
Enhancing Secrecy by Data Compression :
Theoretical and Practical Aspects

Colin Boyd
Communications Research Group

Electrical Engineering Laboratories
University of ManChester

Manchester M13 9PL, UIC.
(Email: BOYD@uk.ac.man.ee.vl)

Abstract

It was recognised by Shannon that data compression increases the
strength of secrecy systems when applied prior to encryption. Cam-
pression techniques have advanced considerably in recent years. This
paper considers the extent to which these techniques can increase secu-
rity. Estimates are obtained for how far practical compression schemes
can increase unicity distance of symmetric ciphers. It is noted that
there are other good reasons for using data compression prior to en-
cryption. Comparison is made with homophonic coding and it is sug-
gested that data compression is more worthwhile for practical sources
such as natural language.

1 Introduction
Shannon's theory of secrecy systems [Ill uses key equivocation as an index
to measure the security of a cryptosystem. The key equivocation is the
conditional entropy of the key given the ciphertext, and can be expressed as
a function of the number of plaintext characters encrypted. Shannon showed
that the rate at which this equivocation falls is approximately linear with
slope equal to the redundancy of the source language.

The unicity distance I/ can be defined as the least number of symbols such
that the key equivocation, after li symbols are encrypted, is expected to be
zero. Shannon also showed that U is approximately inversely proportional to
the source redundancy in bits per symbol, D, for all reasonable cryptosystems

D.W. Davies (Ed.): Advances in Cryptology - EUROCRYPT '91, LNCS 547, pp. 266-280, 1991.
0 Springer-Verlag Berlin Heidelberg 1991

267

[I l l . If H (K) is the initial key entropy then U is approximated by

I;=--- W O
D

An alternative definition of U is the average number of plaintext symbols
required so that the redundancy (in bits) exceeds the key length. If the
length of the encrypted message is less than the unicity distance then it is
not possible to decide the key or plaintext uniquely from knowledge of the
ciphertext alone. It is quite possible for ciphers to have an infinite U, and
Shannon called such ciphers ideal.

In Shannons other landmark paper [12] he showed that it is possible
to reduce the redundancy of sources by suitable coding. IIe realised that
this source coding, or data compression, if implemented prior to encryption,
would strengthen secrecy systems by reducing the rate at which the key
equivocation function decreases or. equivalently, increasing U . If all source
redundancy can be removed before encryption then any reasonable cipher will
be ideal. The use of data compression has become widespread in recent years
due to the availability of easily programmed algorithms. The benefits of data
compression are obvious in terms of savings in storage and communications
costs.

This principle of using compression prior to encryption is now widely
known and has been repeated often, for example in modern texts such as
[14]. However, the literature has not been helpful in providing quantita-
tive measures for how far security can be extended when using practical
techniques. In this paper the practical, as well as the theoretical, aspects
of applying compression prior to encryption are considered, with particular
reference to recent advances in data compression techniques. As a result
a quantitative measure for how far the best compression schemes can be
expected to increase unicity distance is obtained.

The paper is divided into three main sections, the first two of which are
concerned solely with the question of how far unicity distance can be extended
by practical compression. Firstly modern coding techniques are examined to
see how close they can get to achieving zero redundancy. In order to do this,
new bounds on the overhead of arithmetic coding are obtained which show
that unicity distance can be made very large if the only overheads are due to
coding inaccuracies. The next section considers the complementary problem
of modelling real sources and how this affects practical compression. This
allows quantitative statements to be made on how far modern compression
techniques can be expected to extend unicity distance. We conclude that in
the practice, for English text, only a modest increase of unicity distance is
possible, by a factor of between 3 and 6. The final main section considers
other aspects of using compression prior to encryption, in particular the

268

effects on known and chose11 plaintext attacks, and the possible effects on
processing speed.

When considering the effect of compression on unicity distance, compar-
ison is made with the alternative source coding technique of homophonic
coding [6]. Although homophonic coding appears best in a purely theoret-
ical approach, we suggest that it is probably not worthwhile for practical
encryption of complex sources such as natural language, in comparison with
compression methods.

1.1 Huffman, Ziv-Lempel and arithmetic coding
In a theoretical sense the compression coding problem was solved in 1952
when Huffman published his coding algorithm [5] . He showed that it could
not be improved upon in the sense that there is no prefix free code with
a shorter average word length. Despite this, the most successful modern
methods of practical compression do not use Huffman coding. The reason
is partly that modern methods do not encode in a symbolwise manner as
Huffman coding does, but instead deal with source symbols many at a time.
In addition, and perhaps more importantly, Huffman coding is not well suited
to exploit the adaptive models used in the most successful methods.

