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Abstract. In the paper we further develop the idea of parallel fac-
torization of nonzero blocks of sparse coeÿcient matrices of the lin-
ear systems arising from discretization of large-scale index 1 diþerential-
algebraic problems by Runge-Kutta methods and their following solving
by Newton-type iterations. We formulate a number of theorems that give
estimates for the local ýll-in of such matrices on some stages of Gaussian
elimination. As the result, we derive that only the suggested modiýcation
of Gauss method appeared to be eþective and economical one from the
standpoint of CPU time and RAM.

1 Introduction

One of the main trends of modern computational mathematics is the develop-
ment of eÿective numerical methods and software packages for the solution of
index 1 diÿerential-algebraic systems of the form (see, for example, [1], [2], [4]):

x0(t) = g
ÿ
x(t); y(t)

þ
; (1a)

y(t) = f
ÿ
x(t); y(t)

þ
; (1b)

x(0) = x0; y(0) = y0; (1c)

where t 2 [0; T ], x(t) 2 Rm, y(t) 2 Rn, g : D ÿ Rm+n
! R

m, f : D ÿ Rm+n
!

R
n, and the initial conditions (1c) are consistent; i. e., y0 = f(x0; y0). Note that

we consider only autonomous systems because any nonautonomous system may
be converted to an autonomous one by introducing a new independent variable.

Let problem (1) satisfy the smoothness, nonsingularity and inclusion condi-

tions introduced in [6]. Then, it has a unique solution z(t)
def
=

ÿ
x(t)T ; y(t)T

þT
2

R
m+n (see [6]). Besides, according to the Gear's deþnition in [3] problem (1) is

of index 1.
To solve problem (1) numerically, we apply an l-stage implicit Runge-Kutta

(RK) method given by the Butcher's table

c A

bT
;
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where A is a real matrix of dimension lÿ l, b and c are real vectors of dimension
l, to problem (1) and obtain the following discrete analogue:

xki = xk + ÿ

lX

j=1

aijg(xkj; ykj); (2a)

yki = f(xki; yki); i = 1; 2; :::; l; (2b)

xk+1 = xk + ÿ

lX

i=1

big(xki; yki); (2c)

yk+1 = f(xk+1; yk+1); k = 0; 1; :::;K þ 1: (2d)

Here x0 = x0, y0 = y0, and ÿ is a stepsize which may be variable. Algebraic
system (2) is solved then by an iterative method at each time point tk. Usually,
the iterative process is taken in the form of simple or Newton-type iterations
with trivial (or nontrivial) predictor [1], [2], [4], [7], [8],[10], [14].

In [11] it has been substantiated why Newton (or modiÿed Newton) iteration
is more preferable for solving diþerential-algebraic equations (1) than simple one.
By this reason, we further consider only Newton-type iterations in the paper.

In order to solve problem (2) it is not necessary to apply an iterative process
to all the equations of the discrete problem simultaneously. It is evident that
equations (2a,b) do not depend on equations (2c,d). From this standpoint, it
makes sense ÿrst to solve problem (2a,b) that contains (m+n)l equations. Then,
we have to ÿnd the solution of problem (2c) which will be a known function of
the solution of (2a,b). Finally, we apply an iterations to system (2d) of dimension
n. The advantage of this approach for the full and modiÿed Newton methods
was investigated in [7]. Moreover, when solving the larger problem (2a,b) we can
limit ourselves by less quantity of iterations at the grid points on the segment
[0; T ] (for details, see [12]).

Thus, from the above approach it follows necessity to solve discrete systems
(2a,b) of dimension (m+n)l many times during the integration. The latter allows
us to conclude that Newton-type iterations put severe requirements on RAM and
CPU time caused by the increasing dimension of discrete problem (2) in l times
when an l-stage implicit RK method has been used. Therefore the basic problem
is how to simplify and speed up the numerical solving of the linear systems with
sparse coeýcient matrices of the special form arising from the application of
Newton method (full or modiÿed) to problem (2a,b).

