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Abstract. We propose the simulation of oil recovery by means of a
molecular type approach. By using a finite set of particles under the
interaction of a Lennard-Jones type potential we simulate the behavior
of a fluid in a porous media, and we show that under certain conditions
the fingering phenomena appears.

1 Introduction

In this work we propose the simulation of oil recovery by means of a molecular
type approach. This means that we consider the materials to be composed of
a finite number of particles, which are approximants for molecules. Porous flow
is studied qualitatively under the assumption that particles of rock, oil and the
flooding flow interact with each other by means of a compensating Lennard-
Jones type potential. We also consider the system to be under the influence of
gravity. We study miscible displacement in an oil reservoir from various sets of
initial data. The velocity and the rate of injection of the ingoing particles proved
to be among the most important parameters that can be adjusted to increase
the rate of production. It is also noted that the fingering phenomenon is readily
detected. This simulation technique has been used in [1-2] and [4] to simulate
several physical systems. Details of this method applied to the study of porous
flow can be founded in [3].

2 Model formulation

Consider a rectangular region R, which is a porous medium. We assume that in
this region we have a resident fluid or oil. We shall introduce a different kind of
fluid which, as a matter of convenience, will be called water, although it is an
aqueous solution which could be a polymeric solution, surfactant solution or a
brine. The physical system consists of N = N1+ N9+ N3 particles, Py, P, ..., Py,
with masses mq,mao, ..., my. The particles

Py, P, ..., Py, Represent rocks,
PN1+17 Pg, ceey ]DN27 Oil, and
Prn,t1, P, ..., Py Incoming water
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For purposes of injection of water and production of oil, two wells are opened,
one in the bottom left corner of R, for injection, and other in the diagonally
opposite corner for production, see Fig. 1. The variables at time ¢ = kAt are:

Tir Coordinates of the particle,

75,5 Distance between the particles I; and P;,
U5  Velocity of the particle,

@; 1, Acceleration of the particle,

' ; r Local force exerted on P; by Fj,

F;k Local force acting on P; due to the other particles,
7“{ Long range force acting on P; (like gravity),
Iy Total force on particle P,

fori=1,2,...,Nand k=0,1,...

The local force F@ .k exerted on P; by P; is

— Hi . G T — T
i \J 1] J,k v,k
Fije=mim; | 2% — =575 e (1)
W4,k ik gk

where the values of the parameters H,; ;, G ;, ¢;; and p; ; depend on the

particles which are interacting. The total local force F;k acting on particle P;
due to the other particles is given by:

N

Fir= Y, Fijx (2)

j=1,j#i

Therefore, the total force acting upon the particle P; is
Fij= Fi,k +7i,k' (3)

The aceleration of P; is related to the force by Newton’s Law

Fi,k = miai7k. (4)

In general system (4) can not be solved analytically from given initial posi-
tions and velocities, therefore it must be solved numerically. For economy, sim-
plicity and relatively numerical stability we use the “leap frog” formulae, which
has second-order accuracy in time,

U172 =TUip + %ai,OAt

Ui pt1/2=0ik-1/2 + %ai,kAt

i he1=Tik + 3T p_1/240
fori=1,2,..N, k=1,2,..

v
7

The number of calculations required to evaluate (1) at each iteration is
O(N?). However this number is much smaller if the potential is truncated for a
distance greater than r. .
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3 Boundary Conditions

We assume that the particles of the fluids loose energy when they interact with
the walls of the region R, therefore it will be necessary to model the hardness of
the wall relative to the reflection of the interacting fluid, and it is done by using
the following damping factors acting on the velocity of the reflected particles.

6; =04 fori=Ny+1,...,N1 + No ,and
6;=08 fori =Ny +No+1,...,N.

4 Initial conditions

The rock and oil particles, for two an three dimensions; were set up at the initial
time in such a way that they satisfied an equilibrium state, as shown in Fig. 1
and 2.

HeHEHEHaHEHoHaHEt,
00000000
JeJ-eJe 0011
oMo HaHeHe N,
00000000
JelJede eI
HEHEHEHaHEHCHaHE,
00000000

Fig. 1. Initial configuration in two dimensions

5 Numerical results in 2D

Figure 3 shows the system evolution. All the examples were run with time step
At = F — 5 on the Sun workstation Ultra 60, the distance between particles of
water before going to into the well was d = 0.5 and their velocity was v = 15.0.
The gravity constant was equal to ¢ = 9.8 . The Lennard-Jones potentential
parameters are summarized in table 1.

Figure 4 shows the advancement of water for different times, the shaded area
is the region which has been traveled only by water, this means that not oil
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Fig. 2. Initial configuration in three dimensions

Table 1. Parameters for the numerical experiments in two dimensions. In this case

F=05

Rock Oil Water
H=0

Rock G—0
H=1 H=1

Oil G=3 G=1
E=Fx./13/36 E=F=«13
H=1.5 H=1 H=1

Water G =0 G=0 G=0
E =F«13/36 E=F=x115 E=F

particle has been in that area for some time. Figure 5 shows the number of
particles of oil out and the number of particles of water out versus time. We can
see from the graph that for t small, the rate of oil production is higher when v is
higher. We can also observe that water comes out of the production well sooner
for v = 100 than for v = 15.

6 Numerical results in 3D

The results in three dimensions are shown in Fig 6. All the examples were run
with time step At = F' — 5 on a Cluster of PC computers.

The distance between particles of water before going into the well, was d = 0.5
and their and velocity was v = 5.0. The gravity constant was equal to g = 9.8 .
The Lennard-Jones potential parameters are summarized in table 2.
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Fig. 3. Evolution of the oil particles. (a) Time = 0.1, (b) Time = 0.8, (c) Time = 2.0,

(d) Time = 4.8

Figure 6 shows the effect of the oil and water production, when velocity of the
water particles is increased. An increment in the velocity of the water particles

produces an increment on the oil and water production.
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Fig. 4. Advancement of the water for d = 1,v =5 at different times. (a) [ter = 3Eb,
(b) Iter = 4.25E5, (c) Iter = 7.8FE5, and (d) Iter = 1.2E6

Fig. 5. Comparison of the effect of the velocity of the water particles on the oil and
water production
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Table 2. Parameters for the numerical experiments in three dimensions. In this case

F=10.

Rock Oil Water
H=0

Rock G—0
H=1 H=1

0Oil G=3 G=1
E=Fx./13/36 E=F=«13
H=15 H=1 H=1

Water G =10 G=0 G=0
E =F«13/36 EFE=Fx115 FE=F

Fig. 6. Evolution of the oil and water particles at different times. (a)lter = 1FE6,
(b)Iter = 2E6, (c)lter = 4F6, and (d)Iter = 1E6
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Fig. 7. Comparison of the effect of the velocity of the water particles on the oil and
water production
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