The most common modern methods are arithmetic coding and dictionary
coding [l]. The set of dictionary coding methods, which are variations on the
method of Ziv and Lempel [lS], have proved very popular recently largely
due to their speed and ease of implementation, as well as their very good
compression. Arithmetic coding, although less widely used, is a very simple
and effective idea. It has the property that it separates the coding and
modelling functions very clearly which not only makes it suitable for virtually
any modelling technique, but also makes it amenable to analysis. With
sophisticated modelling techniques arithmetic coding is frequently the most
effective choice in terms of achievable compression.

1.2 Coding and Modelling
One of the most important recent influences on data compression has been
the realisation that the whole compression process can be divided into two
essentially distinct parts [lo]; the modelling process, which provides a proba-
bility distribution for the source alphabet, and the coding process which uses
the stream of source symbols tc be compressed, together with the probabil-
ity distributions from the model, to produce an encoding. In an information
theoretic model of communication various kinds of source model are usu-
ally considered. For example, symbols may be assumed to be independently
emitted, or more generally a Markov model may be assumed. A practical
approach to compression, and to cryptography, needs to take into account

269

that a real source may not conform to any tractable model, or if it does then
the exact probability distribution may be unknown.

The next two sections reflect the coding and modelling viewpoint. First
we ignore the modelling problem by making an assumption that an exact
model for the source is known. Following that we turn to the practical situa-
tion by including the modelling problem. For dictionary methods the division
between modelling and coding is rather difficult to define. For Huffman and
arithmetic coding the division is very clean, so we concentrate on these.

2 Coding
By Shannon’s Noiseless Coding Theorem (131 it is known that for a given
source it is possible to compress the output arbitrarily close to its entropy,
but no further without loss of information. We are only concerned here
with compression that can be completely reversed since this is necessary in
practice for text.

For any message rn, which is a sequence of 1 source symbols, we may define
its information content by I (m) = - logp, if rn occurs with probability p,.
The overhead for a particular message m is then:

encoded length - I (m)
1

coding overhead =

We assume that all encodings are binary so that the coding overhead is
measured in bits per symbol (b p s) . A conventional way of measuring the
effectiveness of a source code is to find the eqected coding overhead. It
will suit our purposes to look simply at bounds on the coding overhead
for any message. This makes calculations simpler and also conforms to the
convention in cryptography of assuming worst case conditions.

2.1 Limitations of Huffman Coding
The basic algorithm for Huffman coding [5] assumes that the model of the
source is fixed and that symbols are emitted independently. Schemes for
adaptive Huffman coding have also been developed but they are not as flexible
as arithmetic coding in accepting different models. The limitation of Huffman
coding is that an exact number of bits must be used for the encoding of each
symbol. To illustrate worst case conditions note that when a binary source
of just two symbols is encoded, each symbol must occupy one bit. If one
symbol is far more likely than the other then the information content of that
bit will be very small. As a result, the best general bound for the coding
overhead is one bit per symbol. It is well known that there is zero coding
overhead if all symbols have probabilities equal to an integral power of l/2.

270

For a source with ‘random’ symbol probabilities we might expect an average
overhead of 1/2 bit per symbol.

A common way of reducing the overhead is to extend the source alphabet
by using blocks of two or more symbols. In this way the overhead is spread
over the block, so that for an alphabet of two-symbol blocks the maximum
overhead is 1/2 bit per symbol. This idea can be exploited as far as is desired
in theory by taking larger and larger blocks, but the practical drawback is
that the storage required increases exponentially in the block size. For ASCII
text a block length of 3 or 4 is about as far as is reasonable, leading to a
maximum overhead of 0.25 bits per symbol.

2.2 Limitations of arithmetic coding
Arithmetic coding encodes a source string as a number in the unit interval
[0,1). Unlike Huffman Coding, there is no fixed cudeword for each symbol,
but how each symbol is encoded depends on the rest of the string. A complete
description can be found in [7] or [17]. The idea is that each symbol in the
message is assigned a distinct subinterval of the unit interval of length equal
to its probability. This is the coding intervul for that symbol. As encoding
proceeds a nesting of subintervals is defined. Each successive subinterval
is defined by reducing the previous subinterval in proportion of the current
symbol’s probability. The final interval, when all symbols have been encoded,
has length equal to the product of all the symbol probabilities and can be
transmitted by sending any member of it. It can be easily shown that in any
interval of length L there is a number that can be represented in a number
of bits that is the least integer greater than -1ogL. This is equal to the
entropy of the message encoded so in theory virtually perfect compression is
achieved.

