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Abstract. One approach how to solve a linear optimization is based on interior

point method. This method requires the solution of large linear system equations. A

special matrix factorization techniques that exploit the structure of the constraint

matrix has been suggested for its computation. The method of Birge and Qi has

been reported as efficient, stable and accurate for two-stage stochastic programs.

In this report we present a generalization of this method for three-stage stochastic

programs.

1 Introduction

Solving the deterministic equivalent formulation of two-stage stochastic pro-
grams using interior point method requires the solution of linear systems of the
form

(ADAt) dy = b. (1)

Solving of this problem requires more then 90− 95% of total programming time
[1]. Birge and Holmes [2] compared different methods for the solution of this
system. They found that the factorization technique based on the work of Birge
and Qi (BQ) [3] is more efficient and stable than other methods. They also
suggested BQ for parallel computation. A parallel version of BQ for two-stage
stochastic programs was also implemented on an Intel iPSC/860 hypercube and
a Connection Machine CM-5 with nearly perfect speedup [4]. According to our
knowledge, this method has not been used for a three-stage stochastic program
so far. The aim of this report is analysis of the BQ method and a suggestion
how the BQ method can be used for three-stage stochastic programming. Sect.
2 briefly describes the BQ matrix decomposition. An application of the BQ to a
three-stage stochastic model is given in Sect. 3.

2 BQ Factorization for Two-Stage Model

For expositional clarity, we start with a two-stage model which has been resolved
in [2]. Let A(2) be a constraint matrix of the two-stage stochastic model and D(2)
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a positive definite and diagonal matrix

A(2) =




A0

T1 A1

T2 A2

...
. . .

Tk Ak


 , D(2) =




D0

D1

D2

. . .
Dk


 , (2)

where Ai are mi × ni and Di are positive definite diagonal ni × ni matrices,
i = 0, 1, 2, . . . , k. Ti are mi × n0 matrices, i = 1, 2, . . . , k. We assume that Ai

have full row rank and mi ≤ ni, i = 0, 1, 2, . . . , k. For wit sake of completness,
let us denote R(2) = A(2)D(2)(A(2))t. Then R(2) can be expressed as sum of a
block-diagonal matrix and product of matrices

R(2) = R(2) + U (2) [D(2) (V (2))t ] = R(2) + U (2) [ (W (2))t ], (3)

where

R(2) = Diag(Im0 , A1D1A
t
1, . . . , AkDkAt

k) = Diag(Im0 , R1, . . . , Rk) (4)

and

U (2) D(2) (V (2))t =




A0 Im0

T1

T2

...
Tk




(
D0

Im0

)(
At

0 T t
1 T t

2 . . . T t
k

−Im0

)
. (5)

Note R(2) is the diagonal matrix with positive definite matrices on the diagonal
entries. Now, if we need the inverse of R(2), we can use the Sherman-Morrison-
Woodbury formula. It holds [5]

(R(2) )−1 = (R(2))−1 − (R(2))−1 U (2) (G(2))−1 (V (2))t (R(2))−1, (6)

if and only if both R(2) and G(2) are nonsingular, where

(G(2))−1 = [In0+m0 + (W (2))t(R(2))−1U (2)]−1D(2). (7)

In the matrix form

G(2) =
(

D−1
0 + At

0A0 +
∑k

i=1 T t
i R−1

i Ti At
0

−A0 0

)
=

(
Ĝ(2) At

0

−A0 0

)
. (8)

It has been proved [2] that Ĝ(2) is positive definite and symmetric matrix and
G(2) is nonsingular. Hence, the conditions for the validity of (6) are fulfilled.
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Thus, we can rewrite the solution of the system R(2) dy(2) = b by the relation
(6) as follows: dy(2) = p(2) − s(2), where

R(2) p(2) = b (9)

G(2) q(2) = (V (2))t p(2) (10)

R(2) s(2) = U (2) q(2). (11)

More precisely,

R(2) p(2) =




Im0

R1

. . .
Rk







p
(2)
0

p
(2)
1
...

p
(2)
k


 =




b0

b1

...
bk


 . (12)

Hence, the vector p(2) can be computed component-wise by solving sub-block
systems

p
(2)
0 = b0

Ri p
(2)
i = bi, i = 1, 2, ...k. (13)

