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Abstract. Boolean Equation Systems (Bess) provide a useful frame-
work for the verification of concurrent finite-state systems. In practice,
it is desirable that a Bes resolution also yields diagnostic information ex-
plaining, preferably in a concise way, the truth value computed for a given
variable of the Bes. Using a representation of Bess as extended boolean
graphs (Ebgs), we propose a characterization of full diagnostics (i.e.,
both examples and counterexamples) as a particular class of subgraphs
of the Ebg associated to a Bes. We provide algorithms that compute ex-
amples and counterexamples in linear time and can be straightforwardly
used to extend known (global or local) Bes resolution algorithms with
diagnostic generation facilities.

1 Introduction

It is well-known that several equivalence/preorder checking and temporal logic
model-checking problems occurring in the verification of concurrent finite-state
systems can be reduced to the resolution of Boolean Equation Systems (Bess).
Various algorithms have been proposed for solving this problem, either globally,
i.e., by computing the values of all variables in a Bes [3,9,28,1,29,2,20,19], or
locally, i.e., by computing the value of a single variable [17,1,29,30,20,18,19].
However, practical applications of Bes resolution often need more detailed feed-
back than a simple yes/no answer. For instance, when solving a Bes encoding
the bisimilarity check between two transition systems, it is desirable to have,
in case of a negative result, a diagnostic (e.g., a transition sequence) explaining
why the two systems are not bisimilar.

In general, both positive diagnostics (examples) and negative diagnostics
(counterexamples) are needed in order to be capable of fully explaining the truth
value of a boolean variable. This is the case for instance when verifying Ctl [5]
formulas over a transition system: a positive answer obtained for an E [T U ϕ]
formula should be explained by an example (e.g., a transition sequence leading to
a ϕ-state), whereas a negative answer obtained for an A [T U ϕ] formula should be
explained by a counterexample (e.g., a transition sequence leading to a deadlock
or to a circuit without reaching a ϕ-state).

The problem of generating diagnostics for finite-state verification has been
studied using various approaches. Explicit state enumeration techniques have
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been applied to compute diagnostics for bisimulation/preorder checking [8,15,13]
and Ctl model-checking [5,23], in tools like Aldébaran [4] and Emc [5], respec-
tively. Symbolic techniques based on (ordered) binary decision diagrams have
been used to generate examples (witnesses) and counterexamples for Ctl for-
mulas [7,6], in tools like Smv [21]. Recently, game-based techniques [25] have
been applied to verify modal µ-calculus [16] formulas and to interactively gen-
erate diagnostics, in tools like the Edinburgh Concurrency Workbench [24].

In this paper we address the problem of characterizing and computing full
diagnostics (examples and counterexamples) for Bess. We focus on single fixed
point Bess, which allow to encode the alternation-free fragment of the modal
µ-calculus [9], and attempt to devise efficient algorithms handling this case.
The solutions that we propose can be easily instantiated in order to obtain
diagnostic generation facilities for particular verification problems reducible to
Bes resolution, such as bisimulation/preorder checking and model-checking of
branching-time temporal logics like Ctl.

We use a representation of Bess as extended boolean graphs (Ebgs), which
allow to define an appropriate subgraph relation between Ebgs. We start by
characterizing the solution of a Bes by means of two particular temporal logic
formulas Ex and Cx interpreted on the corresponding Ebg. This allows, on
one hand, to reduce the problem of solving a Bes to the problem of verifying
these formulas over its Ebg and, on the other hand, to characterize minimal
diagnostics (w.r.t. the subgraph relation) as particular models of Ex or Cx. We
also propose two efficient (linear-time) algorithms for computing minimal exam-
ples and counterexamples and we indicate how they can be used in conjunction
with existing (global or local) Bes resolution algorithms. Our characterizations
of minimal examples and counterexamples turned out to be very similar to the
winning strategies for player I and player II of a model-checking game [24]. How-
ever, as far as we know, there is no equivalent linear-time complexity result about
the game-based algorithms applied to the alternation-free µ-calculus.

