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Abstract. The geometric constructions problem is often studied from
a combinatorial point of view: a pair data structure + algorithm is pro-
posed, and then one tries to determine the variety of geometric problems
which can be solved. Conversely, we present here a different approach
starting with the definition of a simple class of geometric construction
problems and resulting in an algorithm and data structures. We show
that our algorithm is correct, complete with respect to the class of sim-
ply constrained polygons, and has a linear complexity. The presented
framework is very simple, but in spite of its simplicity, this algorithm
can solve non-trivial problems.

1 Introduction

Handling geometric objects declaratively described by a system of geometric
constraints remains an important issue in CAD, even in the 2D case. To make
feasible this manipulation, a geometric solver is always needed to find one, some,
or all the solutions of a constraint system. Geometric constructions in CAD
have been studied by various authors (see e.g.[2, 6, 3, 4, 9, 11, 10, 12, 7] ). To this
date, the most famous methods are based on a combinatorial analysis of the
problem to be solved: the geometric side is quickly forgotten by giving a graph
structure which is used to do constraint propagation [6, 1], maximal flow search
[7] and/or problem decomposition [6, 10, 7]. In these approaches, different notions
of correctness are defined and studied (e.g. in [6, 7]). We consider here ”semantic”
correctness, that is: the discovered figures are solutions of the constraint system.

We present a complete study in a very simple framework: we consider simply
constrained polygons where the constraints can only concern the lengths of the
edges and the angles between two edges of the polygon. We give an algorithm
allowing to solve all the constraint schemes in this framework. We prove that
our algorithm is correct and complete (all the solutions of the constraint system
are found, in the degenerate cases zero solutions are found and explanations
can be given). Moreover, we show that the class of complexity is O(n) where
n is the number of vertices. Our method is very simple and this paper can be
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regarded as a simple case study introducing the domain of geometric construc-
tions.Nevertheless, the class of the solved problems is not trivial (e.g. see the
example given on Figure 4) Furthermore, it seems possible to use this proper
method in a multi-agent approach like the one described in [4]. Please, note that
simply constrained polygons constitute a subclass of the problems solved by the
Sunde method (see [13]), but, as far we know, there is no efficient implementation
of this method.

In Sections 2 and 3 of this paper, we expose the geometric framework of
the simply constrained polygons. In Section 4, we present and justify our res-
olution algorithm. In Section 5, we show how that algorithm can be efficiently
implemented. And, finally, we give some concluding remarks in section 6.

2 Definition of Polygons by Lengths and Angles

A polygon is classically defined as a finite sequence of points in the Euclidean
space with a fixed reference, that is , a polygon P is a function P : [[1, C]] → R

2

where [[1, C]] is a finite interval of integers, C > 2, and C is the number of vertices
of the polygon. Let us recall some usual notations: |P | = C is the number of
vertices, which is also the number of edges of P , P (n) or simpler Pn denotes the
nth point of polygon P , E(n) denotes the nth oriented edge of P (i.e the oriented
segment [P (n), P (n + 1)] if n < |P | and [P (n), P (1)] if n = |P |) and ||E(n)|| its
length. At last, we note P the set of the polygons of the plane.

For the purposes of this paper, we consider two functions families over the
polygons namely the polygon constructive functions and the permutation func-
tions which are defined as follows:

Definition 1. The set of the polygon constructive functions is the set CF =
{fn,a,l|n ∈ N

∗ , a ∈ R, l ∈ R
∗
+} where each function fn,a,l is defined by:

fn,a,l : P→ P

∀m ∈ [[1, |P |+ 1]] fn,a,l(P )(m) =



Pm if m < n
Q if m = n
Pm−1 if m > n

with point Q defined by:(
xQ
yQ

)
=

l

Pn−1Pn

(
cos(a) − sin(a)
sin(a) cos(a)

)(
xPn − xPn−1

yPn − yPn−1

)
+

(
xPn−1

yPn−1

)

Figure 1 a) illustrates such a construction. It is easy to verify that point Q

is the unique point such that Pn−1Q = l and \(
−−−−−→
Pn−1Pn,

−−−−→
Pn−1Q) = a.

