7, and criticalM2 = s3 ∧ s5 ∨ s2 ∧ (s6 ∨ s7)
(where the name of a component state is used as a proposition which is true if
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P1 P2

#

# #

s1

s2

s3

s4

s5

s6

s7

s8

v1
(x = 1)δ

p12
trueε

x := 0

(x ≥ 3)ε
p11

r1
(x ≤ 2)δ

r2
(y ≤ 3)δ

p22
(y ≥ 4)ε

p21
trueε

y := 0

v2
(y = 2)δ

Fig. 7. Crossover resource allocations

the component system is in that state). Mutual exclusion on Mi is guaranteed for
(TS, prMi), if TS is the interleaving product of P1 and P2. The priority functions
prMi (i = 1, 2) are defined by prMi(s) = •Mi ≺∞ Mi◦ for criticalMi(s), ∅
otherwise. We have ∀s ∈ S:

prM1(s) =
{{p11, p21} ≺∞ {p12, v1, v2} if criticalM1(s)

∅ otherwise

prM2(s) =
{{p12, p22} ≺∞ {p21, v1, v2} if criticalM2(s)

∅ otherwise

Both mutual exclusion constraints M1 and M2 are respected by (TS, prM1 ⊕
prM2), if prM1⊕prM2 is defined. However, in state (s2, s6) — P1 has allocated R1

and waits for R2, whereas P2 has allocated R2 and waits for R1 —, one can see
that priorities form a circuit with vertices p12 and p21. This flaw in the specifica-
tion (which means that the specification is intrinsically not deadlock-free) can be
corrected by declaring states {s2, s6} in mutual exclusion. The resulting mutual
exclusion constraint is M = {s2, s3, s6, s7}, which means that the product state
(s2, s6) is made unreachable. In practice, this means that the sequence consisting
of the two resource allocations is atomic, and the obtained system is live.

Notice that each process eventually frees all resources, and the waiting
states s1 and s5 are persistent, so that both processes remain individually
deadlock-free after composition in this improved specification.

6 Discussion

We have presented a method for the construction of live timed systems based
on the preservation of a set of structural properties by appropriately chosen
composition operators. Structural properties verification can be done locally and
does not require exploration of the global system’s dynamic behavior. The set
of initial states is also structurally determined.
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An important question to be further investigated is applicability of the
method. It concerns the expressivity of the class of structurally live systems
as well as the possibility to apply in practice the liveness preservation theorems.

We believe that the two properties implying timelock-freedom correspond
to completely natural common sense requirements of sanity. Structural non-
Zenoness is a kind of “well-guardedness” property that is satisfied in practice.
Local livelock-freedom is also a basic property to avoid problems in the inter-
action between time progress and discrete state changes. The main difficulty in
the application of our method, is the satisfaction of the local livelock-freedom
property. It may happen that the initial clock valuation at some state is too
weak. In that case, the guards of the transitions entering this state must be
strengthened in an appropriate manner (as in Example 2) and this is left to the
user’s ingenuity.

The proposed parallel composition operator can be enhanced by selective
elimination of escape actions thanks to the use of additional priorities. If all non
communicating actions are given infinitely higher priority than communicating
actions then stronger interaction can be achieved and for this parallel composi-
tion operator Theorem 2 remains true. However, Theorem 3 does not hold and
it is not easy to find conditions for individual liveness preservation.

The presented method uses a framework for the compositional description of
timed systems [6,7,8]. This framework is based on “flexible” composition opera-
tions in the sense that composition allows only interaction resulting in a global
behavior that preserves liveness. Priorities are essential for restricting appropri-
ately the behavior of the cooperating components depending on their abilities to
synchronize from their respective states. This contrasts with usual composition
operations which are “constraint oriented” and consider parallel composition es-
sentially as the intersection of “observable” behaviors. Such operations enforce
action synchronization and respect components urgency at the risk of livelock or
timelock. In the presence of timelock or livelock, the behavior of the components
must be changed to get correct specifications. We prefer flexible composition,
in spite of its deficiencies, because it is more appropriate for the “correct by
construction” approach. To our knowledge, this approach has not been very
much explored so far. [16] defines sufficient static conditions for deadlock- and
timelock-freedom for the synchronized product of timed automata. Also, there
exists some work about reactive systems such as [9,13].

Concerning the use of priorities, there exist many papers introducing pri-
orities to process algebras, mainly for the untimed case [5,10,14]. Our notion
of timed systems with priorities is closer to the work of [14] on the timed pro-
cess algebra ACSR. However, this work does not tackle problems of property
preservation.

This work is part of a more general project which aims at developing tech-
niques and tools for modeling and analyzing real-time systems. We implemented
priority choice, parallel composition as well as verification of structural prop-
erties, in a prototype tool, which we are currently using for the description of
scheduling algorithms.
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