The paper is organized as follows. Section 2 defines Bess and their associated
Ebgs, and gives a characterization of the Bes solution using temporal formulas.
Section 3 defines diagnostics in terms of subgraphs of an Ebg and provides a
characterization of minimal diagnostics. Section 4 presents algorithms for com-
puting minimal examples and counterexamples. Finally, Section 5 shows some
practical applications of these results and indicates directions for future work.

2 BESs and Extended Boolean Graphs

A boolean equation system (Bes) M is a set of fixed point equations whose left-
hand-sides are boolean variables and whose right-hand-sides are pure disjunctive
or conjunctive formulas (see Figure 1). Empty disjunctions and conjunctions are
equivalent to F and T, respectively. Variables {x1, ..., xn} are bound and variables
in (

⋃
1≤i≤n Xi) \ {x1, ..., xn} are free in M . A Bes is closed if it has no free

variables. In the sequel, we consider only minimal fixed point Bess (σ = µ), the
formalization for maximal fixed point Bess being completely dual.
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Syntax of Boolean Equation Systems (Bess):

M = {xi
σ
= opiXi}1≤i≤n

where σ ∈ {µ, ν}, xi ∈ X , opi ∈ {∨,∧}, Xi ⊆ X for all 1 ≤ i ≤ n

Semantics w.r.t. Bool = {F,T} and a context δ : X → Bool:
[[op{x1, ..., xk}]] δ = δ(x1) op ... op δ(xk)

[[M ]] δ = σΨδ

where Ψδ : Booln → Booln, Ψδ(b1, ..., bn) = ([[opiXi]] δ[b1/x1, ..., bn/xn])1≤i≤n

Fig. 1. Syntax and semantics of Boolean Equation Systems

An extended boolean graph (Ebg) is a tuple G = (V, E, L, F ), where: V is
the set of vertices; E ⊆ V × V is the set of edges; L : V → {∨,∧} is the vertex
labeling; and F ⊆ V is the frontier of G. The notion of frontier will be useful later
for defining a suitable subgraph relation between Ebgs (see Section 3). The sets
of successors and predecessors of a vertex x ∈ V are noted E(x) and E−1(x),
respectively. The set of vertices reachable from x via E is noted E∗(x). The
restriction of E to a subset U ⊆ V is defined as E|U = {(x, y) ∈ E | x ∈ U}.
Every Ebg G induces a Kripke structure G = (V, E, L). A closed Bes can be
represented by an Ebg, where V denotes the set of boolean variables, E denotes
the dependencies between variables, and L labels the vertices as disjunctive or
conjunctive according to the operator in the corresponding equation of the Bes.

We can characterize the solution of a closed Bes using temporal logic for-
mulas interpreted over the Kripke structure induced by the corresponding Ebg.
The logic we use (see Figure 2) is a variant of the alternation-free µ-calculus [10].

Syntax of temporal formulas:
ϕ ::= P∨ | P∧ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈−〉ϕ | [−]ϕ | Y | µY.ϕ | νY.ϕ

where Y ∈ Y

Semantics w.r.t. a Kripke structure G = (V,E,L) and a context ρ : Y → 2V :
[[P∨]]Gρ = {x ∈ V | L(x) = ∨}
[[P∧]]Gρ = {x ∈ V | L(x) = ∧}

[[ϕ1 ∨ ϕ2]]Gρ = [[ϕ1]]Gρ ∪ [[ϕ2]]Gρ
[[ϕ1 ∧ ϕ2]]Gρ = [[ϕ1]]Gρ ∩ [[ϕ2]]Gρ

[[〈−〉ϕ]]Gρ = {x ∈ V | E(x) ∩ [[ϕ]]Gρ �= ∅}
[[[−]ϕ]]Gρ = {x ∈ V | E(x) ⊆ [[ϕ]]Gρ}

[[Y ]]Gρ = ρ(Y )
[[µY.ϕ]]Gρ =

⋂{U ⊆ V | ΦGρ(U) ⊆ U}
[[νY.ϕ]]Gρ =

⋃{U ⊆ V | U ⊆ ΦGρ(U)}
where ΦGρ : 2V → 2V , ΦGρ(U) = [[ϕ]]Gρ[U/Y ]

