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Abstract. There are minimal surfaces admitting a Bkzier form. We 
study the properties that the associated net of control points must sat- 
isfy. We show that in the bicubical case all minimal surfaces are, up to 
an affine transformation, pieces of the Enneper's surface. 

1 Introduction 

The study of surfaces minimizing area with prescribed border (the so 
called Plateau problem) has been and still is a main topic in differential 
geometry. Such kind of surfaces, characterized by the vanishing of the 
mean curvature, are called minimal surfaces. It is a part of the differential 
geometry where a lot of research has been done from its very beginning 
with J. L. Lagrange in 1762. 
The construction of curves and surfaces subject to  certain constraints 
(to minimize length, area, curvature or other geometric properties) has 
been studied from the point of view of Graphics (see [4], [ 5 ] ,  [6] or [7]). In 
the case of the area of the surface, the interest comes from t.he fact that 
in some real problems, minimal area means minimal cost of the mate- 
rial used to build the surface. Moreover, the minimi~at~ion of functionals 
related with the mean curvature provides a method of efficient fairing. 
In this paper we try to give a little account of the minimal surfaces that 
admit a Bt5zier form. Up to our knowledge, the study of minimal Bhzier 
surfaces has not yet been done a r d  there are some interest.ing yuestio~ls 
to  be raised. Among them let us mention two: 

- Can the control net of a minimal Bkzier surface be characterized by 
some minimal property related with areas? 

- Is it possible to characterize which control nets are associaied to 
minimal B6zier surfaces? 

Our attempts to  answer the first question point out that the area of any 
polyhedron having as vertices the control points do not minimize area 
among all polihedra with the same border. We have followed here the 
approach of [9] to  study discrete minimal surfaces. 
This note deals mainly with the second question. The two main results 
are the following: First, we have characterized control nets of harmonic 
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Bezier surfaces, and second; we have proved that any bicubical polyno- 
mial minimal surface is, up to an affine transformation, a piece of a well 
known minimal surface: the Enneper's surface. 
The consequence of our results is that minimal surfaces are too rigid to 
be useful as candidates for blendings between arbitrary surfa,ces. Only 
for some configurations of the border control points we can asslire that 
a Bhzier surface exists with minimal area. 
The connection between tohe two topics, Bezier and minimal surfaces, is 
not new. Let us recall some of them. First, Sergei Bernstein, who defined 
thc now callcd Bcrnstcin polynomials, was a prolific rcscarchcr in thc 
realm of minimal surfaces a t  the beginning of the twentieth century. See 
for instance [I] and [2]. One of its most celebrated results was to prove 
that if a minima,l surfacc is thc graph of a diffcrcntiablc function dcfincd 
on tche whole IW" i.e, *(u, v) = (u, v ,  f (u, u ) ) ,  then it is a plane. 
Second, the solutions to some Plateau problems, for example, the Ger- 
gonne surface, resemble Bkzier surfaces. (Look at Figure I) 

Figure I. Left. The Schwarz's solution (1865) to the Gergonne's 
problem (1816): find the minimal surface dividing the cube into two 
equal parts and joining the inverse diagonals of two opposed faces. 

Right. A Bkzier surface with a similar shape. 

And third, both kind of surfaces share some crucial properties: A Bezier 
surface is always included in the convex hull of its net of control points. 
Analogously, a minimal surface is always included in the convex hull of 
its border. 

2 Definitions 

Definition 1. Given a net of control points i n  EX3, { P i j ) ~ ; ~ O ,  the asso- 
ciated B h i e r  surface, F? : [ O ,  11 x [ O , 1 ]  + IR3, is given by  
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Definition 2. A surface S ' i s  minimal if its mean curvature vanishes. 

Equivalently, S is a minimal surface iff for each point p E S one can 
choose a srrlall neighbourhood, Up which has ~rli~lirrral area arrlong other 
patches V having the same boundary as U .  

Example I .  Thc first non trivial cxamplc of minimal surfxc with poly- 
nomial coordinate functions is the Enneper's surface (Figure 11): F? : 

IR2 -+ iR3 defined by 

The control net for the portion of the Enneper's surface defined by u, v E 
[-I, I], is given by 

Figurc 11. Lcft: a piccc of thc Enncpcr's surfacc (a ,  u E [-I, I]). Right: 
Its control nct as a B6zicr surfacc. 

