
FMona: A Tool for Expressing Validation

Techniques over Infinite State Systems

J.-P. Bodeveix and M. Filali

IRIT Université Paul Sabatier
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Abstract. In this paper, we present a generic tool, called FMona, for ex-
pressing validation methods. we illustrate its use through the expression
of the abstraction technique and its application to infinite or parame-
terized space problems. After a review of the basic results concerning
transition systems, we show how abstraction can be expressed within
FMona and used to build a reduced system with decidable properties.
The FMona tool is used to express the validation steps leading to syn-
thesis of a finite abstract system;then SMV and/or Mona validate its
properties.

Keywords: abstraction, transition systems, model checker, monadic sec-
ond order logic.

1 Introduction

In recent years, important work has been done in the design and implementation
of general specification languages and validation systems. Usually, we distin-
guish three families of tools: model checkers (SMV [BCMD90], SPIN [Hol91]) to
build a finite model and check its temporal properties; automatic proof tools
(Mona [HJJ+95]) which offer a complete decision procedure if the underly-
ing logic is decidable and proof assistants (Coq [BBC+97], HOL [GM94] and
PVS [ORS92]) which offer an expressive higher order logic (and thus not decid-
able) and an assistance to the validation of formulas expressed in this logic.

Our experience in using these tools has led us to the following observations:

– model checkers are generally easy to use but their validation algorithm is
“hardwired” and the available data structures are generally poor,

– automatic proof tools lack a specification language level to express methods
– and proof assistants lack powerful decision procedures and their integration
is a delicate operation. Moreover their use is uneasy and require for instance
the knowledge of the underlying type theory, the proof tactics, the tactic
language and the underlying decision procedures.

In this paper, we relate an attempt to overcome these problems. We have cho-
sen an intermediate approach combining an automatic proof tool and higher level
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aspects so that the expression of validation methods becomes easy. Of course,
unlike proof assistants, our tool FMona cannot be used to validate the methods
themselves. Encoded methods can only be instantiated on given applications. As
our automatic proof tool target, we have chosen Mona as the main proof tool.
Actually, within its underlying logic (WS1S) we can express transition systems
and most of their basic properties without restricting to finite state spaces. In-
deed, we can consider parameterized transition systems. We have used FMona
to express several validation techniques, e.g. iterative methods with convergence
acceleration over parameterized state systems and abstraction methods. In the
following, we focus on the use of FMona to express and apply the abstraction
method.

The remainder of this paper is organized as follows: section 2 presents the
logic underlying the studied validation techniques and its associated tools. Sec-
tion 3 describes the transition system formalism and states the theorems underly-
ing the abstraction technique. In section 4, we describe the use of the abstraction
method to the validation of always true and simulation properties. Sections 5
and 6 illustrate the technique on two concrete examples. Section 7 considers
some ongoing work.

2 Monadic Second Order Logic and Related Tools

We recall below the definition of the two variants (WS1S and S1S) of the monadic
second order logic of one successor [Tho90]. Then, we present the Mona tool
deciding WS1S formulas and its high level interface FMona.

Definition 1 (The S1S and WS1S logics) Let {x1, . . . , xn} be a family of
first order variables and {X1, . . . , Xn} a family of second order monadic vari-
ables. A primitive grammar of this logic can be defined as follows:

– A term t is recursively defined as: t ::= 0 | xi | s(t)
– A logic formula f is recursively defined as: f ::= Xi(t) | ¬f | f ∧ f | ∃xi. f |

∃Xi. f

Notice that the successor function s is the only function.

Validity of a formula A closed formula is valid in S1S or WS1S if it is valid in
the interpretation on the set N of naturals, where s is the successor function,
first order quantifiers relate to the naturals and second order quantifiers to the
subsets (finite in the case of WS1S) of N . These two logics are decidable [Tho90].

The monadic second order logic naturally supports the method presented
since it makes it possible on the one hand to express the concept of sequence of
execution on a finite state space and the temporal properties associated, and on
the other hand the refinement relation between a parameterized concrete space
and a finite abstract space.



206 J.-P. Bodeveix and M. Filali

The Mona Tool The Mona tool [HJJ+95] implements a decision procedure for
WS1S, based on the automata theory. The Mona syntax accepts the construc-
tions of the WS1S logic presented in the preceding section. Mona data types are
thus limited to booleans, naturals and finite sets of naturals. Thus, propositional,
first order and second order variables are respectively declared, existentially and
universally quantified by vari, exi and alli where i is the order of the variable.