Let us define the other family of functions over the polygons:

Definition 2. The set of permutation functions is the set PF = {gn|n ∈ N
∗}

where each function gn is defined by:

gn : P→ P

∀m ∈ [[1, |P |]] gn(P )(m) =

{
Pm if m �= n+ 1(mod|P |)
S otherwise
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Fig. 1. Action of a polygon constructive function (a) and a permutation function (b)

with point S defined by:(
xS
yS

)
=

(
xPn+2 + xPn − xPn+1

yPn+2 + yPn − yPn+1

)

Figure 1 b) shows the effect of the permutation function gn over a polygon.

Note that S is the unique point verifying
−−→
PnS =

−−−−−−−→
Pn+1Pn+2.

It is easy to see that any polygon
P can be generated by the polygon
constructive functions applied suc-
cessively to the triangle (P1, P2, P3)
(see Figure 2 for a “graphic idea”
of the proof). This assertion can
be transformed into: let C = |P |,
knowing triangle (P1, P2, P3), the
distances P3P4, ..., PC−1PC and
the oriented angles \(

−−−→
P3P2,

−−−−→
P3, P4),

... \(
−−−−−−−→
PC−1PC−2,

−−−−−−→
PC−1, PC), one can

re-construct the polygon P using
the functions fa,n,l

P

P
l
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Fig. 2. Construction of a polygon using
the polygon constructive functions

We will see below that, thanks to the permutation functions, this constraint
scheme can be enlarged to the simply constrained polygons. But beforehand, we
have to consider the way to get the triangle (P1, P2, P3) from lengths and angles.

The construction of a triangle knowing the length of its three edges (resp. two
lengths and one angle, or one length and two angles) is easy and well known, but
this simplicity conceals two important problems of the geometric constructions
in CAD. For instance, let us consider the function t1 : R∗

+ × R
∗
+ × R

∗
+ → P

computing a triangle having the three given lengths. First problem, there is an
infinity of triangles having these lengths: each of them can be deduced from one
of two particular solutions using a direct isometry (also called a displacement
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or a rigid body motion). Such a triangle is told to be constructed modulo the
displacements group. Here, we simply choose to fix point P1 at (0, 0)t and P2

on the Ox axis. But, and this is the second problem, how to deal with the
two or more particular solutions ? Some studies have been done on this subject
considering some heuristics and/or similarities with a sketch given by the user
([6, 5]). In our simple framework, we have only, at most, two constructions to
consider, so, we choose to keep both. The function t1 is now defined by:

t1 : R∗
+ × R

∗
+ × R

∗
+ → P× P

with (P ′, P ′′) = t1(l1, l2, l3), P ′
1 = P ′′

1 = (0, 0)t, P ′
2 = P ′′

2 = (l1, 0)
t and

P ′
3 =




l21+l23−l22
2l1√

l23 −
[
l21+l23−l22

2l1

]2


 and P ′′

3 =




l21+l23−l22
2l1

−
√
l23 −

[
l21+l23−l22

2l1

]2




Figure 3 shows the four cases of triangle construction (with, eventually some
permutations of edges) and the construction of the two triangles in the cases of
functions t1 and t3.
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Fig. 3. Four triangle cases (a) to (d) and construction for t1 (e) and t3 (f)

The following definition makes the things clearer. In this definition, all the
triangles (P1, P2, P3) verify P1 = (0, 0)t and P2 = (l1, 0)

t.