Fig. 2. Syntax and semantics of the logic for diagnostic characterization
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Given a Kripke structure G = (V, E, L), the two atomic propositions P∨
and P∧ denote the disjunctive and conjunctive vertices of V , respectively. The
boolean operators ∨ and ∧ have their usual semantics. The possibility and ne-
cessity modal formulas 〈−〉ϕ and [−]ϕ denote the vertices for which some (all)
successors satisfy ϕ. The fixed point formulas µY.ϕ and νY.ϕ denote the minimal
and maximal solutions (over 2V ) of the equation Y = ϕ, respectively. Formulas
ϕ are assumed to be alternation-free (without mutual recursion between mini-
mal and maximal fixed points). A vertex x ∈ V satisfies a formula ϕ in G, noted
x |=G ϕ, iff x ∈ [[ϕ]]G. G is a ϕ-model iff V = [[ϕ]]G.

The two particular formulas defined below will be useful in the sequel.

Definition 1 (example and counterexample formulas).
The formulas Ex and Cx defined as follows:

Ex = µY.(P∨ ∧ 〈−〉Y ) ∨ (P∧ ∧ [−]Y )
Cx = νY.(P∨ ∧ [−]Y ) ∨ (P∧ ∧ 〈−〉Y )

are called example formula and counterexample formula, respectively.

Since Ex and Cx are complementary (Ex ∨ Cx = T and Ex ∧ Cx = F),
their interpretations on a Kripke structure G = (V, E, L) associated to a closed
Bes induce a partition of V . The following theorem states that this partition
corresponds exactly to the true and false variables in the Bes solution.

Theorem 1 (characterization of BES solution).
Let M = {xi

µ
= opiXi}1≤i≤n be a closed Bes and let G = (V, E, L) be its

associated Kripke structure. Then:

[[M ]]i = T ⇔ xi |=G Ex

for all 1 ≤ i ≤ n.

Theorem 1 can be easily extended to alternation-free Bess, whose solution
can be characterized using an alternation-free µ-calculus formula containing an
Ex-subformula for each single fixed point subsystem1 of the Bes. The equiva-
lence between alternation-free Bess and alternation-free µ-calculus formulas has
been extensively studied in [20]. Together with the classical results of reducing
µ-calculus model-checking to Bes resolution [9,1], Theorem 1 provides another
proof of this equivalence.

In the following, we will develop the formalization of diagnostics by reasoning
exclusively in terms of Ebgs associated to Bess and the interpretations of Ex
and Cx formulas on the corresponding Kripke structures.

3 Examples and Counterexamples

Consider a Bes M and a boolean variable x that is bound in M . What would
be a diagnostic for x? From the Bes point of view, a diagnostic for x could be a
1 For ν-subsystems, the formula Ex = νY.(P∨ ∧ 〈−〉Y ) ∨ (P∧ ∧ [−]Y ) must be used.
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subsystem M ′ of M containing x as a bound variable and having the property
that by solving M ′ one obtains for x the same truth value as by solving M .
In other words, the value computed for x in M ′ should not depend upon the
context of M ′ imposed by M (i.e., upon the values of variables that are free
in M ′ and bound in M); that is, it should not depend upon any context of M ′.

Figure 3 shows a Bes and its associated Ebg, where black vertices denote
variables that are T and white vertices denote variables that are F in the Bes so-
lution. According to the informal definition above, a “diagnostic” showing why x0

is T (an “example” for x0) would be, for instance, the subsystem defining the
variables {x0, x1, x2, x3, x4}, whose vertices are surrounded by a dotted box in
the Ebg. Similarly, a “diagnostic” showing why x5 is F (a “counterexample”
for x5) would be the other subsystem {x5, x6, x7, x8, x9} outlined in the figure.
It is easy to see that these two subsystems can be solved individually and the
truth values obtained in this way for x0 and x5 are the same as those obtained
by solving the whole system.