The FMona Tool The FMona tool [BF99b] is a high level interface for Mona.
For instance, it is possible to declare enumerated and record with update types
and quantify over them. Furthermore, FMona allows the definition of higher
order macros parameterized by types and predicates. FMona source code is type-
checked, macro expanded and translated to pure Mona. The following example
defines the transition relation req1 between the states st and st’. The complete
example is given in section 5.

type PC = {out,req,mutex}; type Sys = record{pc1,pc2: PC; y1,y2: nat;};
pred req1(var Sys st,st’) =
st.pc1=out & st’=st with {pc1:=req; y1:=st.y2+1;};

Note that the expression st’=st with { pc1 := req; y1 := st.y2 + 1;} ex-
presses that st’ is obtained by updating the fields pc1 and y1 of st.

We will use the FMona tool to express parameterized transition systems,
abstraction relations, the synthesis of finite abstractions and the validation of
their safety properties (mainly the so called always true properties).

3 The Formalism and the Basic Results

This section presents the formalism used: transition systems [Arn92]. We recall
then the basic results concerning transition systems. The Coq proof assistant
has been used to formalize the definitions and to validate the stated theorems.

Notations Given a set S, its complement is denoted S. In the following, sets and
predicates are identified. Given a relation ϕ ⊂ A × B and a subset P ⊂ A, we
note ϕ(P ) = {y ∈ B | ∃x : P (x) ∧ ϕ(x, y)}.

3.1 Transition Systems, Refinements, Simulations and
Implementations

Definition 2 A labeled transition system is defined by a quadruple (E, I, L,→),
where E is a set of states, I ⊂ E is the set of initial states, L is a set of labels
and →⊂ E × L × E is the transition relation. We will note e

l→ e′ instead of
(e, l, e′) ∈→.

Definition 3 (Invariance) A predicate P is invariant in the transition sys-
tem S if: it is true over the initial states and is is preserved by each transition.
A state s ∈ E is reachable in S if there exists a sequence s0, . . . , sn = s

such that s0 ∈ I and ∀i ∈ 0..n − 1 : si → si+1. The set of reachable states of a
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transition system S will be denoted Acc(S). A predicate P is said to be always
true in S if it holds in all reachable states of S. This is denoted S � ✷P .

Theorem 1 (Sufficient condition for validity) An invariant property is al-
ways true.

Within FMona, we define the macro reachable and always true as follows:

pred reachable(type State,

pred(var State s) init, pred(var State s,s’) tr, var State s) =
ex array nat of State A: ex nat i: A[i]=s & init(A[0]) &

all nat j where j < i: tr(A[j],A[j+1]);

pred always true(type State, pred(var State s) p,

pred(var State s) init, pred(var State s,s’) tr) =
all State s: reachable(init,tr,s) ⇒ p(s);

Definition 4 (Refinement) Given two transition systems with the same set
of labels L,
C = (Ec, Ic, L,→c) and A = (Ea, Ia, L,→a), and ϕ ⊂ Ec × Ea. C refines A
through ϕ, denoted C �ϕ A, if:

– ϕ maps each initial state of C to an initial state of A.
– Given two states c and c′ of Ec such that c

l→ c′ and a state a ∈ Ea in
relation with c through ϕ, there exists a state a′ ∈ Ea in relation with c′ such
that a

l→ a′.

Definition 5 (Run) Given a transition system S = (E, I, L,→). A run is a
relation ⇒ ∈ E × L∗ × E inductively defined as:

– e
ε⇒ e

– if e
l⇒ e′ and e′ a→ e′′ then e

l.a=⇒ e′′

We define the set of finite traces T (S) of the system S as follows:

T (S) = {l ∈ L∗ | ∃i ∈ I, e ∈ E : i
l⇒ e}.

Definition 6 (Simulation and implementation) Given two transition sys-
tems C and A. C simulates A through ϕ if for every state c of C reachable by
a trace t, c has a ϕ image reachable in A by t. C implements A if the set of
traces of C is a subset of the set of traces of A.