3 Minimal surfaces with isothermal coordinates 

Let us recall that a chart X? : U + S on a surface, S, is said to be 
isothermal the map -jf is a conformal map, i.e, if angles between curves 
in the surface are equal to tmhe angles between the corresponding curves 
in the coordinate open subset U .  It is easy to check that for an isothermal 
chart the coefficients, E,  F7 G, of the first fundamental form satisfy E = G 
and F = 0. 
Note that this implies t,hat the two families of coordinate curves of the 
chat 3 are orthogonal because F = 0, and that the length of the coor- 
dinate curve from E?(.UO, 00) to *(UO, vo + h) is equal to  the length of 
the coordir~ate curve fro111 Ji?(uo, uo) to  5?(uo + h, uo). 
A well known result of the theory of minimal surfaces is the following 
(see [lo]): if 9 is an isothermal map then is minimal iff A$ = 0, 
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where A  is the usual Laplacian operator. The relation between the mean 
curvature and the chart is due to t,he fact that for an isothermal map 

where A = E = G and AT is the unitary normal vector of the surface 
associated to  the chart. 
The conditions that a net of control points must satisfy in order to  have 
an isothermal associated Bdzier surface are more difficult to handle (t.hey 
can be expressed as a system of quadratic equations) than the conditions 
in order to be harmonic (in this case, the equations are linear). So, let 
us study first that second condition. 
We will compute the Laplacian of a B6zier surface (1). 

where AqOpij = Pi+2,,j - ~ P ; + I , ~  + Pij, A 0 ' 2 ~ i j  = Pi,j+2 - 2Pi,j+l+ Pij. 
We shall rewrite the last, expression again as a B6zier surface of degrees 
n and m. In order to  do this, we will need the following relation 

~ : - ~ ( t )  = & ( (n  - i ) (n - i - l )B?(t)  

+2(i + l ) ( n  - i - l)By+l (t) + (i + 1) (i + 2)B:+2 ( t ) ) .  

Let us define, for i E (0, . . . , n - 2) 

a m  = ) ( - -  1 )  bin = 2 -  i -  1 )  S ,  = ( i +  l ) ( i+2) ,  

and sin = bin = c i ,  = 0 otherwise. 
Therefore, 

This expression can be seen as the Bezier surface associat'ed to a net of 
control points {Qij)~~'?o. Thus, due to the fact that {B?(u)B,Y(~))~jrn=~ 
is a basis of polynomials, we get that 9 is harmonic iff Qij = 0 for all 
i: j. 
Substituting the discrete operators 42>0 and AO" by its definitions and 
sorting terms we get that for any i, j the following expression vanish: 

In the case of a quadratic net (n = m)  we can state the following theorem 
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Theorem 1. Given a quadratic ne t  of points in IR3, {Pij)cj=o, the as- 
sociated Bkzier surface, 9 : [0,1] x [O; 11 + IR3, is harmonic,  i.  e, A 9  = 

8 
0 = Pi+%,jain + Pi+l,j(bi-I,, - 2ain) + Pi-1 ,j(bi-1.n - 2 ~ ~ - % , ~ )  

Let us study Equation ( 2 )  in the simplest cases: biquadratic and bicubical 
Bdzier patches. 

3.1 Biquadratic harmonic Bbzier patches 

In the case n = m = 2 from the equations in ( 2 )  it is possible to  find 
an expression of four of the control points in terms of the other five. In 
fact, using Mathernatica, we have obtained that the null space of the 
coefficient matrix of (2) is of dimension four. Moreover, it is possible to 
choose as free variables points in the first and last column of the control 
net. 

Corollary 1. A biquadratic B i z i e r  surface is  harmonic iff 

A way of writing for example the equation involving the inner control 
point, PI 1, is using a mask 

Remark 1. In [6], the author presents a method to  improve an initial 
blending, Fo, through a sequence of blending surfa.ces minimizing some 
fairing functionals. In section 3.3, the author suggests the following mod- 
ification: instead of using the init8ial blending surface, to  use a modified 
surface obtained by averaging the inner control points. The averaging 
method suggested there, after an analysis of its implementation, is given 
precisely by the mask (4). Therefore, the use of this mask can be now 
justified from Equations (3): the inner point of a quadratic harmonic 
Bdzier surface must verify such a mask. 

