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Abstract 

Boolean functions that satisfy higher order propagation criteria are studied. A 
complete characterization is given of the autocorrelation function and Walsh spec- 
trum of second order functions. The number of second order functions satisfying 
PC(k)  is related to a problem in coding theory and can be computed explicitly 
for k = 1, n - 1 and n. A new interpretation of the number of balanced second 
order functions is given and a class of functions showing interesting properties is 
discussed. 

1 Definitions 

1.1 Boolean functions 

A Boolean function f(g) is a ,act ion whose domain is the vector space Z; of 
binary n-tuples (z1,22,. . . , zn)  that takes the values 0 and 1. In some cases it 
will be more convenient to work with functions that take the values { - 1 , l ) .  The 
functions f(:) is defined as f(z) = 1 - 2 .  f(z). The Hamming weight hwt of an 
element of Z! is the number of components equal to 1. 

A Boolean function is said to be linear if there exists a y! E Z; such that it 
can be written as Lw(a;) = z .  w or &(a;) = (-1)"'u. Here iz - u denotes the dot 
product of z and w, defined as z .w = x1w1@ x2w2 @ . . . @ znwn . The set of affine 
functions is the union of the set of the linear functions and their complement. 

Definition 1 Let f(z) be any real-valued function with domain the vector space 
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Z;. The Walsh transform of f(2) is the real-valued function over the vector 
space ZT defined as 

F ( u )  = c f(.) * (-l)Z.U, 
- 2 

where E x  - denotes the sum over all 2" elements of Zi. 

The relationship between the Walsh transform of f (e)  and f(z) is given by [For881 

1 -  R(u)  = -2F(u)  + 2" S(u) and F(u) = --F(yl) + 2"-' S(yl), 2 

where S(u) denotes the Kronecker delta ( b ( Q )  = l ,b(b)  = 0 Vb # Q ) .  

Definition 2 The autocorrelation function +(a) is defined as 

+(a) = c f(3;) * f(a G3 8 ) .  
a 

Note that +(Q) equals 2". 

of the variables: 
It can also be of interest to write a Boolean function as the sum of all products 

f(z) = U O  ~3 @ ~ i ~ i  @ @ aijxixj @ - .  - @ a 1 2 . . . n ~ 1 2 2  v v . 2  n. 
l< i<n l < i < j < n  

This form is called the algebraic normal form of a Boolean function f and the 
corresponding transformation is called the algebraic normal transform. 

Definition 3 The non-linear order of a Boolean function (notation: ord (f)) i e  
defined as the degree of the highest order term in the algebraic normal form.  

The affine Boolean functions are the functions with non-linear order < 2. 

1.2 Properties of Boolean Functions 

A Boolean function is said to be balanced if its truth table contains as many 0 
as 1 entries. It is easy to show that this is equivalent to  R(Q) = 0. 

A Boolean function is said to be mth order correlation immune if f (g) is 
statistically independent of any subset of m iLput  variables [Sie84, XM88). This 
can be shown to be equivalent to 

@(u) = 0 1 5 hwt(w) 5 m, 

and a necessary condition is o r d ( f )  5 n - m. If f is also balanced, this upper 
bound can be improved to n - m - 1, unless m = n - 1. 
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A Boolean function f(z) satisfies the propagation criterion of degree k 
( P C ( k ) )  if f(z) changes with a probability of one half whenever i (1 5 i 5 k) 
bits of a: are complemented [PVVSO]: 

0 1 2 3 4 5  

27449 12068 1858 76 1 0 
18788 3188 1 1 1 - 
14308 421 1 0 - - 
13888 1 1 - - - 
13888 0 - - - - 
13888 - - - - _  

F(g) = 0 for 15  hwt(s)  5 k. 

Note that the Strict Avalanche Criterion (SAC) is equivalent to PC(1) and perfect 
non-linear is PC(n). 

A Boolean function f(r) of n variables satisfies the propagation criterion of 
degree k and order m ( P C ( k )  of order m) if any function obtained from 
f(z) by keeping m input bits constant satisfies PC(k) .  