The limitations of arithmetic coding are a little harder to evaluate than
those of Huffman coding, since they depend on parameters defined by the im-
plementation. In order t o makc reasonable estimates we use the parameters
reported for a published implementation I1 71. Alternative concrete imple-
mentations are considered in [a] and [7] . The overhead can he divided into
three parts.

0 Overhead due to finite arithmetic. Because only finite arithmetic is
used to calculate the current interval at each stage, a truncation must
be rna?e, resulting in a smaller interval than would be obtained with
infinite precision arithmetic. Using arithmetic to 32 bits of precision,
this has a very small effect on the compression obtained, since the
interval has to be increased to twice its correct size before one extra
bit is used.

In [17] the overhead due to finite arithmetic is stated to be around

271

bits per symbol, from empirical calculations. A concrete bound may
also be obtained which indicates that this is, if anything, an overesti-
mate of the effect.

0 Overhead due to end effects. In practice it is not necessary to encode
all symbols of a message before obtaining some output bits. However,
after the final symbol is encoded it is necessary to send some additional
bits to disambiguate the final symbol. This results in an overhead of
not more than 2 bits per message (see [17, p. 5351).

Overhead due to halting problem. The decoder needs to have some
means of knowing when to stop decoding since the transmitted string
represents any interval it is contained in. A naive way of achieving this
is to send the message length prior to the message, and this clearly
results in an overhead of log 1 bits for a message of length I . In practice
this method may not be very satisfactory and so in [17] an end-of-
message symbol (eom) is included in the model, which is appended
to each message as the last symbol. The effect of this is that extra
bits are used to send this symbol, and also that the coding interval of
every other symbol is slightly shortened to accommodate the coding
interval for eom. The exact overhead depends on the way that the end-
of-message symbol is modelled. In [17] both a fixed and an adaptive
model are implemented.

For the the fixed model each source character is given a weight, the
sum of all weights being 8000. In addition the eom symbol also has
weight 1 and so has probability l/SOOl, and each other symbol has its
probability reduced by the factor SOOO/SOOl. The resulting overhead
for one message is

- I o ~ (~ O O O / S O O ~) ~ ~ S + log SO01 = 0.00018bp~ + 13.

For the adaptive model the eom symbol is given a fixed weight of 1 while
all other characters start off with weight 1 but can increase, subject to
a maximum total weight of 214. Thus if the eom symbol originally has
probability 1/257 then it has probability 1/(257 + I) at the end of a
message of length I. Thus the overhead for a message of length I is
log(257 + 1) for coding the eom symbol itself plus

- 10g(256/257)(257/258) ...(256 + 1)/(257 + I) = log257 + 1 - 8.

In other words the total overhead due to eom is 21og(257 + I) - 8.

Because of the maximum allowed total weight, the weights are all
halved periodically and so the above formula is no longer valid. In-
stead, for long messages the eom symbol has a frequency in the adap-
tive model of between 1 in 213 and 1 in 214. This results in a minimum

272

probability of eom of 2-14, while the reduction to other symbols is not
more than 1 - 2-13. For long messa.ges then, the eom results in an
overhead of not more than 14 + 0.00018bps.

In conclusion, adding the three factors together we arrive at a fair estimate
for the overhead in an implementable arithmetic coding scheme of

0.00028 bits per symbol + 16 bits per message

The bounds derived above were verified by performing some simple exper-
iments using the implementation of arithmetic coding in ‘C’ given in [17].
Using simple fixed models it was found that the overhead was almost exactly
as predicted by the estimates.

2.3 Homophonic coding

i
Although arithmetic coding has very small redundancy it is possible to do
better. Homophonic coding actually achieves zero redundancy even though
it may result in data expansion. A useful way of viewing this surprising
effect is to consider that homophonic coding works by ‘adding randomness’
to the source. Since an ideal cipher requires only zero redundancy, and not
compression, this method is just as useful from a cryptographic viewpoint.
The recent methods of Giinther [4], and of Jendal, Kuhn and Massey [6] are
guaranteed to have small data expansion. The links between homophonic
coding and data compression are strong - using the model of [6] homophonic
coding can be viewed as a homophonic mapping followed by perfect com-
pression. Homophonic coding allocates a number of homophones (infinite in
general) to each source symbol. The coding space of each symbol is divided
up in such a way that each of its homophones has a part and so that the
homophones can be perfectly compressed.