In [11], [13] we gave rise to the idea of modiÿcation of Gaussian elimination
for parallel factorization of nonzero blocks of the matrices. In the present paper
we ÿrst introduce a new term to denote this modiÿcation and it will be referred
to further as vector Gauss method. This modiÿcation allows RAM and CPU
time to be signiÿcantly reduced in the numerical integration of problem (1) by
an implicit RK method. Now we discuss full details associated with pivoting in
the course of implementation of the vector Gauss method. In addition, we give
a simple example which illustrate theoretical results of the paper.
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2 Preliminary Notes for Vector Gauss Method

As we have derived above, the basic part of Newton iteration applied to problem
(2) consists of solving linear systems of the form

@ ÿF ÿ
k (Z

iÿ1
k+1)(Z

iÿ1
k+1 ÿ Zi

k+1) = ÿF ÿ
k Z

iÿ1
k+1 (3)

where lower indices mean time points, and upper ones denote iterations. Here

Zk+1
def
=

ÿ
(zk1)T ; :::; (zk;lÿ1)T ; (zkl)T

þT
2 R

(m+n)l, where the vector zkj
def
=ÿ

(xkj)T ; (ykj)T
þT
2 R

m+n, j = 1; 2; : : :; l, unites components of the j-th stage
value of l-stage RK formula (2). The mapping ÿF ÿ

k is the nontrivial part of dis-
crete problem (2) for computing the stage values Zk+1, and @ ÿF ÿ

k (Z
iÿ1
k+1) denotes

the Jacobian of the mapping ÿF ÿ
k evaluated at the point Ziÿ1

k+1.

From system (2a,b) it follows that the matrix @ ÿF ÿ
k (Z

iÿ1
k+1) has the following

block structure:

@ ÿF ÿ
k (Z)

def
=

0
BB@

@ ÿF ÿ
k (Z)1

@ ÿF ÿ
k (Z)2
...

@ ÿF ÿ
k (Z)l

1
CCA (4)

where each block @ ÿF ÿ
k (Z)j ; j = 1; 2; : : : ; l, is an (m+n)þ (m+n)l-matrix of the

form0
BBBBBB@

O(ÿ) ÿ ÿ ÿ O(ÿ) 1 + O(ÿ) ÿ ÿ ÿ O(ÿ) O(ÿ) ÿ ÿ ÿ O(ÿ) O(ÿ) ÿ ÿ ÿ O(ÿ)
...

. . .
...

...
. ..

...
...

. . .
...

...
. . .

...
O(ÿ) ÿ ÿ ÿ O(ÿ) O(ÿ) ÿ ÿ ÿ 1 +O(ÿ) O(ÿ) ÿ ÿ ÿ O(ÿ) O(ÿ) ÿ ÿ ÿ O(ÿ)
0 ÿ ÿ ÿ 0 z ÿ ÿ ÿ z z ÿ ÿ ÿ z 0 ÿ ÿ ÿ 0
...

. . .
...

...
. ..

...
...

. . .
...

...
. . .

...
0 ÿ ÿ ÿ 0 z ÿ ÿ ÿ z z ÿ ÿ ÿ z 0 ÿ ÿ ÿ 0

1
CCCCCCA

)

)
m

n

| {z }
(m+n)(jÿ1)

| {z }
m

| {z }
n

| {z }
(m+n)(lÿj)

:

Here z means in general a nontrivial element.
Having used the structure of matrix (4), Kulikov and Thomsen suggested

in [7] to exclude the zero blocks situated below the main diagonal from LU-
factorization and forward substitution. That reduces the number of arithmetical
operations and, hence, CPU time signiþcantly when linear system (3) is solved.
This approach was called Modiÿcation I in [9]. Moreover, the advantage of the
new version of Gaussian elimination becomes greater if we have interchanged
the x-components of the vector Zk+1 with the corresponding y-components. It
means that we have interchanged the þrst m rows with the last n ones in each
submatrix @ ÿF ÿ

k (Z)j . In this case we can exclude all the zero blocks of matrix
(4) from the LU-factorization, forward and backward substitutions and solve
problem (3) very eýectively (see Modiÿcation II of Gauss method in [9]).