The propagation matrix N, for all Boolean functions of n variables is the 
n x n matrix: N,(k,m) = # {f I f satisfies PC(k)  of order m} /2n+1, with k + 
m 5 n. The division by 2n+1 implies that abstraction is made of linear and constant 
terms, that have no influence on propagation properties. The propagation matrix 
for all second order Boolean functions of three to seven bits is given in table 1. In 
this paper, we will explain most numbers in this table and, if possible, generalize 
certain properties for arbitrary n. 

F I T  1 41 10 1 0 

[ 6 

0 1 2 3 4 5 6  

1887284 1052793 236926 15796 232 1 0 
1419852 237048 4901 1 1 1 - 
889672 17668 841 1 0 - - 

1 _ - -  402752 13888 1 
111104 13888 0 - - - -  
13888 13888 - - - -  - 

- - - - - -  0 

Table 1: The matrices N3(k,m),  N4(k ,m) ,  NS(k,m),Ns(k,m) and N , ( k , m )  for 
second order functions. 

2 Propagation characteristics of second order functions 

Second order functions have been studied intensively to derive properties of the 
second order Reed-Muller codes. For the study of second order functions, it is 
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useful to write the second order coefficients of the algebraic normal form in a 
binary symmetric matrix with zero diagonal: [bij] = [aij], where aii = 0. This 
is called a symplectic matrix. The number of second order coefficients equals 

and will be denoted with A(n). The second order functions can be reduced 
with an equivalence transform to a canonical form based on Dickson's theorem. 

Theorem 1 (Dickson's theorem) If B is a symplectic n x n matrix of rank 
2h, then there exists a n  invertible binary matrix R such that RBRT has zeroes 
everywhere except o n  the two diagonal8 immediately above and below the main  
diagonal, and there has 1010.. .loo.. . 0 with h ones. 
Every second order Boolean function can by a n  affine transformation of variables 
be reduced to  & L 1  X z i - l x Z i  @ E ,  with E an a f ine  funct ion of 22h+l through 2,. 

n.(n- 1) 

The rank of the 2*(") symplectic matrices is given by following theorem [MWS77]: 

Lemma 1 The  number of symplectic n x n matrices over Z2 of rank 2h equals 

M ( n ,  2h) = [ i] - M(2h,  2h). 

Here [i] denotes the binary Gaussian binomial coefficient, defined for all non- 
negative integers k by 

[ 3 = 1 ,  [ ; ] = [ n - ' ] + 2 q " ; l ]  k - 1  

and M(2h,  2h) = (22h-1 - 1)22h-2.  - - (23  - 1)22. 
In [MWS77] it is shown that in case n is even the functions of n bits satisfying 

PC(n)  (bent functions) are the functions for which the corresponding matrix B 
has full rank. The number of these functions is given by M ( n , n ) .  

For n odd, the highest criterion that can be satisfied is PC(n-  1). The previous 
result can be extended for n odd. 

Theorem 2 Let f be a Boolean function of n variables, n > 2 and odd. 
Then  f satisfies PC(n  - 1 )  of  order 0 and 1 iff f is obtained with following con- 
struction: 

1. Let f' be a funct ion of n - 1 variables satisjging PC(n  - 1 )  with algebraic 
normal f o r m  coefficients equal to  ai j .  

2. Define a,, = aij for 1 5 i < j 5 n - 1 and 
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The number of functions satisfying PC(n - 1) of order 0 and 1 is given b y  M(n - 
1 ,n  - 1). 

Proof: The first part of the proof consists of showing that every function satis- 
fying PC(n- 1) of order 0 satisfies P C ( n -  1) of order 1. This part is a simple corol- 
lary of theorem 5 (cfr. infra). To characterize the functions satisfying PC(n - 1) 
of order 1, it is recalled that every function f* obtained from f by fixing one input 
bit should satisfy PC(n - 1). This can be restated with the symplectic matrices 
B and B* that correspond to f and f' respectively: every matrix B* obtained 
from B by deleting one column and the corresponding row should have full rank 
n - 1. As the rank of a symplectic matrix is always even, this implies that B 
has necessarily rank n - 1 and that any column (row) can be written as a h e a r  
combination of the other columns.(rows). Any symplectic matrix B' of rank n - 1 
can be extended in 2n-' ways to a matrix B. However, if any matrix obtained 
from deleting one column and the corresponding row in B should have rank n - 1, 
the only solution is that the added column (row) is the sum of all other columns 
(rows). This can be shown as follows: if a particular column and row are not 
selected in the sum, the deletion of this column and row from B will result in a 
singular matrix B' , contradicting the requirement. m 

Theorem 11 in [PVVQO] states that a second order function satisfies PC(1) or 
S A C  if and only if every variable occurs at least once in the second order terms 
of the algebraic normal form. This makes it possible to compute the number of 
second order functions satisfying PC( 1). 