In comparison with compression methods, homophonic coding has two
disadvantages. Firstly the implementation is more expensive - a random
source of bits is required to choose the homophones and more resources are
required to store or calculate the codewords. Secondly there is considerable
loss in data compression. It was shown [6] that the expected coding overhead
for homophonic coding is not more than 2 bits per symbol, and that this
can be further reduced for memoryless sources by blocking as explained for
Huffman coding. However, even in this simple case the overhead will be
considerably worse than for arithmetic coding.

2.4 The Effects of Compression Coding on Unicity
Distance

For Huffman coding the coding overhead will depend on the extent to which
the source alphabet may be extended. If we assume an overhead of 0.125

273

bits per symbol, which may be typical for a source with alphabet extended
to sets of four symbols, then the unicity distance for a cryptosystem will
become eight times the key length in bits. For example a cryptosystem with
56 bit key length should achieve around a 450 character unicity distance.

Consider next the situation for arithmetic coding. If we assume again a
cipher with a key length of 56 bits then the unicity distance U is defined by

16 + 0.0002SU = 56

so that U is over 142 000 characters. This is quite a large size of message
(about four times the size of this paper) and represents a vast increase com-
pared with using ASCII, and around 300 times better than with Huffman
coding.

Finally for homophonic coding we have zero redundancy and so an infinite
unicity distance is achieved. Thus in a theoretical sense homophonic coding
allows achievement of ideal ciphers.

3 Practical Compression Schemes
We are only concerned here with ‘one-pass’ compression schemes - those
that use models that are either chosen beforehand and fixed, or which adapt
according to the statistics of previous symbols encoded. The alternatives are
two pass schemes which examine the statistics of the message first and then
transmit a model along with the compressed message. There are a number
of reasons that this restriction is made. From the viewpoint of increasing
unicity distance, transferring a model ensures that there is a considerable
amount of redundancy present. From the point of view of achieving good
compression it has been shown [l] that two pass schemes are in practice no
better then one-pass. Finally, one-pass schemes are far more convenient in a
communications environment.

Practical compression schemes often use adaptive models which change
the statistics of the source model according to those symbols encoded so far.
Arithmetic coding is particularly suited to adaptive modelling since a new
probability distribution can be used a.fter every symbol is encoded. As long
as the procedure for updating the model is well defined both encoder and
decoder maintain the same model at each stage. A comprehensive survey of
such modelling techniques is presented by Bell, Cleary and Witten [I].

3.1 The effects of the best compression methods on
unicity distance

It is very difficult to make a definitive statement on what is the best data com-
pression method currently known. For one thing techniques are constantly

274

improving and there is much active research. But in any case we need to
define what is meant by 'best'. Perhaps the first concern in the present con-
text is how much compression is achieved, but even this matter will normally
depend on the type of data being compressed. Just as important in a commu-
nications environment is the question of the cost of compression, particularly
in terms of time but also in memory required. As might be expected, there is
in general a trade-off between compression achieved and resources required.
We will try to give a brief summary of the current situation concentrating on
how well "ordinary" English text can be compressed, since this is the case
for which the data exists to compare the effect on unicity distance.

A comparison of ten different compression schemes is presented in by
Bell, Cleary and Witten [l]. This comparison ranges over a variety of samples
including technical and non-technical English prose encoded in ASCII, binary
object code, programming source code in ASCII and graphics images. Over
the English text the best compression achieved (using the PPMC method
with arithmetic coding) was 2.25 bits per character for technical prose, and
2.48 bit per character for fiction prose. The unicity distance achieved on
encrypting such compressed text will depend crucially on the true figure of
the information content per English character for the source used. There have
been various methods devised for estimating the entropy of ordinary English,
many using human experiments. (See [15] for a survey, and [3] for a recent
method of computer analysis.) The figures obtained typically vary between 1
and 1.3 bits per symbol and depend on authors and styles of writing. However
there are no studies which suggest that the entropy of English is above 1.3
bits per symbol for messages of any reasonable length and we may safely take
this value as an upper bound. Thus even for best compression schemes the
redundancy per symbol is at least 1 bit per character. This compares with
3.7 bits per character of redundancy for the basic 26 letter alphabet, or 6
bits per character for English text encoded as 7-hit ASCII.