x4
µ
= x1 ∨ x3 ∨ x7

x1
µ
= x2 ∨ x3 ∨ x5

x8
µ
= x4 ∧ x6 ∧ x9

x5
µ
= x6 ∧ x9

x6
µ
= x3 ∧ x7

x7
µ
= x3 ∧ x8

x2
µ
= x0 ∧ x1

x3
µ
= T

x0
µ
= x1 ∧ x4

x9
µ
= F

x0

x1

∧

∧ ∨

∨

∨

∧

∨
x2

x4

x6

x7 x8

x5
x3 x9

∧

∧ ∧

Fig. 3. A closed Bes and its associated Ebg

In general, for a given variable of a Bes there can be several subsystems
having the property above (an obvious one being the Bes itself). For in-
stance, the reader may check that for the Bes on Figure 3, the subsystems
{x0, x1, x2, x3, x4, x6, x7, x8} and {x3, x4, x5, x6, x7, x8, x9} can also be consid-
ered as “diagnostics” for the variables x0 and x5, respectively.

From the Ebg point of view (and using Theorem 1), a diagnostic for a ver-
tex x of an Ebg G2 would be a subgraph G1 of G2 containing x and having the
property that x |=G1 Ex iff x |=G2 Ex. A suitable subgraph relation between
Ebgs can be defined using the notion of frontier. Intuitively, the frontier of a
subgraph G1 contains all vertices starting at which new edges can be added
when G1 is embedded in another graph G2 (note that G2 may have the same
vertices as G1, but more edges). To obtain a correct subgraph relation, the no-
tion of frontier must be intrinsic to an Ebg: therefore, when embedding G1

in G2, the frontier of G2 must not contain vertices of G1 which are not already
in the frontier of G1. The frontier of an Ebg that is not meant to be embedded
in another one (e.g., an Ebg associated to a closed Bes) is empty.
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Definition 2 (subgraph of an EBG).
Let G1 = (V1, E1, L1, F1) and G2 = (V2, E2, L2, F2) be two Ebgs. G1 is a sub-
graph of G2, written G1 � G2, iff the following conditions hold:

– V1 ⊆ V2 and F2 ∩ V1 ⊆ F1;
– E1 ⊆ E2 and (E2 \ E1)|V1

= (E2 \ E1)|F1
;

– L1 = L2|V1
.

It is easy to check that � is a partial order relation on Ebgs. For the Ebg on
Figure 3, the subgraphs enclosed in the left and right dotted boxes have the
frontiers {x1, x4} and {x6, x7, x8}, respectively.

The two definitions below precise the notion of diagnostics in terms of Ebgs.

Definition 3 (solution-closed EBG).
An Ebg G1 = (V1, E1, L1, F1) is solution-closed iff, for any Ebg G2 =
(V2, E2, L2, F2) such that G1 � G2:

[[Ex]]G1
= [[Ex]]G2

∩ V1

or, equivalently:
[[Cx]]G1

= [[Cx]]G2
∩ V1

where G1 and G2 are the Kripke structures associated to G1 and G2.

Definition 4 (examples and counterexamples).
Let G = (V, E, L, F ) be an Ebg, G its associated Kripke structure, and x ∈ V .
A diagnostic for x is a solution-closed subgraph of G containing x. A diagnostic
for x is called example if x |=G Ex and counterexample if x |=G Cx.

The following theorem provides a characterization of solution-closed
Ebgs that will be useful in the sequel. Intuitively, an Ebg G is solution-closed
if the satisfaction of Ex (or Cx) on its frontier (which contains the only vertices
of G that may directly depend on some external context when G is embedded
in another Ebg) can be completely decided using only the information in G.

Theorem 2 (characterization of solution-closed EBGs).
Let G = (V, E, L, F ) be an Ebg. G is solution-closed iff:

F ⊆ [[(P∨ ∧ Ex) ∨ (P∧ ∧Cx)]]G

where G is the Kripke structure associated to G.