Theorem 3 The number of second order n-bit functions satisfying PC(1) is given 

Proof: This follows from the observation that the second order functions sat- 
isfying PC(1) correspond to the undirected simple graphs with n vertices with 
minimal degree equal to 1. The degree of a vertex is equal to the number of edges 
incident to that vertex, and the minimal degree of a graph is the minimum of the 
set consisting of the degrees of the vertices. It is easily seen that the number j f  
these graphs is given by following recursive equation (for n > 1): 

The theorem follows from the solution of this equation. 
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3 Autocorrelation function properties 

In [PVVSO] it was shown that the non-linear order of functions satisfying PC(1) 
is bounded by n - 1. A well known result is that the non-linear order of functions 
satisfying PC(n)  (n  even and > 2) is bounded by n / 2 ,  and for functions satisfying 
PC(n - 1) (n odd and > 2) the corresponding upper bound is [n/21. 

An extension of this result for functions satisfying PC(k)  is non-trivial, because 
k depends on both the number of zeroes of the autocorrelation function as well 
as on the position of these zeroes. Hence PC(k)  is not invariant under d n e  
transformations, where the non-linear order clearly is. The way to proceed is 
first to study a number that is invariant under &ne transformations, namely the 
number of zeroes of the autocorrelation function (denoted by N + )  and then to 
apply the results to PC( k). 

The upper bound on the non-linear order for functions satisfying PC(1) can be 
improved as follows: even if the autocorrelation function has one zero, the function 
can not have maximal non-linear order. 

Theorem 4 Let f be a Boolean function of n variables with n > 2. 
If N,: > 0 then ord(f) 5 n - 1. 

Proof: It is sufficient to show that the Hamming weight of f is even. Let a be 
the value for which +(a) = 0 or ~ ( a )  = 2"-'. Then 

If n > 2, the theorem follows. 

A second result for second order functions is based on Dickson's theorem and 
Lemma 1. 

Theorem 5 The autocorrelation function of second order functions takes the val- 
ues 0 and f2" .  The number of zeroes as given b y  N+ = 2" - 2n-2h for 1 5 h 5 [;J. 
The number offunctions with this number of zeroes equals M(n,  2h). There are [d] 
possible patterns for these zeroes and to every pattern correspond exactly M(2h, 2h) 
functions. 
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The coordinates where +(a) # 0 form a n - 2h dimensional subspace of Zg, 

Proof: For the canonical second order function: 
h 

f (2) = @ 2 2 i - 1 ~ 2 i i  
a= 1 

the autocorrelation function can be written as follows: 

1 h 
T(a> = 1 (& 8 2 i - 1 8 2 i  @ e ( 2 2 i - 1 s i  @ 2 2 i s 2 i - 1 )  * 

2 i = l  a= 1 

Note that the affine function E can be omitted because &ne terms have no in- 
fluence on the autocorrelation function. In case T ( S )  = 2"-l, corresponding to 
+(s) = 0, the first part of the sum has no influence on the result. It is easily seen 
that ~(9) will be equal to 2'+' if there exists at least one si # 0, with 1 5 i 5 2h. 
Hence the number of non-zeroes of ?(g) equals 2n-2h, corresponding to the vectors 
- s with si = 0, for 1 5 i 5 2h. It is clear that these vectors form a subspace of 
Zy of dimension n - 2h. The number of distinct subspaces of dimension n - 2h 
corresponds to the number of [n,  n - 2h] codes and equals [MWS77]. rn 

The last part of Theorem 5 makes it in principle possible to compute the number 
of second order functions satisfying PC(k) .  

Corollary 1 The number of second order functions of n variables sutisfying PC(k)  
is given b y  

1Y 
C L(n,  n - 2h, k)M(2h,  2h), 
h= 1 

where L(n,  T ,  k )  denotes the number of h e a r  [n, T ,  d ]  codes with minimum distance 
d > k .  