Coding Bits per char Redundancy per char
26 letter alphabet 4.7 3.4
7 bit ASCII 7 5.7
Best compression schemes 2.3 1

Table 1: Redundancies for English Text

Thus, since unicity distance is inversely proportional to redundancy, the effect
of the best compression schemes on unicity distance is to increase it between
3 and 6 times, depending on the coding used and on the true value of the
information content. The best methods use arithmetic coding for which the
coding overhead is a small fraction of one bit per symbol and thus contributes
a small part of the total redundancy. The only way to significantly improve

275

unicity distance for natural languages bcyond these levels is to use better
modelling techniques. These are the subject of much current research.

Estimates for the redundancy of real sources other than natural languages
do not seem to be so readily available. Clearly many examples, such as
programming source code, can be expected to have a less rich structure than
natural language, and it may well be that redundancy per character can be
made much lower than 1 bit per character for these sources. In [l] Lisp
and Pascal source code is reported to be compressed to 1.9 and 1.84 bits
per character respectively. It is possible to conceive of sources for which
extremely accurate models are available and where practically infinite unicity
distance may be obtained. At present this does not appear to be achievable
for natural languages.

Although unicity distance may be improved by a factor of 3 to 6 it will
still be far too small in general to allow keys to be changed before the unicity
distance is achieved, which would guarantee some unconditional security. For
example, the 56 bit key length of DES would result in a unicity distance of no
more than 56 characters of plaintext. Even so, the removal of so much struc-
ture of the plaintext gives good confidence that breaking the cryptosystem
using a ciphertext-only attack will be made considerably harder than with-
out compression. It is well understood that a small unicity distance does not
mean that a cryptosystem is weak - thus with ASCII encoded English, DES
has a unicity distance of about 8 characters, but nobody knows a better way
to break DES than with a brute force key search.

Shannon defined the work factor associated with a cryptosystem [ll, p.
7021 to be the amount of work required to break it from a given amount
of ciphertext. The idea is that with more plaintext redundancy being used,
the effort needed to break the cipher would be reduced. Shannon suggests
that there is a strong relationship between work factor and unicity distance.
If the work factor were directly proportional to the unicity distance then
using compression would increase this also by a factor of 3 to 6. In practice,
however, the work factor may be asymptotic to some value, and since there is
frequently practically limitless ciphertext available, this should perhaps not
be taken as very comforting.

3.2 Is homophonic coding worthwhile?
It was shown in section 2 that practical coding methods can compress with
a coding overhead of around 0.0003 bits per symbol for long messages. How-
ever, as we have just seen, the best compression methods (including those
which achieve this sort of coding efficiency) can only compress natural lan-
guage with remaining redundancy at least 1 bit per character. In other words
nearly all the redundancy remaining is due to approximations in the mod-
elling and not to problems of coding. Even with Huffman coding the majority

276

of the overhead is due to modelling.
The reason for the modelling overhead is that the incorrect probabilities

are used for each message. Thus a particular message rn of length 2 may have
an actual probability p , of ocurring, but the model assumes that it has a
probability of p',. Thus if we write

k (P m / p L)
1

Modelling Overhead =

then the total overhead for compression is

Encoded length - I (m)
1

= Coding Overhead + Modelling Overhead

For homophonic coding the coding overhead is zero but the modelling prob-
lem, and thus the modelling overhead, is the same as for compression cod-
ing. Thus, for natural language, using homophonic coding would achieve
little advantage in loss of redundancy while resulting in considerably higher
implementational costs and loss of much compression. Thus from the view-
point of reducing redundancy there seems little point in using homophonic
coding. The reason that homophonic coding does not achieve optimal com-
pression, even though it does achieve optimal coding, is that randomness is
introduced. We cannot say that this addition of randomness will not make
cryptanalysis harder, but equally other methods of adding randomness may
be just as effective. '

4 Other Factors
Up till now we have been considering the benefits of compression only in
terms of increasing the unicity distance of a cipher - in other words we have
been aiming at an approximation to an ideal cipher of Shannon. In this
sectign other factors are considered, including the benefits of compression
against other forms of attack, and the implications for speed of processing.