Theorem 2 (Sufficient conditions) Refinement is a sufficient condition for
simulation. Simulation is a sufficient condition for implementation.

The validation of always true properties relies on the following theorems
which state two equivalent sufficient conditions; the first one is expressed at the
abstract level and the second one at the concrete level.
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Theorem 3 (Always true properties preservation) Given two transition
systems C and A such that C simulates A through ϕ. If the abstraction of P

by ϕ (ϕ(P )) is always true over A, then P is always true over C. More for-
mally, we have the two equivalent formulas:

CsimulatesϕA A � ✷ϕ(P )
C � ✷P

CsimulatesϕA ϕ−1(Acc(A)) ⇒ P

C � ✷P
(1)

3.2 Abstraction

The abstraction technique aims at verifying the properties of a transition system
through the reduction of its state space: the original system is said concrete and
the reduced one is said abstract. In fact, it can be considered as the reverse of
the refinement technique where we derive a concrete system from an abstract
one. The abstraction technique synthesizes an abstract system from the concrete
one. Relevant properties are studied over the abstract system and inherited by
the concrete one. This method has been used by [CGL94] to reduce the state
explosion resulting from an exhaustive search over a finite state space. It is also
used by [BLO98] for analyzing infinite state space systems. Given an abstraction
function, they propose heuristics for the construction of the abstract system
whereas in our approach the abstract system is built in an automatic way by
the FMona tool.

In the following, we recall the basic definitions and results.

Definition 7 (Abstraction) Let C = (Ec, Ic, L,→c) be a transition system,
Ea a set of so called abstract states and ϕ a relation over Ec×Ea. The abstraction
of C through ϕ is the transition system (Ea, Ia, L,→a) where Ia is the image
by ϕ of Ic and for each label l, l→a is the set of images through ϕ of the pairs
connected by l→c.

It follows that the abstraction of a transition can be expressed by the generic
and higher order FMona macro:

pred tr a(type State c, type State a, pred(var State c c, c’) tr c,

pred(var State c c, var State a a) ϕ, var State a a,a’) =
ex State c c,c’: ϕ(c,a) & ϕ(c’,a’) & tr c(c,c’);

Theorem 4 (Refinements and abstractions) Let ϕ a total relation between
two state spaces Ec and Ea. A transition system over Ec refines its abstraction
through ϕ.

4 Automatic Validation through Abstraction

Let us recall that the abstraction introduced in the paragraph 3.2 consists in
defining a finite reduced system starting from a concrete system, a finite state
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space and a total relation known as the abstraction. It is the reverse of a refine-
ment as the starting system is the concrete one. Moreover, for a refinement, the
two transition systems are provided.

One generally considers two approaches for the expression of properties to
be validated:

– the first one is based on states: a property is expressed as a temporal logic
predicate over the state space (more exactly over the state variables defining
the interface of the system).

– the second one is based on transitions: we are interested in a simulation
property between a concrete system and an abstract system (also called the
reference system).

In the following, we illustrate the abstraction method by considering the two ap-
proaches: to validate the mutual exclusion implemented by the bakery algorithm,
we adopt a state based approach; to validate some classes of cache coherency
protocols, we adopt the transition based approach.

4.1 Specification and Synthesis of the Abstract Transition System

The formulas defining the transitions of the abstract transition system, as intro-
duced in definition 7, are quantified over the domain of the concrete space and
thus are not propositional. It follows that the existence of a transition between
two abstract states is not necessarily decidable. In order to be in a decidable
context, we consider the framework of the WS1S logic for expressing:

– the infinite or parameterized concrete state space (with first and second order
variables),

– the transitions of the concrete system,
– the abstraction relation between the concrete and abstract systems.

Thus, according to definition 7, an abstract transition is a WS1S predicate
over two abstract variables. Consequently, the properties of an abstract system
can

– either be studied within the WS1S logic, which assumes the encoding of
temporal logic operators in this formalism [Tho90]. Then, safety properties
(which are inherited) can be expressed and automatically decided [ABP97].