Definition 3. A triangle constructive function is one of the four partial func-
tions t1, t2, t3 and t4 which are defined by:

t1 : R∗
+ × R

∗
+ × R

∗
+ → P× P

t2 : R∗
+ × R

∗
+ × R → P× P

t3 : R∗
+ × R

∗
+ × R → P× P

t4 : R∗
+ × R × R → P× P
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– t1 is defined as before,
– t2(l1, l2, a1) = (P, P ) with P such that P1P3 = l2 and \(

−−−→
P1P2,

−−−→
P1P3) = a1

– t3(l1, l2, a1) = (P ′, P ′′) where P ′ and P ′′ are the two polygons such that

P ′
2P

′
3 = P ′′

2 P
′′
3 = l2 and \(

−−−→
P ′′

1 P
′′
2 ,

−−−→
P ′′

1 P
′′
3 ) = \(

−−−→
P ′

1P
′
2,
−−−→
P ′

1P
′
3) = a1 (see Figure

3.f)

– t4(l1, a1, a2) = (P, P ) with polygon P such that \(
−−−→
P1P2,

−−−→
P1P3) = a1 and

\(
−−−→
P2P3,

−−−→
P2P1) = a2

Thus, we extend classically our families of functions CF and PF to the
ordered pairs of polygons in order to have the following result: every polygon can
be constructed thanks to the functions of CF, PF and t1, t2, t3 and t4 modulo
the displacements group. We can now examine the notion of constraint scheme.

3 Constraint Schemes and Simply Constraint Polygons

A length constraint (over a polygon) is an ordered pair (n, l) where n is a natural
integer and l a non negative real. We say that a polygon P satisfies the constraint
(n, l) if n ≤ |P | and ||E(n)|| = l.
Definition 4. A set of length constraints L is coherent if (n, l) ∈ L and (n, k) ∈
L leads to k = l.

We note CL(n) the predicate indicating if the constraint (n, l) is in L or not.
When CL(n) is true, we note length(n,L) the imposed value in L for the edge
E(n).

An angle constraint is a triple (n,m, a) where n and m are natural integers,
with n �= m and a a real number. We say that a polygon P satisfies the constraint
(n,m, a) if n ≤ |P |, m ≤ |P | and the oriented angle between E(n) and E(m)
is equal to a, i.e. \(E(n), E(m)) = a. Given a set of angle constraints A, we
can define the associated unoriented angle graph G(A) whose nodes are the
segments E(i) and whose unoriented edges correspond to the angle constraints
between the segments i.e. {E(i), E(j)} ∈ G(A) if there is a such that (i, j, a) ∈ A
or (j, i, a) ∈ A. The transitive closure of the angle graph corresponds to the

Chasles relation (\(
−→
OA,

−−→
OB) + \(

−−→
OB,

−−→
OC) = \(

−→
OA,

−−→
OC)). This fact justifies

the definition:

Definition 5. A set of angle constraints A is coherent if there is no circuit in
the associated angle graph.

As before, we note CA(n1, n2) the predicate indicating if the edges E(n1) and
E(n2) are angle constrained or not. That is, CA(n1, n2) is true if and only if
there is a path between E(n1) and E(n2) in the unoriented graph G(A). Then,
we note angle(n1, n2, A) the value imposed by the angle constraints in A and
computed using the Chasles relation.

A scheme of constraints is an ordered triple S = (L,A, n) containing a set
of length constraints, a set of angle constraints and the number n of edges con-
sidered (which is noted N(S)). We impose that n is greater than the maximal
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edge number appearing in the sets of constraints. A constraint scheme S is well-
constrained if there is a finite number of polygons P such that P satisfies all the
constraints in S, |P | = N(S), P0 = (0, 0)t and P1 is on Ox. This definition leads
classically (e.g. see [6]) to the definition of a structurally well-constrained scheme
of constraints which is purely combinatorial and which meets the previous defini-
tion when the constraints values are algebraically independent and the complex
solutions are considered. Surprisingly, due to the simplicity of the framework,
simply constrained polygons have always at most two solutions (possibly zero).
So, if a constraint scheme is not a simply constrained polygon: either there are
redundant constraints, or the system is not well-constrained. Then, we have the
following theorem:

Theorem 1. A constraint scheme (L,A, n) is structurally well-constrained if
and only if L and A are coherent and either |L| = n and |A| = n − 3, either
|L| = n− 1 and |A| = n− 2 or either |L| = n− 2 and |A| = n− 1. We call such
a constraint scheme a simply constrained polygon.