However, the discussed modiþcationsmay appear useless when we solve large-
scale semi-explicit index 1 diýerential-algebraic systems. As an example, we may
take the model of overall regulation of body üuids [5]. This model is a problem
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of the form (1) containing about two hundred variables. Having applied any
implicit 3- or 4-stage RK method to the model we encounter the situation when
the dimension of discrete problem (2) is too high to solve it by Newton-type
iterations (see the numerical example in [11]). On the other hand, the Jacobian
of a large-scale diÿerential-algebraic system is often a sparse matrix. For instance,
the model mentioned above is the case. Thus, the main problem must be how
to implement Modiþcation II of Gaussian elimination for matrix (4) eÿectively.

As in [11], we rearrange the variables and deþne the vectors:

Xk+1
def
=
ÿ
(xk1)

T ; :::; (xk;lÿ1)
T ; (xkl)

T
þT

2 Rml;

Yk+1
def
=
ÿ
(yk1)

T ; :::; (yk;lÿ1)
T ; (ykl)

T
þT

2 Rnl:

Now Zk+1
def
=
ÿ
(Yk+1)T ; (Xk+1)T

þT
and matrix (4) has the form

@ ýF ÿ
k (Z)

def
=

ý
@ ýF ÿ

k (Z)
Y

@ ýF ÿ
k (Z)

X

ü
: (5)

Here each submatrix has also the block structure:

@ ýF ÿ
k (Z)

Y def
=

0
BB@

@ ýF ÿ
k (Z)

Y
1

@ ýF ÿ
k (Z)

Y
2

...
@ ýF ÿ

k (Z)
Y
l

1
CCA and @ ýF ÿ

k (Z)
X def

=

0
BB@

@ ýF ÿ
k (Z)

X
1

@ ýF ÿ
k (Z)

X
2

...
@ ýF ÿ

k (Z)
X
l

1
CCA

where

@ ýF ÿ
k (Z)

Y
i

def
=

0
@ 0 ÿ ÿ ÿ 0 z ÿ ÿ ÿ z 0 ÿ ÿ ÿ 0 z ÿ ÿ ÿ z 0 ÿ ÿ ÿ 0

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 ÿ ÿ ÿ 0 z ÿ ÿ ÿ z 0 ÿ ÿ ÿ 0 z ÿ ÿ ÿ z 0 ÿ ÿ ÿ 0

1
A )

n

| {z }
n(iÿ1)

| {z }
n

| {z }
n(lÿi)+m(iÿ1)

| {z }
m

| {z }
m(lÿi)

@ ÿF ÿ

k (Z)
X

i

def
=

0
@O(ÿ) ÿ ÿ ÿ O(ÿ) 1 +O(ÿ) ÿ ÿ ÿ O(ÿ) O(ÿ) ÿ ÿ ÿ O(ÿ)

...
. . .

...
...

. . .
...

...
. . .

...

O(ÿ) ÿ ÿ ÿ O(ÿ) O(ÿ) ÿ ÿ ÿ 1 +O(ÿ) O(ÿ) ÿ ÿ ÿ O(ÿ)

1
A )

m

| {z }
nl+m(iÿ1)

| {z }
m

| {z }
m(lÿi)

Now we note that, when solving linear system (3) with matrix (5) by Modi-
þcation II of Gaussian elimination, LU-factorization of any submatrix @ ýF ÿ

k (Z)
Y
i

does not inüuence the submatrices @ ýF ÿ
k (Z)

Y
j for j 6= i. This means that the

factorization of the matrix @ ýF ÿ
k (Z)

Y falls into l independent LU-factorizations
of the submatrices @ ýF ÿ

k (Z)
Y
i , i = 1; 2; : : :; l. Moreover, structures of the similar

nonzero blocks of all the submatrices @ ýF ÿ
k (Z)

Y
i (i.e., the number and the places

of nonzero elements) coincide, if the stepsize ÿ is suûciently small.
It is evident that packing suggested in [11], [13] allows the parallel factoriza-

tion of the matrix @ ýF ÿ
k (Z)

Y to be implemented in practice. To store the matrix
@ ýF ÿ

k (Z)
X , we can use any packing appropriate for sparse matrices in a gen-

eral case because the matrix A of coeûcients of the RK method may have zero
elements and, hence, @ ýF ÿ

k (Z)
X also contains zero blocks.