4.1

Consider a known plaintext attack against a cryptosystem to which com-
pression is applied beforehand. Oq the surface it may seem that compres-
sion provides no extra defence against such an attack. For an attacker who
obtains known ciphertext and the corresponding plaintext which was com-
pressed before encryption, may compress the plaintext himself to obtain
plaintext/ciphertext pairs for the basic cryptosystem. It is here that the
use of adaptive modelling can provide additional security.

Using adaptive modelling to increase security

277

The use of adaptive modelling for cryptographic purposes has previously
been considered by Witten and Cleary [16]. They proposed the use of arith-
metic coding with adaptive modelling as a cryptosystem itself, using the
initial state of the source model as the key. They argue that the model will
become so complex and dependent on the whole of the plaintext that analysis
for a cryptanalyst is impractical. However they do not provide any concrete
evidence that the idea is secure.

By using instead the compressed output as the input to a cryptosystem
in which confidence has been established, we can be fairly sure of having
made cryptanalysis considerably harder. However, the benefits of the above
idea can also be claimed. Instead of using a key to initialise an adaptive
model, a random initialiser can be used as a prefix for each message. This
will indeed make the model unpredictable and have a complicated affect on
its future states (note that such-models usually expand in size over time). In
addition such a randomizer would make a known or chosen plaintext attack
more difficult to mount if the initialiser were not itself known or chosen, much
in the manner that initialisation values for block ciphers can. This initialiser
need not be sent in advance as long as its length is agreed beforehand.

It is perhaps worth extending this analogy with block ciphers. A common
mode of operation of block ciphers is to chain the ciphertext blocks together
so that the ciphertext of each block depends on all the preceding blocks. This
property is also true when adaptive modelling is used but now on a character
by character basis. This property ensures that recurring pieces of plaintext
are encrypted differently. It is also useful in maintaining the integrity of the
message, in that pa.rts of the encrypted text cannot be deleted or transposed
without completely altering the subsequent decrypted text.

4.2 Speed
When considering the practical implication of using data compression prior
to encryption it is important to examine the speed of compression. In a
communications environment it may not he tolerable for a large delay to be
introduced. Not surprisingly there is again a trade-off here, this time between
speed of compression and compression achieved. Nevertheless even the best
compression techniques are not likely to have too problematic an effect. In
[l] the speed of the PPMC method mentioned above is reported as 2000
characters per second on a Vax. Schemes which achieve less compression
go faster - a version of Ziv-Lempel coding is reported in [l] to I on at 6000
characters per second for encoding and nearly twice as fast decoding.

The effects of speed when applying compression prior to encryption will
depend also on the speed of the underlying encryption. There will of course
be less material to encrypt if compression is used. If we assume also that
pipelining of algorithms is possible then we are looking for compression algo-

278

rithms which run at similar speeds to the encryption algorithm in order that
there is similar performance. Implementations of DES in software run typ-
ically between 20 and 100 kbit/s [13]. (More recent products claim speeds
of around 200 kbit/s.) If 8-bit ASCII is used for encrypting English this
translates to between 2500 and 12 000 characters per second. Clearly it is
difficult to draw precise conclusions from these figures on different machines,
but it appears that compression may result in a small slow down in running
speed, perhaps around a half in some cases.

Hardware encryption with, say, DES, can go much faster than this, up
to 45 Mbit/s [13]. Compression in software cannot match these speeds.
Hardware designs exist [9] which promise adaptive data compression at 100
Mbit/s. If this can be achieved then the use of data compression prior to
encryption will be able to increase the speed of encrypting a message, in ad-
dition to its other benefits. For slower encryption algorithms, such as RSA,
compression prior to encryption may also result in an increase of speed.

4.3 Error propagation
The one clear disadvantage in using data compression is the effect it has upon
error propagation. Whilst Huffman coding with a fixed model has quite good
re-synchronisation properties [S], coding with adaptive models appears not
to have any such properties. Once a single bit is lost or changed the whole
model thereafter is out of synchronisation and will have catastrophic effects.
Whether this is a major problem will depend on the channel being used
and if essentially error free transmission can be achieved. A silver lining to
this cloud is the benefit of such a property in terms of authentication of the
message as discussed in 4.1.

5 Conclusion
In this paper we have made the following points.

1. Modern coding techniques can reduce the coding overhead to less than
0.0003 bits per symbol plus 16 bits per message in practice.

2. The major overhead is due to limitations in modelling. This results in
a current best achievement of around 2.3 bits per symbol for ordinary
English text.

