Internet Client Graphics Generation Using XML
Formats

Javier Rodeiro and Gabriel Pérez

Depto. Informatica ,

Escuela Superior Ingenieria Informética,
Edificio Politécnico, Campus As Lagoas s/n
Universidad de Vigo,

32004 OURENSE, Spain
jrodeiro@uvigo.es
http://www.ei.uvigo.es/~jrodeiro/

Abstract. For a long time abstractions have been commonly used for
representing graphical elements. The use of network systems (in partic-
ular INTERNET) for this type of elements has the difficulty of trying to
submit the enormous volume of information contained. One possible so-
lution to this could be the transference of an abstracted definition of the
charts and to perform the drawing in the client which is requesting the
graphical form. Previous approaches have been based either on SVG [1]
or XML [2] but they have the inconvenient of being unsuitable for future
incremental developments. In the work presented here a new approach
based on XML and Java is proposed. It does provide not only a working
tool but it is also an open and incremental system regarding the possible
techniques which can be applied during the drawing process in the client
and during the transference of information as a XML document.

1 Introduction

When data are registered in any kind of source (electronic, paper, etc.) we can
foresee that any type of consult of the stored information is intended. In order
to make those data more accessible and to facilitate operations with them there
are a wide range of informatics’ applications, from the simplest worksheet to the
most complex database management systems.

Once this friendly and efficient system is created, problems arise in relation
to enable data presentations in such ways which are complete and easy to un-
derstand and that they do not lose their reliability. To achieve this there are
graphics and data diagrams.

One of the common difficulties when performing queries to a remote data base
or worksheet to obtain a graphic result (i.e. as a reliable image which represents
the consulted data) occurs when trying to send the resulting chart through the
network. The main problem is that they are big in size. Reductions in the size
for a better handling inside the network can be sorted out with file compressors
(generally based in losses of information) or by using vector graphics [1].

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 268-274, 2002.
© Springer-Verlag Berlin Heidelberg 2002



Internet Client Graphics Generation Using XML Formats 269

In this project we intend to solve this problem by reducing the data fluxes
during the communication between the client and the server when representing
the results. To achieve this, instead of submitting the final document as JPEG,
BMP, etc., the server will send a graphic representation as XML (eXtensible
Marked Language), through an applet Java, to the client. This has been defined
previously to generate the graphic from the consulted database.

2 Proposed project

2.1 Description

Graphic description was performed in XML, by means of the following DTD
(Data Type Definition) [3].

<!ELEMENT grafico (angular | circular)>
<!ELEMENT angular(nombre,ymax,nelementos,distancia,ancho,barra*)>
<!ELEMENT nombre (#PCDATA)>
<!ELEMENT ymax (#PCDATA)>
<!ELEMENT nelementos (#PCDATA)>
<!ELEMENT distancia (#PCDATA)>
<!ELEMENT ancho (#PCDATA)>
<VELEMENT barra EMPTY>
<!ATTLIST barra
valor CDATA #REQUIRED
indice CDATA #REQUIRED>

Implementation was carried out by using a Java platform, for both XML
documents generation and rendering, originated from the XML definition. In
this implementation it is remarkable the independence of this platform, between
the server and the clients. For this reason the use of applets was chosen due to
the fact that they can be executed within a web navigating environment and only
the address (URL) of the XML document is needed. Thus the described method
provides to the client clear information about the server which has processed
and sent the data.

The communication between the client and the server is as follows:

1. The client (for example from a website) logs into the server and requests one
chart based on certain data and specifies the graphic type and the format
desired.

2. Based on this request the server originates a XML file which contains the
components definitions of the image. At the same time a web page is created
in which the correspondent applet to the required graph is included.

3. This applet creates a communication channel with the initial document, then
extracts the information contained and represents this in the navigator.



270 J. Rodeiro and G. Pérez

2.2 Interpreting XML

When handling XML documents it is of great importance to follow the definition
indicated in the D'T'D which corresponds to the type of documents under use.
Within the client-server structure, both elements directly operate in XML. In
addition it should be taken into account that they are completely independent
and therefore because of the lack of direct communication between them it is
essential to ensure that they both work on the same XML base.

Regarding the server component, we are currently implementing reference
servers in order to establish the foundations of later versions which will allow
to work with different information sources (databases, keyboard directly, from
text files...). Tt is also noticeable that this system has been built by using an
open methodology, so that this project can be easily improved by third per-
sons in relation to either rendering methods or to the XML structure of the
representation.

The APIT Java for XML and JAXP, provides great advantages in the develop-
ment of these servers and, indeed the necessary methods to originate the result
contained in XML documents are common to all servers.

However, in relation to the client, this is not the case mainly due to the
restrictions in size imposed to the applets (they must be around 5KB, including
the subclass gdXML, which has been employed here and it is described below).
In order to reduce the applets size we have focused the development in following
two premises: firstly, the subclasses gdXML should implement their own XML
interpreter for their correspondent DTD; and secondly, the structure of the file
containing the XML document must be as much simple as possible (i.e. it should
not allow line breaks in the label space, for example).

When performing the implementation the task of building a XML interpreter
in every subclass created increases slightly the effort but allows to reduce the
resulted coding substantially.

Additionally, preparing the client to work with a simple structure in the
archive also influences in the final size. This 1s achieved by increasing the com-
plexity at the server level, since that it is in charge of creating the XML document
in the most simple way.

2.3 Client

Initially one single applet with the function of interpreting and representing
all chart types was used (gdXMTLapp). In order to do this we employed the
class renderer which creates an URL object for the XML file, opens the flux of
information to 1t and represents the final output in the navigator.