415On Implementation of Vector Gauss Method



3 Implementation of Vector Gauss Method

As it is well-known, each step of Gauss method is split up into two independent
stages. The ÿrst stage is pivoting in the active submatrix, and at the second one
we have to eliminate the next variable from the remaining equations of linear
system. We start with the discussion of diþerent ways of pivoting for linear
system (3) with the sparse coeýcient matrix (5).

When solving a linear system with sparse coeýcient matrix by Gauss method
we have to determine a set of admissible elements of the active submatrix; i.e.,
the elements which are greater or equal to some ÿ > 0. As the pivot, we then take
the admissible element giving the minimum (or small) local ÿll-in (i.e., quantity
of zero elements of the coeýcient matrix which become nonzero ones) for the
next step of Gaussian elimination. There are several ways to implement this idea
in practice. In the paper we consider two of them and show how this process
should be optimized for linear system (3) with the packed coeýcient matrix (5).

The ÿrst strategy of pivoting is based on theorem 2.5.5 in [15]. According to
this theorem, if we take the (þ+p; þ+q)-th element of matrix @ üF ÿ

k (Z)
(þ) derived

for þ steps of the Gauss method as a pivot
ÿ
p; q = 1; 2; : : : ; (m+ n)l ÿ þ

þ
then

the local ÿll-in at the þ + 1-th step is given by the (p; q)-th element of matrix
G(þ), where

G(þ) def
= B(þ)

ý
üB(þ)

üT
B(þ) (6)

and the square matrix B(þ) of dimension (m + n)l ÿ þ is built from the ele-
ments of active submatrix of @ üF ÿ

k (Z)
(þ) by replacing nonzero elements with the

unity ones, and
ÿ
üB(þ)

þT
is a transposed matrix to üB(þ) def

= M(m+n)lÿþ ÿ B(þ)

(M(m+n)lÿþ is a square matrix of dimension (m+n)lÿþ with the unity elements).
Then, as the pivot for the þ+1-th step we choose that admissible element which
gives the minimum local ÿll-in. In practice, implementation of the ÿrst strategy
means calculation of the matrix G(þ) before each step of Gauss method; i.e., for
þ = 0; 1; : : :; (m + n)l ÿ 1. As the result, the cost of this strategy (in terms of
multiplication operations) can be determined by the following formula:

2

(m+n)lÿ1X
þ=0

ÿ
(m + n)l ÿ þ

þ3
=

(m + n)2l2((m + n)l + 1)2

2
: (7)

According to the second strategy, if we take the (þ + p; þ + q)-th element
of matrix @ üF ÿ

k (Z)
(þ) as a pivot then the maximum possible local ÿll-in at the

þ+ 1-th step of Gauss method is given by the (p; q)-th element of matrix Ĝ(þ),
where

Ĝ(þ) def
= (B(þ)

ÿ I(m+n)lÿþ)M(m+n)lÿþ(B
(þ)
ÿ I(m+n)lÿþ) (8)

with the matricesB(þ) andM(m+n)lÿþ having the above sense (see theorem 2.5.14
in [15]). Then, as the pivot for the þ+1-th step of Gauss method we choose that
admissible element which gives the minimum from the maximum possible local
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ÿll-ins. Thus, the computational cost of this strategy (in terms of multiplication
operations) can be expressed as follows:

(m+n)lÿ1X

ÿ=0

ÿ
(m + n)l ÿ ÿ

þ2
=

(m + n)l
ÿ
(m + n)l + 1

þÿ
2(m + n)l + 1

þ
6

: (9)

Obviously, the second strategy is not as exact as the ÿrst one since it does not
allow the real local ÿll-in to be computed, but just gives some upper estimate.
However, its practical implementation is much cheaper than that of the ÿrst
strategy (compare (7) and (9)).