3. Practical compression of English text results in increase of unicity dis-
tance of between 3 and 6 times.

4. Homophonic coding suffers from the same modelling limitations and
thus has little benefit over compression coding in reducing redundancy.

279

5. Using compression coding helps reduce resources used, and may somc-
times even improve the speed of encryption.

6. Using a random initialiser with an adaptive model appears to make
practical cryptanalysis very hard.

In summary we have seen that ideal cryptosystems cannot be achieved either
by using compression or homophonic coding. However modern compression,
such as arithmetic coding, used prior to encryption, results in both theoret-
ical and practical strengthening of the cryptosystem with little or no loss
of performance while also saving on storage and/or transmission costs. The
only negative consideration is whether errors are likely. Further research on
practical implementations of combined compression and encryption would be
useful.

6 Acknowledgement
I am very grateful to Ian Witten for his interest in this paper and for making
suggestions for important improvements.

References
[l] T.Bel1, 1.H.Witten and J.G.Cleary, Modeling for Text Compression,

ACM Computing Surveys, 21,4, December 19S9.

[2] G.V.Cormack and R.N.S.Horspoo1, Data Compression using Dynamic
Markow Modelling, Tlie Computer Journal, 30, 6, 1987.

[3] P.Grassberger, Estimating the Information Content of Symbol Sequences
and Eficzent Codes, IEEE Transactions on Information Theory, IT-35,
3, pp 669-675, 1989.

[4] C.G.Gunther, A Universal Algorithm for Homophonic Coding, Proceed-
ings of Eurocrypt S8, Springer-Vel-lag, 19SS.

[5] D.A.Huffman, A method for the Construction of Ailininturn-Redundancy
Codes, Proceedings of the IERE, 40,9,1952.

[6] H.N.Jenda1, Y.J.B.I<uhn and J.L.Massty, A n Information-Theoretic
Treatment of Homophonic Substitution, Proceedings of Eurocrypt 89,
Springer-Verlag, 1990.

[7] G.G.Langdon, A n Introduction to Arithmetic Coding, IBM Journal of
Research and Development. 2S,2, 1984.

280

[8] D.A.Lelewer and D.S.Hirschberg, Data Cornpression, ACM Computing
Surveys, 13,3,1987.

[9] R.Phillips and S.Jones, A I00 MBit/s Adaptive Compressor Chip, Ab-
stracts of Second Bangor Symposium on Communications, May 1990.

[lo] J.Rissanen and G.G.Langdon, Universal Modelling and Coding, IEEE
Transactions on Information Theory, IT-27, 1 , pp 12-23, 1981.

[ll] C.E.Shannon, Communication Theory of Secrecy Systems, Bell Systems
Technical Journal, 656-715, 1949.

[12] C.E.Shannon and W.CVeaver, The Mathematical Theory of Communi-
cation, University of Illinois Press, 1949.

[13] M.Smid and D-Branstad, The Data Encryption Standard: Past and Fu-
ture, Proceedings of the IEEE, 76,5,1988.

[14] H.C.A.van Tilborg, An Introduction to Cryptology, Kluwer Academic
Publishers, 1988.

[15] D.Welsh, Codes and Cryptography, Clarendon Press, Oxford, 1988.

[16] 1.H.Witten and J.G.Cleary, On the Privacy Aflorded by Adaptive Tezt
Compression, Computers and Security, 7, 1988, pp397-408.

[17] I.H.Witten, R.Neal and J.G.Cleary, Arithmetic Coding for Data Com-
pression, Communications of the ACM, 30,6,1987.

[18] J.Ziv and A.Lempe1, A universal algorithm f o r sequential data compres-
sion, IEEE Transactions on Information Theory, IT-23,3,pp 337-343,
1977.

	Enhancing Secrecy by Data Compression :Theoretical and Practical Aspects
	1 Introduction
	1.1 Huffman, Ziv-Lempel and arithmetic coding
	1.2 Coding and Modelling

	2 Coding
	2.1 Limitations of Huffman Coding
	2.2 Limitations of arithmetic coding
	2.3 Homophonic coding
	2.4 The Effects of Compression Coding on UnicityDistance

	3 Practical Compression Schemes
	3.1 The effects of the best compression methods onunicity distance
	3.2 Is homophonic coding worthwhile?

	4 Other Factors
	4.1 Using adaptive modelling to increase security

	4.2 Speed
	4.3 Error propagation

	5 Conclusion
	6 Acknowledgement
	References