Remark 2. Note that mask (4) is a kind of dual of t'he mask associated 
to the L.aplace operator. It can be found in [4] that the mask 
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is the discrete form of the Laplacian operator. Such a mask is used in the 
cited reference to obtain control nets resembling minimal surfaces that 
fit between given boundary polygons. 
In general, the authors define in [4] the notion of permanence patches to 
be those generated by masks of the form 

with 4a+4/3 = 1. Therefore, mask (4) is a particular case with a = 0.25, 
whcrcas mask (5) corrcsponds to a = 0. Anyway, as it is said thcrc, any 
of such masks do not produce control nets of minimal surfaces. 
In fact, let us recall that we are not trying to produce Coons nets. We 
try to characterize control nets of minimal surfaces. We have found that 
in the biquadratic case Eqs. (3) must be satisfied. But in order to obtain 
a rrli~lirrial patch, we have to irrlpose also the isothermal conditions. It  is 
just a ~na t te r  of computatio~i to  show that any control net verifying Eqs. 
(3) and the isother~rlal co~lditio~ls is a piece of a plane. 

3.2 Bicubical harmonic Bezier patches 

In the case n = m = 3 from the equations in (2)  it is possible t,o put half of 
the control points in terms of the other eight. In fact, using Mathematica, 
we have obtained that the null space of the coefficient mat'rix of (2) is 
of dimension eight. Moreover, it is possible to choose as free variables 
exactly the eight points in the first and last column of t.he control net. 

Corollary 2. A bicubic Bbier surface i s  hal-fnonic 

PI I = (4Poo + 2Po3 + 2P30 $' P33), 

p 2 1  = $ (2Poo -k Po3 -k 4P30 + 2P33), 

P13 = i ( 2 ~ o o  + 4Po3 -k P30 -k 2P33), 

p22 = ~ ( P O O  -k 2pu3 + 2Pso -k 4PS3), 

pl0 = $(~POO - 4Po1 + 2Poa -k 2P3o - 2PS1 + p3a), 
(7) 

Remark 3. This mcans that givcn thc f i s t  and last columns of thc control 
net (eight control points in total), the other eight control points are fully 
determined by the harmonic condition. In other words, any pair of two 
opposcd bordcrs of a harmonic Bbzicr surfacc dctcrmincs thc rcst of 
control points. 

Remark 4 .  This fact is analogous to what happens in the Gergonne sur- 
face: given t,wo border lines, t.he inverse diagonals of two opposed faces 
of a cube, the Gergonne surface is fully determined (See Figure I). In 
our case, given two opposed lines of border control points, the harmonic 
Bhzier surface is fully determined. 
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Remark 5. The first four equations in (7) imply that the four inner con- 
trol points are fully determined by the four corner p0int.s. So, there are 
two different kind of masks depending if the point is an inner control 
point or not: 

The other points have similar masks. 

Remark 6. Lct us insist in thc fact that harmonic c h a t  nccd not to  bc 
minimal. We have obtained the condit'ions to be harmonic. In order to 
be minimal, more conditions acre needed. Let us split the control points 
of a Bkzier surface into two subsets: the inner points {Pij};;:;"-' and 
the border points. It is not true that given an arbitrary set of border 
points, there is a unique set of inner control points such that the Bkzier 
surface associated to the whole control net is of minimal area,. What we 
can say is that given just a few border control points, the rest of control 
points are determined. In the next section we will find which bicubical 
Bdzier surfaces are minimal. 

4 Bicubical minimal Bbzier patches 

We have seen before that the unique biquadratic minimal B6zier patch 
is the plane. In the cubical case we know that at least there is another 
minimal B6zier surface, the Enneper's surface. What we want to deter- 
mine is if this is the only possibility. In order to  do that we need to 
change the methods to at tack the problem. The second great moment in 
the theory of minimal surfaces was the introduction of the methods of 
complex variable. Let us recall here the main results. 
Let 2 ( u ,  V) be an isothermal minimal chart and let us define 

The functions (61 : 42, $3) verify 

Lemma 1. ([I 0] Lemma 8.1) Let D be a domain i n  the complex z-plane: 
g(z )  an, nrhitmrv m,erom,orph,ic filmction i n  D and f ( z )  an  annlgtic f m c -  
t ion  i n  D having the property that at each point where g(z) has a pole of 
order m, f (2) has a zero of order at least 2m. Then  the functions 

1 
4 1 = ~ f ( l - g ~ ) ,  h = - l f ( 1 + g 2 ) :  2 0 3 = f g  (10) 

will be analitic i n  D and satisfy (9). Conversely, every triple of analytic 
functions i n  D satisfying (9)  m a y  be represented i n  the form (10)) except 
for 91 = i$z, 93 = 0. 
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Note that both functions can be computed by 

Note also that Equations (10) are not exactly those of Lemma 8.1 in [ l o ] .  
There is an slight difference in the sign of 4 2 .  Anyway the statement is 
equivalent. 