Proof: This follows from the observation that a function will satisfy PC(k)  if 
the non-zeroes of T ,  that form a subspace of dimension n - 2h, occur at positions 
with Hamming weight > k. This is equivalent to the statement that the non-zeroes 
should form a linear code with length n,  dimension n - 2h and minimum distance 
d >  b .  w 

Because of the Singleton bound ( d  5 n - T + 1) [MWS77] the lower limit of 
this sum can be increased to [y ] .  However, the computation of L(n,  r ,  k )  even 
for small values of n is a difficult problem. Even the maximal d for given n and 
T (notation d-,(n,T)) remains an open problem except for T 5 5 and d 5 3. In 
[HeSt73] a table of known bounds d-=(n, T )  is listed for n 5 127. A small relevant 
part is reproduced in table 2 .  In case n = 6 ,  1 5 h 5 3, the autocorrelation 
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Table 2: Upper bound on the minimum distance d for linear [n ,r ,d]  codes. 

functions has 1, 4 or 16 non-zeroes and the number of corresponding functions is 
13888 (bent functions), 18228 and 651. In case of 4 non-zeroes, T = 2 and from 
table 2 one finds d-(6,2) = 4. Hence the bent functions are the only functions 
satisfying PC(4),  PC(5) and PC(6) .  The number of [6,2,4], [6,2,3], [6,2,2] and 
[6,2,1] codes is 15, 160, 305 and 171 respectively. With every code correspond 28 
functions, resulting in 420, 4480, 8540 and 4788 functions for every class. In case 
of 16 non-zeroes, every code corresponds to exactly one function. The number of 
[6,4,2] and [6,4,1] codes is given by 121 and 530. The number of 6-bit functions 
satisfying PC(3)  equals 13888 + 420 = 14308, the number of functions satisfymg 
PC(2) equals 13888 + 420 + 4480 = 18788, and the number of functions satisfying 
PC(1) equals 18788 + 8540 + 121 = 27449. This last result can also be obtained 
with theorem 3. 

The number of [n , l ,d ]  codes equals (i) and hence for n odd the functions 
satisfying PC(k)  with d,,(n,3) 5 k 5 n - 1 is given by 

M ( n -  1 , n - 1 )  c , 
i=k+l  (1) 

for which no closed form exists. 

4 Walsh transform and balancedness 

It has been shown in [PVVSO] that dyadic shifts in the Walsh spectrum modify 
only linear and constant terms and that the propagation characteristics remain 
unaffected. A corollary of this observation is that adding the right linear terms to 
a function with at least one zero in the Walsh spectrum will result in a balanced 
function with the same propagation properties. If the image of the other zeroes 
of the spectrum under the same transformation is the set of vectors with low 
Hamming weight, the corresponding function will also be correlation immune. 
This indicates that the number of zeroes of the Walsh spectrum is a relevant 
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property. 

Reed-Muller codes [MWS77]. 
The weight distribution of functions with ord 5 2 is known from the study of 

Theorem 6 Let A; be the number of functions with ord 5 2 and Hamming weight 
i. Then Ai = 0 unless i = 2"-' or i = 2"-' k 2"-'-" for some h, 0 5 h 5 I:]. 
Also Ao = A2n = 1 and 

A2n-I can be evaluated because all Ai sum to 2'+"+*("). 

Based on Dickson's theorem, the number of zeroes of the Walsh spectrum of a 
second order function can be calculated. 

Theorem 7 The number of zeroes of the Walsh transform of a second order func- 
tion is given b y  N j  = 2" - 22h for 1 5 h 5 [;I. The number of functions with 
this number of zeroes equals M ( n ,  2h). If @(u) # 0, then I P(u) I= 2"-". 

Proof: It will be shown that k(u), the Walsh transform of 

h 
f ( ~ )  = @ Z2a-122, 

a= 1 

is equal in absolute value to 2"-h for wi = 0, 2h + 1 5 i 5 n and equal to zero 
elsewhere. The theorem then follows from the application of Dickson's theorem 
and from the observation that the addition of the afFine term E only causes a dyadic 
shift of the Walsh spectrum. The Walsh transform o f f  can be written as: 

k(w) = c ( - 1 ) & I  zzl-lzal . (-1)eL Z ~ U J ~ ,  

Here we assume that 2h < n. In case h = 272, f is a bent function and the theorem 
is clearly true. 