– or be studied using a model checker as SMV [BCMD90]. Such a use requires
the synthesis of a propositional expression of abstract transitions. Since this
alternative resorts to a dedicated tool, it seems to be more efficient on the
considered examples. The synthesis of the propositional expression can be
performed through two methods:
• by an exhaustive exploration of the abstract state space: the existence
of a transition between two abstract states is determined by the validity
of a closed WS1S formula (definition 7).
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• by a symbolic reduction to propositional logic of an abstract transi-
tion expressed in WS1S. This reduction is possible within the Mona tool
where the set of solutions of a predicate with free variables is encoded by
an transition system whose transitions are labeled by propositional for-
mulas. In this context the free variables are booleans and the automaton
generated by Mona contains a unique transition.

Let us illustrate the synthesis of the finite transition system over a trivial
example. The state space of the concrete transition system is a finite set of
naturals of unknown size, the concrete transition is defined by the predicate
Initc(S) = (S = {0}) and the transition Trc(S, S′) = ∃1x, y : y ∈ S ∧ S′ =
S\{y}∪{x}. As an abstraction, we consider a state reduced to a unique boolean b,
and the abstraction relation ϕ(S, b) = (b ⇔ ∀1x, y : x ∈ S∧y ∈ S ⇒ x = y). The
abstract transition system is defined by the predicate Inita(b) = ∃2S : Initc(S)∧
ϕ(S, b) and the transition Tra(b, b′) = ∃2S, S′ : ϕ(S, b) ∧ Trc(S, S′) ∧ ϕ(S′, b′).
The Mona tool can automatically simplify the previous monadic second order
logic formulas to propositional formulas. Actually, we have synthesized the finite
transition system defined by: Inita(b) = b and Tra(b, b′) = b ⇒ b′.

4.2 Verification of Always True Properties

Given a total abstraction relation ϕ, the validation of a formula on the concrete
transition system relies on the deduction rules of theorem 3. In this theorem,
the abstract system is the abstraction through ϕ of the concrete system. By
theorem 4, ϕ being total, the concrete system simulates its abstraction. Then,
the rules (1) can be simplified as follows:

Absϕ(C) � ✷ϕ(P )
C � ✷P

ϕ−1(Acc(Absϕ(C))) ⇒ P

C � ✷P

Given these two rules, the validity of P is derived form the properties of
the abstract transition system. Let us recall that the synthesis can be expressed
in WS1S. Consequently, the two preceding rules give two decidable sufficient
conditions. To summarize, given a user defined abstraction relation, we have
two automatic verification methods:

Method 1

1. Construction of the abstract transition system.
2. Construction of the reachable states Acc of the abstract transition system.
3. Definition of a superset of the reachable states of the concrete transition

system as the inverse image by ϕ of Acc.
4. At the concrete level, we show that ϕ−1(Acc) ⇒ P .

Note that the term ϕ−1(Acc) can be interpreted as a lemma automatically
proven through an exhaustive exploration of the abstract state space. This lemma
helps in the validation of P .
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Method 2

1. Construction of the abstract transition system.
2. Computation of the abstraction of P : ϕ(P ).
3. Verification of this abstraction over the reachable states of the abstract tran-

sition system.

Since the abstract state space is finite, this verification can be performed by
a model checker like SMV. This second method uses a dedicated tool for the
verification of always true properties.

4.3 Validation of Simulation Relations

The goal is to determine the existence of a simulation relation between a concrete
system and a reference system. For that, we provide a projection of the concrete
space to the state space of reference and a total abstraction relation. Then, we
show that the restriction of the concrete system to some superset of its reachable
states refines the reference system.

Thus, given a user defined projection π and a total abstraction relation ϕabs,
the construction of the simulation relation automatically proceeds according to
the following steps:

1. Construction of the abstract transition system (WS1S): the concrete system
refines the abstract system.

2. Construction of the accessible states Acc of the abstract transition system
(WS1S).

3. Restriction of the concrete transition system to the reverse image of the
accessible states of its abstraction.

4. Validation of the refinement between the reduced concrete transition system
and the reference system (WS1S formula).

4.4 Abstraction Heuristics

To reduce parameterized or infinite data structures, we apply the heuristics
presented in the following paragraph. The abstraction function associates with a
parameterized or infinite type a finite approximation. We consider three classes
of types: integer types, arrays with opaque1 index and finite values, arrays with
natural index and finite value, and arrays with opaque index and values. We
have considered the following abstractions which can be expressed in WS1S:

1. We associate with natural state space variables a family of boolean variables
coding the comparisons between these variables or the variables and the
constants of the problem. Notice that this heuristics is in fact the one used
in an automatic way by [Les97].