Sketch of the proof : The necessary condition comes immediately from the
facts |A| + |L| = 2n − 3, |A| ≤ n and 1 ≤ |L| ≤ n. It is relatively easy, but
too long for this paper, to prove by recurrence that this cardinality condition
is sufficient: the idea is to use on a constraint scheme the equivalent operations
than the ones used on the polygons constructive functions and the permutation
functions). This idea is also used in the analysis of a constraint scheme given
below. �

Figure 4 shows, graphically, an
example of a simply constrained
polygon S = (L,A, n) where
L = {(1, k1), (2, k2), . . . , (6, k6)} and
A = {(1, 4, a1), (2, 5, a2), (3, 6, a3)}. It
becomes a well constrained scheme
when the formal parameters k1, k2
. . . k6 and a1, . . . a3 are instantiated
with appropriate values.
The objective is then to take a well con-
strained schema S in order to yield one
(or two) polygons P which satisfies all
the constraints in S.

5

5

4

4

3
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2
2

2

6
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1

1

k

k

k

k

a

a3

a

k

k

Fig. 4. A structurally well-
constrained polygon

4 Analysis and Construction

From the Theorem 1 of the previous section, the following result can be deduced:
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Theorem 2. Given S = (L,A, n) a simply constrained polygon with n > 3,
there are two edges n1 ∈ {1, 2, 3, 4} and n2 ∈ {1, 2, 3, 4}, with n1 �= n2, such that
CL(n1), CL(n2) and CA(n1, n2).

Proof. Since G(A) has no circuit, each addition of an edge decreases the number
of connected components by 1. So, in case |A| = n − 3, there are exactly three
connected components in G(A). The pigeon hole principle shows that ∃n1 ∈
{1, 2, 3, 4} and n2 ∈ {1, 2, 3, 4} such that CA(n1, n2) and n1 �= n2. Since |L| = n
in this case, the result is obvious. The other two cases (|A| = n−2 and |A| = n−1)
can be treated by the same use of the pigeon hole principle. �

l2

b) c)
a)

l

l

l l l

a

a
a

1

2
1

1

2

3

4

1

2

3

4

2 1 1
2

3

4

Fig. 5. The three cases

Thanks to Theorem 2, we can see that there are fundamentally three cases
examining the constraints over the first four edges: the angle and length con-
strained edges are consecutive, or separated by one edge, or separated by two
edges. These cases are graphically represented on Figure 5 .Let us examine the
c) case and explain how to simplify it. The c) case corresponds to the con-
straint scheme L = {(1, l1), (4, l2), . . .} and A = {(1, 4, a), . . .}. This constraint
scheme can be transformed in a way that is similar to the permutation function:
S = (L,A, n) becomes S′ = (L′, A′, n) where L′ and A′ are obtained from L and
A replacing 3 by 4 and vice-versa. Next, we apply the same operation exchang-
ing 3 with 2 (See Figure 6 ) giving the scheme S′′. It is easy to demonstrate
that P is a solution of S′′ if and only if g2(g3(P )) is a solution of S. Then, we
are in the situation described on Figure 7 left: edges 1 and 2 are constrained
in length and in angle. The construction of triangle (ABC) is quite usual and
requires only standard formulae: so the distance AC and the angle b can easily
be computed. Then, we obtain a new constraint scheme S′′′ computed from S′′

by forgetting edges 1 and 2, adding a new edge (say 1′) and transferring all the
angle constraints between edge 1 or 2 and the other edges to the new edge 1′

using computed angle b and, finally, by adding the length constraint (1, l′1) to
L′′. It is still easy to demonstrate that polygon P satisfies the scheme constraint
S′′′ if and only if f1,b,l1(P ) satisfies S′′. Note that the resulting scheme is still
structurally well constrained and has one edge fewer than S.