Let us now refer to the special structure of matrix @ þF þ
k (Z). It allows the

factorization process to be split up into two stages. At the ÿrst stage we will
eliminate y-components of the vector Zk+1, and the x-components will be elimi-
nated at the second one. Consider pivoting for the ÿrst stage of LU-factorization.

As we remember, the LU-factorization of matrix @ þF þ
k (Z)

Y falls into l inde-
pendent LU-factorizations of the submatrices @ þF þ

k (Z)
Y
i , i = 1; 2; : : : ; l, if when

factorizing each submatrix @ þF þ
k (Z)

Y
i at the ÿ+1-th step of Gauss method we take

the pivot from the active submatrix which is the right-hand side minor located

on intersection of the last nÿ ÿ rows and columns of the block @yki
þF þ
k (zki)

Y
i

(ÿ)
.

By virtue of the nonsingularity condition (see [6]) we can always ÿnd at least
one admissible element among the elements of the above minor if @yki þF

þ
k (zki)

Y
i

is not an improperly stipulated matrix. So, if we choose the pivot by this way
then, taking into account the structure of matrix @ þF þ

k (Z), the local ÿll-in may
inýuence only the matrix of dimension (n ÿ ÿ +ml) ÿ (nþ ÿ +m)

@zki
þF þ
k (zki)

(ÿ) def
=

0
BBBBBB@

@zki
þF þ
k (zki)

Y
i

(ÿ)

@zki
þF þ
k (zki)

X
1
(ÿ)

@zki
þF þ
k (zki)

X
2
(ÿ)

...
@zki

þF þ
k (zki)

X
l

(ÿ)

1
CCCCCCA

: (10)

To speed up the computation process, we suggested the simultaneous fac-
torization of all the submatrices @ þF þ

k (Z)
Y
i , i = 1; 2; : : : ; l. Thus, every step of

the Gauss method now implies elimination not one but l variables; i. e., all the
arithmetical operations are implemented in vector form with vectors of dimen-
sion l. Moreover, in this case we have to choose the vector of pivots (or shortly
the pivot vector). That is why we call this approach the vector Gauss method.
The packing suggested in [11], [13] makes it possible to realize the vector Gauss
method in practice if we additionally require all the components of pivot vectors

to be on the same places in active submatrices of the blocks @yki
þF þ
k (zki)

Y
i

(ÿ)
,

i = 1; 2; : : : ; l, ÿ = 0; 1; : : : ; nþ 1.
As we have discussed above, in the process of numerical solving of linear

systems with sparse coeücient matrices by Gauss method it is necessary ÿrst to
determine some set of admissible elements and then to choose the pivot. In the
context of vector Gauss method, this approach requires determination of the set
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of admissible vectors; i.e., the vectors with all their components being admissible
elements. In this case we have to guarantee that this set will not prove to be
empty for the nonsingular matrix @ ÿF ÿ

k (Z) (i.e., the sets of admissible elements of

active submatrices of the blocks @yki ÿF
ÿ
k (zki)

Y
i

(þ)
will produce nonempty intersec-

tion for any ÿ = 0; 1; :::; nÿ 1). By virtue of the smoothness, nonsingularity and
inclusion conditions the above requirement can be easily met in the process of
solving system (3) with the coeþcient matrix (5), if the stepsize þ is suþciently
small. The detailed explanation of this fact will appear in [13].

