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Abstract

We show that contrary to a published statement, any instance of
McEliece's Public Key Cryptosystem always has many trapdoors. Our
proof leads to a natural equivalence relation on monic polynomials
over a finite field F such that any two irreducible Goppa codes
over F whose Goppa polynomials are equivalent under this relation

are equivalent as codes.

l. Introduction

McEliece [7] introduced the idea of using am error correcting
code as the basis of a Public Key Cryptosystem, which we abbreviate
to PRC, Let C be a linear code which corrects t errors and for
which a fast decoder is known, and let G be a generator matrix for
C such that it is hard to find any fast decoder for C from
knowledge of G. To encipher a message M, introduce t random errors
and encode the result with G. In the McEliece PKC, C is an
irreducible binary Goppa code. Since for an arbitrary linear code
finding the nearest codeword to a given received word is an NP~
complete problem, it can be expected that only the holder of the
decoder for C will be able to decryrt messages. Thus the decoder
acts as a trapdoor to the decipherment function and is the secret
key of the system, while G is the public key. Experience with the
knapsack PKC has shown however that the NP-completeness of a
problem used to construct a PKC in this way is no guarrantee of
security, since only special cases of the problem are used [2].

Part of the difficulty lies in the fact that there may be many
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trapdoors to a given decipherment function. Adams and Meijer [1]
state that for the McEliece system there is usually only one. We
show that their statement is incorrect, although there are probably
sufficiently few that finding one by brute force is out of the
question. A more serious cloud has been cast on the security of the
McEliece PKC by the announcement by Korzhik and Turkin [5] of an
algorithm for decoding a linear code that succeeds for received
words whose distance from the nearest codeword is strictly less
than half the minimum distance of the code, and which is polynomial
in the length of the code. They do not find a trapdoor for the
McEliece PKC, and indeed they estimate a time of 60 hours on a
personal computer to decipher one block of ciphertext. Their
algorithm assumes the usual Hamming metric, so Gabidulin [3] has
suggested using codes that employ a non-Hamming metric instead.

There are two main thrusts to this paper. The first is an
examination of just what is involved in finding a fast decoder for
an irreducible binary Goppa code when its generator matrix G is
given. We show there are many fast decoders, each corresponding to
a permutation of the columns of G. Each such permutation may be
regarded as a trapdoor to the instance of the McEliece PKC with
public key G. The second thrust is the introduction of an
equivalence relation ~ on the set P of monic polynomials of degree
t over F = GF(2™). We define g ~ h if some affine transformation
over F composed with some automorphism of F maps roots of g to roots
of h, and show that any two irreducible Goppa codes over F with
equivalent Goppa polynomials are equivalent as codes. Although the
converse is not true, this does suggest that it would be worthwhile
to count and classify the equivalence classes of P, which has not
to our knowledge been previously attempted., Some results in this
direction have been obtained, and will appear in a forthcoming
paper. Certainly it can be hoped that this kind of detailed
study of the structure of Goppa codes will lead eventually to a
determination of whether or not the problem of finding a trapdoor
to an instance of the McEliece PKC is NP-complete.

There is not a large body of literature on the McEliece PKC.
Several authors [1] [6] [9] show how to reduce the work needed to
decipher messages without finding a trapdoor. Heiman [4] is the
only previous author to address the problem of finding a trapdoor.
Goppa codes are a special case of the class of Alternant codes [8],

and Heiman shows how to find a fast decoder for any Alternant code
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from its generator matrix. Fortunately the irreducible binary Goppa
codes used in the McEliece PKC have fast decoders that will correct
more errors, twice as many in fact, as Heiman's decoders will, and
they are the only Alternant codes known with this property! The

papers [3] [5] already referred to complete the current picture,

2. Finding a fast decoder from the generator matrix

Let F = GF(n), n = 2%, and let a = (agsa; «o. @ _;) be any
vector of all the n members of F. Let g be an irreducible monic
polynomial of degree t over F. The irreducible binary Goppa code of

degree t with field vector o and Goppa polynomial g is the code

)

[(e,g) whose codewords are the binary vectors c = (co.c1 ese €
n-1

with 2 ci/(x-ui) = 0 mod g(x). [(a,g) is determined up to
i=0

n-1

equivalence by g, and knowledge of a and g provides a fast decoder
correcting up to t errors. More details can be found in [8].

To create an instance of the McEliece PKC from a k x n generator
matrix G for [, a designer chooses at random a non-singular k x k
binary matrix 8, and an n X n permutation matrix P, and uses K = SGP
as the public key. Let C denote the code whose generator matrix is
K. We examine in this section the task that a cryptanalyst faces in
finding a fast decoder for C that corrects t errors, and show in the
next that there are many such decoders.