Using Theorem 2, we can easily see that the left and right subgraphs of the
Ebg outlined on Figure 3 are solution-closed (i.e., they are diagnostics for x0

and x5). The same holds for the subgraphs corresponding to the other two sub-
systems {x0, x1, x2, x3, x4, x6, x7, x8} and {x3, x4, x5, x6, x7, x8, x9} having the
frontiers {x1, x8} and {x4}. However, in practice it is desirable to explain the
value of a variable in a concise manner, and therefore diagnostics should be as
small as possible. The following theorem states that minimal diagnostics (w.r.t.
�) can be obtained as particular Ex-models or Cx-models.
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Theorem 3 (characterization of minimal diagnostics).
Let G = (V, E, L, F ) be an example for x ∈ V and G its associated Kripke
structure. G is minimal (w.r.t. �) iff the following conditions hold:

a) G is an Ex-model;
b) ∀y ∈ V.L(y) = ∨ ⇒ |E(y)| = 1;
c) V = E∗(x);
d) F = {y ∈ V | L(y) = ∨}.
The same holds for minimal counterexamples (replacing Ex by Cx and ∨ by ∧).

The characterization provided by Theorem 3 is sufficiently concrete to allow
the design of efficient algorithms for generating minimal diagnostics.

4 Diagnostic Generation Algorithms

We give in this section algorithms for efficiently computing minimal examples
and counterexamples for a given variable of an Ebg G by exploring the Kripke
structure G induced by G. These algorithms exploit the information in [[Ex]]G
and [[Cx]]G and therefore they must rely upon a resolution algorithm that first
computes the semantics of Ex (or Cx) on G. We start by giving a global reso-
lution algorithm and then we present our diagnostic generation algorithms.

4.1 Global Resolution Revisited

The global resolution algorithm Solve that we consider here (see Figure 4) is a
slightly extended version of the global graph-based algorithm given in [1]. The
pre- and post-conditions and the invariants of the while-loop are enclosed in
rectangular boxes on Figure 4. The Solve procedure takes as input a Kripke
structure G = (V, E, L) induced by an Ebg G and computes two informations
for the vertices x ∈ V : a natural value c(x) such that c(x) = 0 iff x ∈ [[Ex]]G;
and (only for ∨-vertices x ∈ [[Ex]]G) a successor s(x) ∈ E(x) such that there is
no path from s(x) to x passing only through vertices in [[Ex]]G.

It is a straightforward exercise to check the validity of the I1 and I2 invariants
(ΦEx

G is the functional associated to Ex), which ensure that after termination of
Solve the vertices in [[Ex]]G will have c(x) = 0. Here we expressed I1 and I2 in
terms of Ex (we could have done this equivalently in terms of Cx). In the light
of Theorem 1, we see that Solve is in fact a model-checking algorithm for Ex.
This holds also for other global Bes resolution algorithms [3,9,28,30].

Invariant I3 ensures that after termination of Solve, all the ∨-vertices x ∈
[[Ex]]G will have a successor s(x) ∈ [[Ex]]G such that the satisfaction of Ex by
s(x) does not depend upon x. As we will see in the next section, the computation
of s is necessary to obtain an efficient algorithm for generating minimal examples.

Figure 5 shows the result of executing Solve on the Ebg previously con-
sidered on Figure 3. Vertices x for which c(x) = 0 are black and the others are
white. Edges (x, s(x)) are drawn as thick arrows.
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G = (V , E, L)

procedure Solve (V , E, L) is
forall x ∈ V do
c(x) := if L(x) = ∧ then |E(x)| else 1 endif

end;
A := {x ∈ V | c(x) = 0};
while A �= ∅ do I1 ∧ I2 ∧ I3

let y ∈ A;
A := A \ {y};
forall z ∈ E−1(y) do

if c(z) > 0 then
c(z) := c(z)− 1;
if c(z) = 0 then
A := A ∪ {z};
if L(z) = ∨ then
s(z) := y

endif
endif

endif
end

end
end

{x ∈ V | c(x) = 0} = [[Ex]]G ∧
{(x, y) ∈ E | x, y ∈ [[Ex]]G ∧ (L(x) = ∨ ⇒ y = s(x))} is acyclic