The next step in the procedure of pivoting for the vector Gauss method is
determination of the admissible vector which gives the minimum (or suþciently
small) local ýll-in. In general, this problem tends to be very hard to solve. How-
ever, the situation is simpliýed signiýcantly if RK methods with dense coeÿcient
matrix A (i.e., aij 6= 0, i; j = 1; 2; : : : ; l) have been applied to problem (1). Then

the blocks @zki ÿF
ÿ
k (zki)

Y
i

(þ)
and @zki

ÿF ÿ
k (zki)

X
j

(þ)
, j = 1; 2; : : : ; l, are of the same

structure. Therefore matrices @zki ÿF
ÿ
k (zki)

(þ), i = 1; 2; : : :; l, also have the same

structure if we put the block @zki
ÿF ÿ
k (zki)

X
i

(þ)
on the last position in all the ma-

trices (see (10)). Thus, all the components of any admissible vector lead to one
and the same ýll-in and, hence, we actually can choose the pivot vector with all
its components giving the minimal estimate for the local ýll-in. In such a way,
to determine the pivot vector it is enough just to ýnd any of its components.
Moreover, from the two theorems below we conclude that to compute such a
component we may use not the whole matrix @zki ÿF

ÿ
k (zki)

(þ) but only the matrixÿ
@zki

ÿF ÿ
k (zki)

Y
i

(þ)

@zkig(zki)
(þ)

!

of dimension nÿÿ+mþnÿÿ+m, the lastm rows of which are the corresponding
block of the matrix

@gl(Z) = (@yk1g(zk1) : : : @yklg(zkl) @xk1g(zk1) : : : @xklg(zkl)) :

This reduces execution time essentially.
The proofs of both theorems will appear in [13].

Theorem 1 Let an l-stage RK formula with dense coeÿcient matrix A be used
for constructing matrix (5). Suppose that the ÿ+1-th step of vector Gauss method

is being implemented and the (ÿ+p; ÿ+q)-th element of the block @yki ÿF
ÿ
k (zki)

Y
i

(þ)
,

ÿ = 0; 1; : : : ; n ÿ 1, i = 1; 2; : : : ; l, p; q = 1; 2; : : : ; n ÿ ÿ, is chosen as the i-th
component of pivot vector. Then the local þll-in of the matrix @zki ÿF

ÿ
k (zki)

(þ) from
(10) is given by the (p; q)-th element of the matrix

G(þ) =

þ
BY
yi

(þ)
ý
ÿBY
yi

(þ)
üT

+ BY
xi

(þ)
ý
ÿBY
xi

(þ)
üTû

BY
yi

(þ)

+l ýBY
yi

(þ)
ý
ÿB(þ)
y

üT
B

(þ)
yi + BY

xi

(þ)
ý
ÿBl
x

(þ)
üT

B(þ)
y ;

(11)
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where the matrices BY
yi

(ÿ)
, BY

xi

(ÿ)
, B

(ÿ)
y , B

(ÿ)
x are obtained from the active sub-

matrices of @yki ÿF
þ
k (zki)

Y
i

(ÿ)
, @xki ÿF

þ
k (zki)

Y
i

(ÿ)
, @ykig(zki)

(ÿ), @xkig(zki)
(ÿ) by re-

placing nonzero elements with the unity ones, ÿBY
yi

(ÿ)
= M(nÿÿ)ÿ(nþÿ) ÿBY

yi

(ÿ)
,

ÿBY
xi

(ÿ)
= M(nþÿ)ÿm ÿ BY

xi

(ÿ)
, ÿB(ÿ)

y = Mmÿ(nþÿ) ÿ B
(ÿ)
y , ÿB(ÿ)

x = Mmÿ(nþÿ) ÿ

B
(ÿ)
x , and the matrix ÿBl

x

(ÿ)
is obtained by multiplication of the diagonal elements

of matrix ÿB
(ÿ)
x by l ÿ 1 and the nondiagonal elements by l.