An important point, first noted by Heiman [4], is that the matrix
8 has no cryptographic significance, though it may be useful in
hiding any obvious structure of G. The reason is simply that S does
not change the set of codewords of C, and messages can be recovered
from codewords using K without knowing what S is. We now show that
in a sense, P has no cryptographic significance either. We show
that if o permuted with P can be found then a fast decoder for C
correcting t errors can be obtained easily. In other words, a
trapdoor is just a suitable field vector.

The cryptanalyst first chooses a representation of F, and any
vector p = (po.p1 e pn-l) of all the n members of F. He then
seeks a permutation of the coordinates of p that transforms p into
w = (wo.w1 vee wn_l) for which ¢ 8 [(w,h) for some h. (An entirely
equivalent procedure is to keep p fixed and look for a suitable
permutation of the columns of K). g and ¢ permuted with P are known
to be possible values for h and w, but there are many others. Once

w is found, h, and consequently a fast decoder for C, can be found
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quickly by a method described in [8] p34l in a different context.

The rows of K are codewords of C. Let ¢ = (cguc; +.. ¢ _;) be any
n-1
codeword of C, and let p(x) = T[ c.,(x-w;). Then the formal

i=0
derivative p' of p is a multiple of hz. Thus the cryptanalyst has
only to find w for which the polynomials p' obtained using each
row of K have non-trivial greatest common divisor.

We will show that there are at least mn(n-1) permutations that
work, and each may be regarded as a trapdoor to the instance of the
McEliece PKC with public key K. McEliece suggested m 8 10, giving
the cryptanalyst over 10 million permutations to choose from,
though since they have to be selected from all 1024! permutations

of the coordinates of p he will not find one by brute force.

3. The equivalence of codes and polynomials

Let F = GF(n), n = 2. Let o = (ao.al voo an_l) be any vector of
all the n members of F. Let g be an irreducible monic polynomial
of degree t over F. Let a,b € F, a # 0., We use the same symbol b to
denote the n-vector (b,b ... b)., Let j be an integer, 0 < j < m.

Let h be the be the monic polynomial of degree t over F for which

t 23 27 . T
a [g(x)] = h(ax® +b)., and let p = (pgyep; .o o _;) = aa” +b,
powers of a vector being taken coordinatewise. It is not difficult
to show that if c¢ = (co.c1 oee cn-l) is any binary n-vector then
n-1 n-1

Y~ c¢./(x-a.) = 0 mod g{(x) if and only if ¥I_ c./(x-p.) = 0
i=0 * t i=o ?t N

mod h(x), ie. [(e,g) = [(p,h). This prompts what follows.
Let P be the set of monic polynomials of degree t over F. Define

the equivalence relation ~ on P by g ~ h if for some a,b ¢ F, a # 0,

J 3
and some integer j, 0 £ j < m, at[g(x)]2 = h(ax2 +b). Equivalently
g ~ h if, in the splitting field of g, some affine transformation

over F composed with some automorphism of F maps roots of g to roots

t : t

of h. In terms of coefficients, }_ g.xl ~ ):0
i=0 t i=

It is clear that any two irreducible Goppa codes over F with

o .
at lgi (x+b)?t.

equivalent Goppa polynonials are equivalent as codes. Indeed this
is true for any two codes of the same length and degree, whether
irreducible or not. The converse is not true. The irreducible Goppa
codes over GF(32) with Goppa polynomials x6 + x + 1 and x6 + x5 + 1
are equivalent codes with inequivalent polynomials.

Let L denote the group generated under composition by affine
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transformations over F and automorphisms of F. Then the order of L
is mn(n-1), and each member of L applied to the coordinates of a
vector o of all the n members of F maps a to a differemt vector,
justifying the assertion made in the last section that there are at
least mn(n-1) successful permutations available to a cryptanalyst of
an instance of the McEliece PKC of degree t over F with given public
key K. There may be far more. If eg. two columns of K are equal, any
successful permutation composed with the appropriate interchange
will be successful, though it will not in general be a permutation
induced by any member of L. This happens when m = 3 and t = 2,
Summarising, let o,p be vectors of all the n members of F, and
let goh be irreducible monic polynomials of the same degree over F.
If a member of L maps & to p and roots of g to roots of h then
[(e¢yg) B T{p,h). There will always be more than one polynomial
describing [(a,g) up to equivalence, but there may be fewer than

ma(n-1), The exact number will be discussed in a forthcoming paper.
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