1 An opaque type supports only the assignment and comparison operations.
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2. We associate with an array with opaque index and finite values within the set
{x1, . . . , xn} a family of bounded counters {c1, . . . , cn} with value in the set
{0, . . . , k,+}. A counter Ci indicates the number of indexes with value xi.
This enumeration being bounded by k, a higher number of occurrences is
denoted +.

3. We associate with an array t with natural index and finite values the number
of alternations t(i) �= t(i − 1), counted in the finite set {0, . . . , k,+}.

4. We associate with an array with opaque index and values the number of
different values in the array, counted in the finite set {0, . . . , k,+}.

Notice that the heuristics we present relate to the construction of an ab-
straction function, the abstract transition system being automatically built and
validated by the FMona tool for the considered class of problems. On the other
hand, [BLO98] supposes the existence of an abstraction function and proposes
heuristics for the construction of the abstract system.

5 Application to the Bakery Mutual Exclusion Protocol

The transition system of the Bakery mutual exclusion algorithm over two pro-
cesses is described in FMona by the following code. Its state space contains two
finite-typed variables pc1 and pc2 and two naturals y1 and y2. The state space
is thus infinite.

type PC = {out,req,mutex}; type Sys = record{pc1,pc2: PC; y1,y2: nat;};

pred Init(var Sys st)= st.pc1=out & st.pc2=out & st.y1=0 & st.y2=0;

pred req1(var Sys st,st’)= st.pc1=out &

st’=st with {pc1:=req; y1:=st.y2+1;};
pred req2(var Sys st,st’)= st.pc2=out &

st’=st with {pc2:=req; y2:=st.y1+1;};
pred enter1(var Sys st,st’)=
st.pc1=req & (st.y2=0 | st.y1≤st.y2) & st’=st with{pc1:=mutex;};

pred enter2(var Sys st,st’)=
st.pc2=req & (st.y1=0 | st.y2<st.y1) & st’=st with{pc2:=mutex;};

pred leave1(var Sys st,st’)= st.pc1=mutex &

st’=st with {pc1:=out; y1:=0;};
pred leave2(var Sys st,st’)= st.pc2=mutex &

st’=st with {pc2:=out; y2:=0;};

We notice that it is not possible to bound the natural variables y1 and y2. Ac-
tually, when considering the execution sequence r1(e1r2l1e2r1l2)∗, the sequence

of (y1,y2) values is (0, 0)r1(e1r2l1e2r1l2)k−−−−−−−−−−−−→(2k + 1, 0) where r, e, l respectively
abbreviate req,enter,leave.

We seek to establish that the mutual exclusion property is always true:

pred excl(var Sys st) = ∼(st.pc1 = mutex & st.pc2 = mutex);
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The predicate excl is not an invariant. Actually, it is not preserved by
enter1. However, as shown in the following, it is always true, i.e., true in any
reachable state. In order to get a finite state space, the fields pc1 and pc2 being
finite, it is enough to abstract the fields y1 and y2. We consider the abstraction
which consists in coding the comparisons between these two fields. Then, we get
the abstract system Sys a and the abstraction relation ϕ defined as follows:

type Cmp = {z1z2,z1,z2,inf12,inf21,eq};
type Sys a = record{pc1,pc2: PC; y1y2: Cmp;};
pred ϕ(var Sys st, var Sys a a) =
a.pc1 = st.pc1 & a.pc2 = st.pc2 &

if st.y1 = 0 & st.y2 = 0 then a.y1y2 = z1z2

elsif st.y1 = 0 then a.y1y2 = z1

elsif st.y2 = 0 then a.y1y2 = z2

elsif st.y1 < st.y2 then a.y1y2 = inf12

elsif st.y2 < st.y1 then a.y1y2 = inf21

else a.y1y2 = eq endif;