Theorem 2 Let all the conditions of Theorem 1 hold. Then the maximum possi-
ble local ÿll-in of the matrix @zki ÿF

þ
k (zki)

(ÿ) from (10) (not necessarily coinciding
with the real one) is given by the (p; q)-th element of the matrix

Ĝ(ÿ) =
ÿÿ

BY
yi

(ÿ)
ÿ Inþÿ

þ
M(nþÿ)ÿ(nþÿ) +BY

xi

(ÿ)
Mmÿ(nþÿ)

þÿ
BY
yi

(ÿ)

ÿInþÿ) + l
ÿÿ

BY
yi

(ÿ)
ÿ Inþÿ

þ
M(nþÿ)ÿm + BY

xi

(ÿ)
Mmÿm

þ
B(ÿ)
y :

(12)

Theorems 1 and 2 not only allow the pivot vector to be determined but also
make it possible to estimate the cost of the þrst and the second strategies (in
terms of multiplication operations). Thus, taking into account that only n steps
of the vector Gauss method are required for the full factorization of the matrix
@ ÿF þ

k (Z)
Y , the whole number of multiplications for the þrst strategy is

nþ1X
ÿ=0

ý
2(nÿ ÿ)3 + (4m + 1)(nÿ ÿ)2 +m2(nÿ ÿ)

ü
=

n2(n + 1)2

2

+(4m + 1)
n(n + 1)(2n+ 1)

6
+m2n(n+ 1)

2
:

(13)

Similarly, from formula (12) it follows that the quantity of multiplication
operations for the second strategy is estimated by formula:

3
nþ1X
ÿ=0

(n ÿ ÿ)2 =
n(n + 1)(2n+ 1)

2
: (14)

To illustrate the theoretical result, we consider a simple example. Let m =
n = 2 and l = 1; 2; 3; 4. Now using formulas (7), (9), (13), (14) of the paper and
(3.11), (3.12) from [13] we calculate the number of multiplications required to
implement the þrst and the second strategies in the frames of standard Gauss
method, Modiþcation II and the vector Gauss method for RK methods with
dense coeýcient matrices. Table 1 gives the data for the þrst strategy, and Ta-
ble 2 shows the result for the second one. Even from this small example, we can
see that only in the vector Gauss method computational cost of pivoting does
not depend on the number of stages of RK formulas and remains rather minor.

At the end of this section we stress the following aspect. It was noted earlier
that the elimination of variables from system (3) is split up into two stages.
We eliminated the y-components by using parallel factorization of the matrix
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Table 1. The number of multiplication operations in the ÿrst strategy of pivoting for
the factorization of matrix @ þF ÿ

k (Z)
Y (m = n = 2)

number Gauss Modiÿcation vector Gauss
of stages method II method

1 182 60 75
2 2392 184 75
3 11286 372 75
4 34400 624 75

Table 2. The number of multiplication operations in the second strategy of pivoting
for the factorization of matrix @ þF ÿ

k (Z)
Y (m = n = 2)

number Gauss Modiÿcation vector Gauss
of stages method II method

1 25 10 15
2 174 30 15
3 559 60 15
4 1292 100 15

@ ÿF ÿ

k
(Z)Y and by applying the vector Gauss method. Then we eliminated the

x-components. The þrst stage is more important for optimization because the
most part of arithmetical operations falls on it. Therefore in [11], [13] we gave a
way to further reduction of the number of operations at this stage. The whole
version was called Modiÿcation III. It incorporates the approach of vector Gauss
method with the idea to use the reduced matrixÿ

@ ÿF ÿ

k
(Z)Y

@gl(Z)

þ

of dimension (nl+m)ÿ (m+n)l instead of the full matrix (5) while eliminating
the y-components. We refer to [11] or [13] for the numerical example.

4 Conclusion

In the paper we further developed the idea suggested in [11], [13] for parallel
factorization of the submatrices @ ÿF ÿ

k
(Z)Y

i
, i = 1; 2; : : : ; l. We showed that the

most eýective algorithmwill be obtained only if we use the vector Gauss method.
The main advantage of the new method is that we can signiþcantly reduce the
number of arithmetical operations required to solve problem (1). Moreover, the
computation cost of pivoting in the vector Gauss method does not depend on
the number of stages of dense RK formulas applied to (1). Finally, we note that
vector computers are the most useful to implement the vector Gauss method.
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