- X 

In case w; = 0 , 2 h + l  5 i 5 n, the expression for the Wdsh transform reduces 
to 

As the variables 22h+l  through xn do not occur in this sum, it.can be simplified 
to 
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where g' denotes [q . . . q h ] .  By observing that the remaining s u m  corre- 
sponds to the Walsh transform of a bent function of 2h variables, it follows 
that its absolute value equals 2h.  

0 In the other case, let U denote the set of indices { i l ,  2 2 , .  . . , ik} in the interval 
[2h + 1, n] for which wj, = 1. The Walsh transform can then be written as 

where g' denotes [z~.. . q ! h ]  and id' denotes [ q h . .  .z, ,].  It is easily seen that 
the second sum vanishes, and hence #(w) equals zero. 

m 

From the proof it follows that the coordinates were k(y) # 0 will form a 
subspace of Z; of dimension 2h if and only if the f i n e  function e is constant. If 
this condition is not satisfied, the non-zeroes will be a dyadic shift of a subspace. 

Theorem 7 results in a new interpretation of the number of balanced functions 
with ord 5 2 .  There are 2(2" - 1) balanced linear functions and every second 
order function with q zeroes in the Walsh spectrum corresponds to 2q balanced 
functions through addition of f i n e  terms. Hence the total number of balanced 
functions with ord 5 2 can also be written as 

1 141 -1 
A2"-1 = 2 ( 2 n  - 1) + 2 C (2" - 22h)M(n,2h) . ( h=l 

For bent functions it is already known that the autocorrelation function has only 
one non-zero element and the Walsh spectrum has no zeroes. Following corollary, 
resulting from the combination of Theorem 5 and Theorem 7, gives the relation 
between the number of non-zeroes of the autocorrelation function and the Walsh 
spectrum for second order functions. 

Corollary 2 Let f be a Boolean function of n variables with ord ( f )  5 2. Then 

(2" - N;)  * (2" - NF) = 2". 

Note that if ord(f) = n,  N,: = 0 (theorem 4) and N j  = 0 (because h w t ( f )  is 
always odd) and this expression reaches its maximal value 2'". We conjecture 
that if ord(f) > 2 ,  (2" - N;) . (2" - N F )  2 2", and equality holds only for functions 
satisfying PC(n)  or PC(n - 1). 
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1 I!i(l~)I112 0 4 8 4 

0 1 I F~(u) I 0 4 8 4 0 12 

5 A special class of functions 

+I($) 32 0 0 8 8 -8 
+2(.) 32 0 4 -8 8 8 

For n = 5 there exist 192 4th order functions satisfying PC(2).  The non-zeroes of 
the autocorrelation function have all absolute value 8. The zeroes of the autocor- 
relation function form the set of all 15 vectors with Hamming weight 1 or 2. An 
example of this class is 

The value distribution of the Walsh spectrum (table 3) shows that this function 
is correlation immune of order 1. A related function f2 can be defined as 

f 2 ( 4  = fl(Z) CB z1 @ 2 2  @ 2 3  e3 2 4  @ 2 5 .  

The Walsh spectrum of f2 is obtained by a dyadic shift over [11111] of the Walsh 
spectrum of f1,  resulting in a balanced function satisfying PC(2) (table 3). Note 
that it is not possible to obtain from f l  through an a f h e  transformation of vari- 
ables a function that is balanced and correlation immune of order 1, as this requires 
the vanishing of all coefficients of order 4 [XM88]. 

I hwt(w) I 0 1 2 3 4 5 1 1 hwt(s) I 0 1 2 3 4 5 1 

Table 3: Value distribution of the Walsh spectrum and the autocorrelation function 
for the functions f l  and fi. 

6 Summary 

The distribution of the autocorrelation function and Walsh transform is invariant 
under f i e  transformations and can be camputed for second order functions based 
on Dickson’s theorem. In case of second order functions, a relation between the 
distribution of the autocorrelation function and the number of functions satisfying 
PC(k)  has been established and the study of the Walsh transform gives a new 
interpretation to the number of balanced second order functions. Finally a special 
class of functions of 5 bits combining interesting properties have been introduced. 
An interesting open problem is to generalize this class for arbitrary n. 
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