The relation ϕ being total, according to theorem 4, the Bakery transition sys-
tem refines its abstraction through ϕ. The abstraction through ϕ of the Bakery
system, computed by FMona, is a finite state system of which transitions can
be expressed using WS1S and reduced to propositional logic using Mona. Con-
sequently, the computation of the reachable states is possible. Mona validates
that any state reachable by this transition system cannot be the image of a state
where two processes would not be in mutual exclusion. The following logical
formula (extracted from the transition system produced by Mona) encodes the
set of reachable states of the abstract system:

st1 = idle ∧ st2 = idle ∧ cmp = z1z2 (∗ 0 = y1 = y2 ∗)
∨ st1 = idle ∧ st2 = req ∧ cmp = z2 (∗ 0 = y1 < y2 ∗)
∨ st1 = idle ∧ st2 = mutex ∧ cmp = z2 (∗ 0 = y1 < y2 ∗)
∨ st1 = req ∧ st2 = idle ∧ cmp = z1 (∗ 0 = y2 < y1 ∗)
∨ st1 = req ∧ st2 = req ∧ cmp = inf12 (∗ 0 < y1 < y2 ∗)
∨ st1 = req ∧ st2 = req ∧ cmp = inf21 (∗ 0 < y2 < y1 ∗)
∨ st1 = req ∧ st2 = mutex ∧ cmp = inf21 (∗ 0 < y2 < y1 ∗)
∨ st1 = mutex ∧ st2 = idle ∧ cmp = z1 (∗ 0 = y2 < y1 ∗)
∨ st1 = mutex ∧ st2 = req ∧ cmp = inf12 (∗ 0 < y1 < y2 ∗)

According to theorems 2 and 3, it follows that the mutual exclusion predicate
excl is always true in the Bakery system.

Note that the validation of the abstract system can also be achieved by SMV
after reducing abstract transitions to propositional logic. Such a reduction can
be performed by Mona. The following FMona predicate defines the transitions
of the abstract system according to the abstraction relation ϕ and the concrete
transition relation Trans2(tr a has been defined in section (3.1)).

pred bakery tr a(var Sys a a,a’) = tr a(Trans,ϕ,a,a’);

2 FMona automatically synthesizes type parameters.
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The Mona tool produces a transition system representing the reduction of the
relation Trans a. Since the transitions of this system are labeled by propositional
formulas relating the arguments of Trans a, a SMV expression of the abstract
transition can be extracted and analyzed.

It is interesting to note that since the abstraction did not modify the interface
fields pc1 and pc2, it also defines a mutual exclusion algorithm over a finite state
space similar to Peterson’s algorithm [PS85] comprising apart from the fields pc1
and pc2 a finite field y1y2 that can be encoded by three booleans.

6 Application to Cache Coherency Protocols

In this section we consider cache coherency protocols for shared memory multi-
processor machines [Ste90]. In such an architecture, each processor has a private
cache where it stores copies of the shared memory data. The protocol ensures
coherence between the multiple copies of a same data. Informally, atomic co-
herency means that the processors behave as if data were not duplicated. For
this purpose, a given finite state is associated with each copy. For instance, in
the Illinois protocol [AB86], the State type can be encoded as the enumera-
tion {Inv, Excl, Shared, Dirty} where Inv marks an invalid copy, Excl an
exclusively held copy, Shared a shared copy, and Dirty a modified copy. The
data structures handled by such protocols are described by the following decla-
rations, where Proc and Word are two opaque types. In the following, we denote
by control the array Ctr and by data the array C and the memory M.

var nat NProc;

type Proc = ... NProc; type State = {Inv, Shared, Excl, Dirty};
type Word = record{b1:bool; b2:bool;}; # see section 6.2
type Sys =
record{Ctr:array Proc of State; C:array Proc of Word; M:Word;};

This protocol is parameterized by the number of processors, defined by the
type Proc, and by the size of the words, defined by the type Word. The validity of
such a protocol is expressed either by the satisfaction of an always true property,
or by the simulation of a canonic atomic memory [BF99b]. The canonic atomic
transition system (6.1) includes a register and the operations for reading and
writing in this register.

6.1 Specification of the Transition System

The transition system defining atomic protocols establishes the interface of a
memory access protocol comprising the Init predicate and three transitions:
the reading of a value v by the processor p, the writing of a value v by the
processor p. and the Skip transition which does nothing.

type Word = record{b1:bool; b2:bool;}; # see section 6.2
pred Init atomic(var Word r) = true;
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pred Read atomic(var Word v, var Word r,r’) = (v = r) & (r’ = r);

pred Write atomic(var Word v, var Word r,r’) = (r’ = v);

pred Skip(var Word r,r’) = (r’ = r);

The transition system of an atomic coherency protocol must implement the
preceding reference system.