Lemma 2. ([lo] L e m m a  8.2) Every  simple-connected m i n i m a l  surface 
in W3 can  be represented in t h e  f o r m  

where the  $ k  are defined by (lo), the  funct ions f and g  having the  prop- 
erties stated in L e m m a  1, the  d o m a i n  D being ei ther the  u n i t  disk o r  the  
ent ire  plane, and  the  integral being taken  along a n  arbitrary path f rom 
the origin t o  the  point z = u + iv. 

So, a minimal surfa.ce is determined by the pair of complex functions f 
and g. For example, the most obvious choice: f ( 2 )  = 1, g ( x )  = x ,  leads 
to  thc Enncpcr's surfacc. 
We are going to consider now the following problem: to  determine all 
bicubical polynomial minimal surfaces. 
The number of possible choices of the two functions f and g in such a way 
that the chart given by (12) is a polynomial of degree 3 is not reduced just 
to f (2) = constant and g a degree 1 polynomial in x .  Another possibility 
is f ( t)  = ( p ( z ) ) 2  and, g ( z )  = #, where p ( z ) ;  q ( z )  are polynomials of 
degree 1. Therefore, the problem we are interested in is not so obvious. 

Theorem 2. A n y  bicubical polynomial m i n i m a l  chart ,  i? : U + IR3, is, 
u p  t o  a n  a f i n e  transformation of IR3, a n  a f i n e  reparametrization of the 
general Enneper 's  surface of degree 3, i .e ,  there are H3 E Af f(IEt3) and 
Hz E A f f (El2) such that  

for a n y  (u, v) E U .  

Proof. We can suppose that the chart is isothermal. On the contrary, a 
wcll known rcsult of thc thcory of minimal surfaccs statcs that thc chart 
is a rcparamctrization of an  isobhcrmal chart. 
All along thc proof wc will considcr polynomial patchcs not in thc Bcm- 
stein polynomial basis, but in the usual polynomial basis. 
Let us consider a bicubical, polynomial, isothermal and harmonic chart 

where aij , bij , cij E W. 
Let US denote by vi," the vector ( a i j ,  b i j ,  c i j ) .  
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Note first that thanks to a translation, we can suppose that v 3  = 0. 
As the chart is orthogonal (F = O), then, by inspection on the higher 
degree terms, it is possible to  deduce the following relations 

For exa~nple, the coefficient. of u%' i r ~  F is the norIrl of 3,&, therefore if 
F = 0 then 21% = 0. TO deduce the other relations proceed analogously 
with the coefficients of u5v3, u3v5, u5v1, u1v5 and u3v3 in that order. 
Now, AX? = 0 iff 

As the chart is isothermal, from the c0efficient.s of v4 in E = G and 
F = 0, respectively, we obtain 

At this point, the deduction splits into two cases: 

Case A. 2'36 = 0 

In this case, and after some computations, the chart is a piece of the plain 
z = 0. But the plane can be parametrized using a polynomial chart of 
degree 1, so, it cannot be considered as a proper solution of the problem. 

Case B. v& # 0 

111 this case, thanks to a rotation and an uniforrr~ scal i~~g,  we can suppose 
that 

Eiti = (1,0, O), zt3 = (0: 1,O). 
Therefore, from the coefficient of v in F = 0 and E = G , we obtain 

It can be proved that the isothermal conditions can be now reduced to 
just four equations involving the coordinates of the vect,ors $. Neverthe- 
less, it is easier at this point of the proof to  introduce the use of complex 
numbers. 

where 

. , 

The cha.rt 2 is isothermal iff Equation (9) is verified. 

Now, we can compute the pair of complex fimctions, f *, g*, according 
to (11). 

In our case, we obtain that f2 is a constant function and that g2  is a 
polynomial in z 

of degree 1. Indeed, 
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Let us denote the coefficient m by E E, where p > O and t E [0, 27r[. 
Now, let us consider the chart 

Note that 9 is also an i~ot~hermal chart. It is easy to check that, t,he pair 

of complex functions, f 7,  associated to 9 are now 

Let us also denote a in the form E @, where p > 0 and s E [O,274 
and let T be the linear transformation of IR3 defined as the composition 
of the uniform scaling with factor 1 and the spatial rotation wit'h respect 
to the z-axis and angle -s. A well Lnown property of the Enneper surface 
says that the minimal surface defined by f (z) = a ,  g(z) = z is the image 
by T of the Enneper surface. 0 
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