I1 : ΦEx
G ({x ∈ V | c(x) = 0} \ A) = {x ∈ V | c(x) = 0}

I2 : {x ∈ V | c(x) = 0} ⊆ µΦEx
G = [[Ex]]G

I3 : {(x, y) ∈ E | c(x) = c(y) = 0 ∧ (L(x) = ∨ ⇒ y = s(x))} is acyclic

Fig. 4. Extended global resolution algorithm

x0

x1

∧

∧ ∨ ∨

∧

∨
x2

x4

x6

x7 x8

x5
x3 x9

∧

∧ ∧

∨

Fig. 5. Computation of c and s by Solve
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One can easily adapt other global Bes resolution algorithms like those
in [3,9,28,30] in order to perform the computation of s. Moreover, we claim
that local algorithms like those in [1,29,19] can be adapted as well, since they
function by exploring forwards the boolean graph and by propagating backwards
the vertices found to be true (which is done in a way similar to the Solve al-
gorithm above). In fact, it can be shown that these local algorithms actually
compute solution-closed subgraphs containing the boolean variable of interest.

4.2 Generation of Minimal Examples

The algorithm ExSearch that we propose for computing minimal examples
(see Figure 6) takes as input a Kripke structure G = (V, E, L) induced by an
Ebg G, a vertex x ∈ [[Ex]]G, and for every ∨-vertex y ∈ [[Ex]]G a successor s(y)
as computed by the Solve algorithm given in Section 4.1.

G = (V,E,L) ∧ x ∈ [[Ex]]G ∧
R = {(y, z) ∈ E | y, z ∈ [[Ex]]G ∧ (L(y) = ∨ ⇒ z = s(y))} is acyclic

procedure ExSearch (x, (V , E, L), s) is
V0 := {x}; E0 := ∅; A := {x};
while A �= ∅ do J1 ∧ J2 ∧ J3

let y ∈ A;
A := A \ {y};
if L(y) = ∨ then
E0 := E0 ∪ {(y, s(y))};
if s(y) �∈ V0 then
V0 := V0 ∪ {s(y)}; A := A ∪ {s(y)}

endif
else

forall z ∈ E(y) do
E0 := E0 ∪ {(y, z)};
if z �∈ V0 then
V0 := V0 ∪ {z}; A := A ∪ {z}

endif
end

endif
end

end

G0 = (V0, E0, L|V0
, {y ∈ V0 | L(y) = ∨}) is a minimal example for x

J1 : ∃k ≥ 0.(V0 ⊆ ⋃k

i=0
ΦEx

(V0,E0,L|V0
)

i
(A))

J2 : E0 = R|V0
J3 : V0 = E∗

0 (x)

Fig. 6. Minimal example generation algorithm
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ExSearch iteratively accumulates in V0 all the vertices in [[Ex]]G that are
reachable from x by traversing only edges (y, s(y)) if L(y) = ∨ and edges (y, z) ∈
E if L(y) = ∧. All traversed edges are accumulated in E0.

Invariant J1 (ensured by the properties of s) implies that after termination of
ExSearch, G0 = (V0, E0, L|V0

) is an Ex-model. Indeed, at the end of the while-

loop A = ∅ and thus V0 ⊆ ⋃
i≥0 ΦEx

G0

i(∅) = µΦEx
G0

= [[Ex]]G0
⊆ V0. Invariant J2

implies that all ∨-vertices y ∈ V0 have only one successor (namely s(y)), and
invariant J3 implies that all vertices in V0 are reachable from x via E0. G0 being
an Ex-model, Theorem 2 ensures that G0 is solution-closed, i.e., it is an example
for x. Moreover, G0 meets the conditions of Theorem 3 and thus it is minimal.