6.2 Elimination of the Opaque Type Word

The expression of the abstract system in the WS1S logic requires to fix the size of
Word. For this purpose, we use the result established in [BF99a]. It concerns the
reduction of formulas where the comparisons between elements of some opaque
type D only occurs in terms of the form f(x) = g(x) or f(x) = k where f, g and k
are identically quantified at the top level of the formula. Let n be the number of
such functions or variables. The validity of the formula over a domain D of size
≥ n is equivalent to its validity over a domain of size n.

Here, the opaque type Word must be eliminated from formulas expressing
data abstraction and transition refinement. In both cases, variables of type Word
are either global arrays or global variables (the array of words C, the memory M
and the value to be read or written d). According to our result, we can restrict
the type Word to a domain of size three. Consequently, we have chosen a record
with two booleans.

6.3 Abstraction and Reduction

In this paragraph, we show how the abstract transition system is actually syn-
thesized. The abstraction relation ϕca can be structured as the conjunction of a
control abstraction and a data abstraction.

Control abstraction associates to the (parameterized size) array Ctr a fixed
family of counters, through the application of the second heuristic of §4.4. Thus,
we introduce the abstraction data type as a record with three bounded counters,
one for shared caches, one for exclusive caches and one for dirty caches. The
abstraction relation ϕ ctr maps the Illinois control array to these counters.

# array abstraction through bounded counters
type B Cpt = {Zero, One, More};
pred abstr p(type State, pred(var State s) p, var B Cpt f) =
if all State s: ∼p(s) then f=Zero

elsif ex State s1: p(s1) & all State s: s
=s1⇒∼p(s) then f=One

else f=More endif;
type Sys a ctr = # abstraction of Illinois control

record{c Shared: B Cpt; c Excl: B Cpt; c Dirty: B Cpt;};
pred ϕ ctr(var Ctr s, var Sys a ctr a) =
abstr p(pred(var Proc p):s[p]=Shared,a.c Shared) &

abstr p(pred(var Proc p):s[p]=Excl,a.c Excl) &

abstr p(pred(var Proc p):s[p]=Dirty,a.c Dirty);
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Data abstraction associates to the array C and the memory M the cardinal,
counted over {1, 2,+}, of the set of valid data in the system.

type Sys a data = {One d,Two d,More d};
pred ϕ data(var Sys s, var Sys a data c) =

if (all Proc p: s.Ctr[p]
=Inv ⇒ s.C[p]=s.M) then c = One d

elsif (ex Proc p,q: s.Ctr[p]
=Inv & s.Ctr[q]
=Inv & s.C[p]
=s.C[q]

& s.C[p] 
= s.M & s.C[q] 
= s.M) then c = More d

else c = Two d endif;

Consequently, the abstract domain consists in a fixed family of bounded
counters (Bi)i≤K , defined here by the record Sys a. The abstraction relation ϕ
is then defined as the conjunction of the abstractions of the control and data
parts. Note that for efficiency purposes, this conjunction has been restricted
to the reachable states of the control part. Otherwise, the complexity of the
computation is too high and the resulting formula cannot be decided by Mona.

type Sys a = record{ ctr a: Sys a ctr; data a: Sys a data;};
pred ϕ(var Sys s, var Sys a a) =
is abs ctr Acc(a.ctr a) & ϕ ctr(s.Ctr, a.ctr a) & ϕ data(s,a.data a);

6.4 Validation of the Simulation Relation

In this section, we show the simulation of the canonic transition system, reduced
to one register R (see §6.1) by the abstract one. Here, we are interested in the
refinement approach. With this intention, one introduces a projection between
the state space of the Illinois protocol and the space reduced to one register. The
relation ill atm expresses that the contents of the register R is either equal to
the memory if the caches are all invalid, or equal to the common value of the
non-invalid caches.

pred ill atm(var Sys s, var Word r) =
((all Proc p:s.Ctr[p]=Inv)⇒s.M=r) & all Proc p:s.Ctr[p]
=Inv⇒s.C[p]=r;

It should be noted that this relation does not make it possible to define a
refinement with the atomic model. In fact, the Illinois transition system must
be restricted to some superset, called is Acc of its reachable states. For this
purpose, we consider the inverse image through ϕ of the reachable states of its
abstraction.