The main problem with this procedure was the size of the class renderer which
increased enormously. This increment in size was due to the implementation of
the necessary methods to represent the new graphic solutions. In addition to this,
more procedures should be added for the applet to call the class renderer and to
indicate the type of graphic to be used. In view of this we decided to change the
classes hierarchy so that from the mother class, gdXML (which implements all



Internet Client Graphics Generation Using XML Formats 271

the necessary methods to interpret the XML document) the classes representing
the graphics are subsequently developed.

The class gdXML includes abstract methods ! for drawing procedures. This
allows the generation of new subclasses following a pre-established format, which
facilitates the programming of both the applets and these new subclasses in-
cluded in the formers (Fig. 1).

PR R 20

Fig. 1. Structure of the client classes hierarchy

The abstracts methods listed below are proposed:

rname(Graphics g) Chart name.

rLegend(Graphics g) Tt places the legend within the applet environment.

rElements(Graphics g) It draws the elements which conform the graphic
(columns, sectors,. .. ).

To date two classes have been implemented(including the corresponding ap-
plets), which were gdXMLblp (creation of columns, lines and scatter charts) and
gdXMLsec {pie charts). They can be described as an specialisation of the class
renderer because each one is able to interpret a specific chart.

The main advantage provided here is to reduce the final size of the file as
a consequence of including only the minimum number of drawing functions to
represent the requested chart. In addition to this, the implementation effort is
also reduced by inheriting from the class gdXML the necessary methods for
interpretation purposes.

These applets work as follow:

! These methods were not implemented in gd XML, instead each subclass created from
it is in charge of its own implementation



272 J. Rodeiro and G. Pérez

1. The applet receives the name of the file to be interpreted from the web page
code.

. The applet creates a flux from the URL of the file.

. The applet runs the class builder procedure and uses this flux as parameter.

. The builder procedure obtains the necessary values to build the chart.

. The applet uses the necessary visualization methods to create the resulting
image in the navigator (Fig. 2).

O o N

Piezax cazadas en la temporada de congjo

1999

Fig. 2. Example of the resulting image in the navigator

2.4 The applets gdAPPblp and gdAPPsec

The applet gdAPPsec (through the class gdXMLsec) represents the pie charts
and separates the different sectors which constitute the total figure. To do this
the centre of the circumference including the sector desired has to be moved.
The implemented solution in the circular class is to divide the trigonometric
circumference into cight zoncs, cach onc of 45° and drag the centre of cach
sector according to its location.

In order to know the sector location the ’‘cumulative angle’ is the reference
adopted 2. Depending on its location it is dragged to the point which is consid-
ered to be the centre. This movement must be accumulative, 1.e. if two sectors
are in the same area we cannot apply a fix step moving because this will result
in superimposed sectors in the final figure appearing in the navigator.

This technique of cumulative movements presents the problem of knowing
where the centre should be moved to. For instance, in the first zone (from 0° to

2 The starting angle in a sector is the sum of the length of the preceding arches



Internet Client Graphics Generation Using XML Formats 273

45°)if we cumulatively move the centre along the axis X all the sectors starting
at that point will be superimposed, and therefore they should be moved along
the axis Y.

The applet gdAPPblp has the function of representing the scatter, line and
column charts. This task is executed in conjunction with the class gdXMLblp.
Despite its reduced size (less than 5KB between the applet and the class) has
the following characteristics:

— It allows to change the font size. For example, the chart title can have a
bigger font size than the text in the legend (this is a common characteristic
to all applets)

— It adjust the scale of the axis Y. The method realises a direct interpretation
of the height of the column, i.e.| if the value to be represented is equal to 20
the column will be 20 pixels high. This results in some of the charts having
a deviated height-width ratio. To avoid this the input values are corrected
so that the length of axis Y is half of that of axis X.

3 Conclusions

One of the most important aspects of this project is the size of the applets
interpreting the XML files. For this reason, much effort in elaborating the coding
has been derived to their optimisation. In general terms, reducing the size of the
client involves more work in the development of the server component.

Another important aspect in the client element is the fact of not using Java
classes to handle XML documents. Instead we have created the classes gd XML-
blp and gdXMLsec, both being able to play the roles of XML interpreters, DOM
(Document Object Model) handlers and including representation methods. Also
it is noticeable that the use of a DOM neither of a XML interpreter is never
necessary.

With a modem connection of 56600bits/s (this is a minimal requirement
nowadays) these applets can be downloaded in less than a second. To this we
should add the time to open the website which contains them, and obviously,
the execution time of this applet in the client. Generally the total waiting time,
since the graphic is requested to when appears on screen is slightly over one
second.

This work was partially funded by the C.I.C.Y.T. under the projects TEL-
1999-0958 (Plan Nacional de T+D) and TEL99-0335-C04-03 (Plan Nacional de
I+D).

References

1. Jan Christian Herlitz, Drawml and svg, Proceedings of the First XML FEurope con-
ference (XML Europe 99), 1999, Granada, Spain, 27-30 April, pp. 61-70.

2. Mark Roberts, Graphic Element Markup, Proceedings of the First XML Europe
conference (XML Europe 99), 1999, Granada, Spain, 27-30 April, pp. 547-557.



274 J. Rodeiro and G. Pérez

3. Javier Rodeiro and Gabriel Pérez, Generacion de grdficos en arquitecturas cliente-
servidor mediante oml, Proceedings of X1 Congreso Espartiol de Informatica Grafica,
2001, Girona, Spain, 4-6 July.



	Introduction
	2 Proposed project
	2.1 Description
	2.2 Interpreting XML
	2.3 Client
	2.4 The applets gdAPPblp and gdAppsec

	3 Conclusions
	References