Figure 7 shows a minimal example G0 computed by ExSearch for the vari-
able x0 in the Ebg considered earlier on Figure 5. The edges in E0 are drawn as
thick arrows and the vertices on the frontier of G0 are surrounded by dashed cir-
cles. The ∨-vertices x1 and x4 have in E0 a unique successor s(x1) = s(x4) = x3

that was previously computed by Solve.

x0

x1

∧

∧ ∨ ∨

∧

∨
x2

x4

x6

x7 x8

x5
x3 x9

∧

∧ ∧

∨

Fig. 7. A minimal example for x0 computed by ExSearch

Note that the use of the information in s is crucial for ensuring the correctness
of ExSearch: if we chose for x1 the successor x2 instead of x3, the algorithm
would compute the subgraph G0 outlined on Figure 8, which is not an example
for x0 because x0 |=G0 Cx. A correct version of ExSearch that does not use s
would require a backtracking graph search algorithm in order to determine the
“good” successor for each ∨-vertex of the example. It is not obvious how to
obtain a linear-time algorithm for computing minimal examples in this way.

x0

x1

∧

∧ ∨ ∨

∧

∨
x2

x4

x6

x7 x8

x5
x3 x9

∧

∧ ∧

∨

Fig. 8. An erroneous example for x0 computed in absence of s
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ExSearch has a complexity O(|V0|+ |E0|), since all vertices (edges) in the
constructed example G0 are visited (traversed) only once. Since this is the lowest
possible complexity for an algorithm that must entirely explore G0, it appears
that (modulo the linear-time precomputation of s) ExSearch is an optimal al-
gorithm for finding minimal examples. In practice, ExSearch runs very quickly
when computing examples whose sizes are significantly smaller than [[Ex]]G (this
happens for Ctl formulas like E [T U ϕ]).

4.3 Generation of Minimal Counterexamples

The algorithm CxSearch that we propose for computing minimal counterex-
amples (see Figure 9) takes as input a Kripke structure G = (V, E, L) induced
by an Ebg G, a vertex x ∈ [[Cx]]G, and for every vertex y ∈ V a counter c(y) as
computed by the Solve algorithm given in Section 4.1.

G = (V,E,L) ∧ x ∈ [[Cx]]G = {y ∈ V | c(y) > 0}
procedure CxSearch (x, (V , E, L), c) is

V0 := {x}; E0 := ∅; A := {x};
while A �= ∅ do K1 ∧ K2 ∧ K3

let y ∈ A;
A := A \ {y};
if L(y) = ∧ then

let z ∈ E(y) such that c(z) > 0;
E0 := E0 ∪ {(y, z)};
if z �∈ V0 then
V0 := V0 ∪ {z}; A := A ∪ {z}

endif
else

forall z ∈ E(y) do
E0 := E0 ∪ {(y, z)};
if z �∈ V0 then
V0 := V0 ∪ {z}; A := A ∪ {z}

endif
end

endif
end

end

G0 = (V0, E0, L|V0
, {y ∈ V0 | L(y) = ∧}) is a minimal counterexample for x

K1 : V0 \A ⊆ ΦCx
(V0,E0,L|V0

)(V0)

K2 : ∀y ∈ V0 \A.(L(y) = ∧ ⇒ |E0(y)| = 1) ∧ (L(y) = ∨ ⇒ |E0(y)| = |E(y)|)
K3 : V0 = E0

∗(x)

Fig. 9. Minimal counterexample generation algorithm
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CxSearch iteratively accumulates in V0 all the vertices in [[Cx]]G that are
reachable from x by traversing either a single edge (y, z) ∈ E if L(y) = ∧, or all
edges (y, z) ∈ E if L(y) = ∨. All traversed edges are accumulated in E0.

Invariant K1 (ΦCx
G is the functional associated to Cx) ensures that after

termination of CxSearch, G0 = (V0, E0, L|V0
) is a Cx-model. Indeed, at the

end of the while-loop A = ∅ and thus V0 ⊆ ΦCx
G0

(V0). By Tarski’s theorem [27],
this implies V0 ⊆ νΦCx

G0
= [[Cx]]G0

⊆ V0. Invariant K2 implies that after the
while-loop ∧-vertices of V0 have only one successor in V0 and ∨-vertices have all
their successors in V0. Invariant K3 implies that all vertices in V0 are reachable
from x via E0. Since G0 is a Cx-model, Theorem 2 ensures that G0 is solution-
closed, i.e., it is a counterexample for x. Moreover, G0 meets the conditions of
Theorem 3 and thus it is minimal.