The other cases are very similar. This leads us to propose the following
algorithm to solve a simply constrained polygon:
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input: simply constrained polygon

output: polygon

solve(S) = if triangle(S) then solve_triangle(S)

elif case_a(S) then build_case_a(coefs_a(S),solve(simplify_case_a(S)))

elif case_b(S) then build_case_b(coefs_b(S),solve(simplify_case_b(S)))

elif case_c(S) then build_case_c(coefs_c(S),solve(simplify_case_c(3)))

fi

where functions triangle() and solve_triangle() are in charge of the triangle
cases resolution, functions case_X() test if the constraint scheme is in case a), b)
or c). Then, functions simplify_case_X() make the simplification following the
description above given, while functions coefs_X() compute the corresponding
dimensions in order to apply the correct construction and permutation functions
thanks to meta-functions build_case_X().We have then the following theorem:

Theorem 3. The previous algorithm is correct and complete with respect to the
simply constrained polygons.

That means the algorithm finds all the solutions whatever the simply constrained
polygon to be solved. In the degenerate cases, no solutions are found (this is cor-
rect) and explanations can be given to the user. Since, in this paper, the auxiliary
functions, and hence the algorithm, are not formally described, it is impossible
to prove rigorously here this theorem. Let us say that the correctness comes
from the facts that, first, the functions triangle() and solve_triangle() are
correct and, second, that if S is in the caseX (with X ∈ {a, b, c}) then this is cor-
rectly discovered by the case_X() function and, build_case_X(coef_X(S), P )
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is a solution of S if and only if P is a solution of simplify_case_X(S). The
description of the simplification above given should convince the reader of these
facts. The completeness comes from Theorem 2 and the fact that all the cases
are handled by the algorithm.

5 Implementation

Although we have functionally and recursively described our algorithm, we have
carried out an imperative procedural implementation. We have shown that, with
adequate data structures, all the auxiliary functions given in previous section
have a O(1) complexity in space and time.

Note first, that the algorithm can easily be put under a procedural form
using a stack in order to keep in memory the construction functions to apply
and which were discovered during the analysis of the constraint scheme. By
this way, the transformed algorithm consists in two phases: the analysis of the
constraint scheme and the re-construction of the resulting polygon.

In the first phase, the algorithm has to detect if the simply constrained
polygon is a triangle or not. In the first case, the resolution is well known and
is done in constant time. If it is not a triangle, the system searches, with the
first four edges, what is the simplification case. This can be done easily by
examining the data structures containing the constraints. We chose to implement
the set of angle constraints with a forest where each tree has a depth 1 and each
node contains a pointer to the root. The construction of such a structure is
achieved in linear time and the search for an angle constraint between two edges
is achieved in constant time. So, it is easy to see that the functions case X are
executed in constant time. The analysis and the simplification are implemented
according to the description given above. It is obvious that each step can be
performed in constant time. Since there are n − 3 steps, the complexity of the
analysis/simplification phase is O(n).

In the second phase, the system uses all the informations collected during
the first phase and which are kept in the stack. These informations indicate
which functions, with which parameters and in which order to call, in order to
build the polygon from the “initial” triangle yet constructed. Each step of the
construction consists in the application of one, two or three functions. So, it is
achieved in constant time. Thus, the entire construction is done in linear time.

It is easy to see that with our data structures the space complexity is O(n)
as well.

This algorithm has been implemented under the form of a C++ prototype.
It was experimented on small examples, i.e.: simply constrained polygons with
about ten points. For each example, the resolution was immediate.

6 Conclusion

We presented in this paper a simple framework in the geometric constraint solv-
ing domain. Examining the family of the simply constrained polygons, we found
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a general algorithm to solve the structurally well-constraint scheme. This algo-
rithm is correct, complete and has a linear complexity.

Of course, this framework is only a case study and the resulting algorithm is
not very powerful. But it can solve difficult problems. Furthermore it can be used
by other solvers which perform decomposition as the one described in [4]. One
can also imagine to generalize this approach to “constrained complex cellular”
consisting in an assembling of simply constrained polygons.
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