pred is Acc(var Sys c) = ex Sys a a: ϕ(c,a) & is abs Acc(a);

Then, the validity of the Illinois protocol can be stated: we show that the re-
lation ill atm establishes a refinement between the reduced concrete transition
system and the atomic one. More precisely, such a refinement is specified by the
following conjunction which is transformed by FMona to pure Mona code and
validated by Mona.
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# Illinois validation
refinement init(restrict init(Init,is Acc),Init atomic,ill atm) &

(all Word v: refinement tr(restrict tr(Read Miss(v),is Acc)

,Read atomic(v),ill atm)) &

(all Word v: refinement tr(restrict tr(Write Miss(v),is Acc)

,Write atomic(v),ill atm)) &

refinement tr(restrict tr(Flush,is Acc),Skip,ill atm);

7 Other Validation Techniques

Apart from abstraction techniques, we have also expressed in FMona iteration
based techniques. It should be stressed that we have applied them on param-
eterized systems. However, since the state spaces of the considered problems
are not fixed, we have no decidability results. It follows that the user must
provide an iteration bound to apply the proposed macros. Backward iteration
techniques have been successfully applied to mutual exclusion algorithms on
ring networks [Mar85]. However, forward and backward analysis fail for some
well known problems (e.g. termination detection [DFvG83], dining philosophers,
Szymanski mutual exclusion protocol [Szy90]). To overcome such problems, con-
vergence acceleration techniques have been proposed [ABJN99]. The basic idea
consists in approximating the transitive closure of the transition relation. We can
express such techniques in FMona. In a forthcoming paper [BF00], we present
some new acceleration techniques and their expression in FMona. These tech-
niques allowed us to validate the above-mentioned problems.

8 Conclusion

In this paper, we have illustrated the use of FMona to express the abstraction
technique and its applications. Thanks to the higher order features of FMona,
the validation steps of the method could be expressed in a generic way and
instantiated on specific problems.

FMona has also been used to express other well known methods such as it-
erative methods applied to parameterized systems. It should be stressed that
these methods have been generically defined and have been applied to well know
problems (mutual exclusion on parameterized rings, parameterized multiproces-
sor memory protocols, infinite space bakery algorithm).

For efficiency reasons, we have also connected FMona to propositional solvers.
We also plan to consider the validation of the methods themselves and how to
integrate them smoothly into FMona.
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Les97. Lessens, D. and Säıdi, H. Abstraction of parameterized net-
works. Electronic notes in theoretical computer science, 9:12, 1997.
http://www.elsevier.nl/locate/entcs/volume9.html. 211



FMona: A Tool for Expressing Validation Techniques 219

Mar85. A.J. Martin. Distributed mutual exclusion on a ring of processes. Science
of Computer Programming, 5(3):265–276, October 1985. 217

ORS92. S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification
system. Lecture Notes in Computer Science, 607, 1992. 204

PS85. J.L. Peterson and A. Silberschatz. Operating system concepts. Addison-
Wesley, 1985. 214

Ste90. P. Stenstrom. A survey of cache coherence schemes for multiprocessors.
Computer, 23(6):11–25, June 1990. 214

Szy90. B.K. Szymanski. Mutual exclusion revisited. In fifth Jerusalem conference
on information technology, pages 110–117. IEEE Computer Society Press,
1990. 217

Tho90. W. Thomas. Automata on infinite objects. In J.v. Leeuwen, editor, Hand-
book of Theoretical Computer Science, pages 133–192. MIT Press, 1990.
205, 209


	Introduction
	Monadic Second Order Logic and Related Tools
	The Mona Tool
	The FMona Tool
	The Formalism and the Basic Results
	Transition Systems, Refinements, Simulations and Implementations
	Abstraction

	Automatic Validation through Abstraction
	Specification and Synthesis of the Abstract Transition System
	Verification of Always True Properties
	Validation of Simulation Relations
	Abstraction Heuristics

	Application to the Bakery Mutual Exclusion Protocol
	Application to Cache Coherency Protocols
	Specification of the Transition System
	Elimination of the Opaque Type Word
	Abstraction and Reduction
	Validation of the Simulation Relation

	Other Validation Techniques
	Conclusion
	References