Figure 10 shows a minimal counterexample G0 computed by CxSearch for
the variable x5 in the Ebg considered earlier on Figure 5.

x0

x1

∧

∧ ∨ ∨

∧

∨
x2

x4

x6

x7 x8

x5
x3 x9

∧

∧ ∧

∨

Fig. 10. A minimal counterexample for x5 computed by CxSearch

CxSearch has a complexity O(|V0|+ |E0|), since all vertices (edges) in the
constructed counterexample G0 are visited (traversed) only once. Since this is
the lowest possible complexity for an algorithm that must entirely explore G0,
CxSearch appears to be an optimal algorithm for finding minimal counterex-
amples. In practice,CxSearch runs very quickly when computing counterexam-
ples whose sizes are significantly smaller than [[Cx]]G (this happens for Ctl for-
mulas like A [T U ϕ]).

5 Conclusion and Future Work

By representing a boolean equation system M as an extended boolean graph G,
we characterized the solution of M by means of two particular alternation-free
µ-calculus formulas Ex and Cx interpreted on the Kripke structure G induced
by G. This allowed to identify full diagnostics (examples and counterexamples)
explaining the truth value of a boolean variable x of M as being particular
subgraphs of G containing x. Moreover, minimal examples and counterexamples
(w.r.t. a subgraph relation that we defined) are obtained as particular models of
Ex and Cx, respectively.
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The temporal logic-based formalization that we proposed provides a uniform
framework for analyzing graph-based Bes resolution algorithms such as those
in [3,9,28,1,19]. For instance, in Section 4.1 we used our formalization to prove
the correctness of a global resolution algorithm from [1], which can be seen in
fact as an algorithm for checking the Ex formula on a boolean graph.

We presented two linear-time algorithms ExSearch and CxSearch that
compute minimal examples and counterexamples for a given variable of a Bes.
We also indicated how these algorithms can be used to extend existing (global
or local) Bes resolution algorithms with diagnostic generation facilities.

These two algorithms have been included in the model-
checker Evaluator version 3.0 that we developed as part of the
Cadp (Cæsar/Aldébaran) protocol engineering toolset [11] using the generic
Open/Cæsar environment for on-the-fly verification [14]. Evaluator 3.0
performs on-the-fly model-checking of alternation-free µ-calculus formulas
extended with regular expressions as in Pdl-∆ [26]. The diagnostic generation
facilities proved to be extremely useful in practice, as illustrated by the use of
the model-checker by non-expert users and also for teaching purposes. Besides
giving diagnostics for plain alternation-free µ-calculus formulas, Evaluator 3.0
can be used to find regular execution sequences in labeled transition systems
(as diagnostics for Pdl-∆ formulas) and to produce full diagnostics for
Ctl [5] and Actl [22] formulas (by encoding the operators of these logics as
macro-definitions in the input language of the tool).

The ExSearch and CxSearch algorithms compute diagnostics that are
minimal w.r.t. the Ebg subgraph relation that we proposed. The diagnostics
obtained contain no redundant information, since every ∨-vertex in a minimal
example and every ∧-vertex in a minimal counterexample has only one successor.
This is reasonably good in practice, as confirmed by the experiments performed
using Evaluator 3.0. However, there are other additional criteria that may be
considered for further reducing the diagnostic size (e.g., minimizing the number
of vertices, number of edges, depth, diameter, etc.). Some of these optimizations
can be done efficiently in particular cases, e.g., generating minimal length tran-
sition sequences as diagnostics for Pdl-∆ diamond modalities or Ctl formulas
E [T U ϕ] (which both translate into Bess containing only ∨ operators in the non-
trivial right-hand sides). An interesting issue would be to investigate the general
extension of ExSearch and CxSearch with such optimization features.

We also plan to apply our diagnostic generation techniques in the context of
bisimulation checking [9,2] and of test generation [12]. Another potentially fruit-
ful direction of research is to extend our formalization to Bess of higher alter-
nation depth [29,2,20,18]. The characterizations of the solution and diagnostics
for these Bess would certainly require formulas of the full modal µ-calculus.
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