We can proceed similarly in the case of computation of the vector s(2). It gives

s
(2)
0 = A0 q

(2)
1 + q

(2)
2

Ri s
(2)
i = Ti q

(2)
1 , i = 1, 2, ...k. (14)

Because Ri = AiDiA
t
i, i = 1, 2, ...k is symmetric positive definite matrix, its

Cholesky decomposition can be used for the solution of both (13) and (14). The
solution of (10) can be found by exploiting the matrix structure G(2). We have

G(2) q(2) =
(

Ĝ(2) At
0

−A0 0

)(
q
(2)
1

q
(2)
2

)
=

(
v̂
(2)
1

v̂
(2)
2

)
, (15)

where (
v̂
(2)
1

v̂
(2)
2

)
= (V (2))t p(2) =

(
At

0p
(2)
0 +

∑k
i=1 T t

i p
(2)
i

−p
(2)
0

)
. (16)

The vectors q
(2)
i and v̂

(2)
i , i=1,2 have the size corresponding to the matrix

structure G(2) . By an elimination process, for (15) we get

[ A0(Ĝ(2))−1At
0 ] q

(2)
2 = A0 (Ĝ(2))−1 v̂

(2)
1 + v̂

(2)
2 (17)

Ĝ(2) q
(2)
1 = v̂

(2)
1 −At

0 q
(2)
2 .

Because both matrices A0(Ĝ(2))−1At
0 and Ĝ(2) are symmetric positive definite,

one can use their Cholesky decomposition for solving these systems. The proce-
dure for sequential computing of the vector dy(2) by (9)-(11) has been named
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Findy in [2]. The parallel version of Findy has been formulated in [4]. For-
mally, parameters of this procedure are Findy(R(2), A0, D0, T1, . . . , Tk, b, dy(2)).
In [4] this procedure has been implemented on a distributed-memory multiple-
instruction multiple-date (MIMD) message-passing parallel computers, an Intel
iPSC/860 hypercube and a Connection Machine CM-5. Results are reported with
the solution of the linear systems arising when solving stochastic programs with
98, 304 scenarios, which correspond to deterministic equivalent linear programs
with up to 1, 966, 090 constraints and 13, 762, 630 variables. From the timing
data presented in this paper it is evident that the speed-up and the efficiency is
most influenced by the percentage of time spent in communication and also by
the ratio mi/ni.

3 BQ Method Applied to Three-Stage Stochastic Model

Let A(3) be here a constraint matrix of a three-stage stochastic model

A(3) =




A0

T10 A10

T11 A11

T12 A12

T13 A13

T20 A20

T21 A21

T22 A22

T23 A23




=




A0

T
(3)
1 A

(2)
1

T
(3)
2 A

(2)
2


 , (18)

where A0 is m0×n0 and Aij are mij×nij matrices. Tij has the size conformable
to the matrices A0 and Aij . Let D(3) be diagonal and positive definite matrix

D(3) = Diag(D0; D10, . . . , D13; D20, . . . , D23) = Diag(D0,D
(2)
1 ,D

(2)
2 ), (19)

where D0 and Dij are diagonal n0 × n0 and nij × nij matrices with positive
entries, i = 1, 2; j = 0, 1, 2, 3.. Again, we assume that A0 and Aij have full row
rank and m0 ≤ n0, mij ≤ nij , i = 1, 2; j = 0, 1, 2, 3.

The matrix R(3) = A(3)D(3)(A(3))t in the denotation of the largesized blocks
matrix A(3) can be decomposed as follows:

R(3) = R(3) + U (3)[D(3) (V (3))t ] = R(3) + U (3)[ (W (3))t ], (20)

where

R(3) = Diag(Im0 , A
(2)
1 D

(2)
1 (A(2)

1 )t, A
(2)
2 D

(2)
2 (A(2)

2 )t) = Diag(Im0 , R
(2)
1 , R

(2)
2 )
(21)
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and

U (3)D(3) (V (3))t =




A0 Im0

T
(3)
1

T
(3)
2


 (

D0

Im0

) (
At

0 (T (3)
1 )t (T (3)

2 )t

−Im0

)
. (22)

By the Sherman-Morrison-Woodbury formula we obtain again

( R(3) )−1 = (R(3))−1 − (R(3))−1U (3) (G(3))−1 (V (3))t (R(3))−1, (23)

if and only if R(3) and G(3) are nonsingular. Here

(G(3))−1 = [ In0+m0 + D(3) (V (3))t (R(3))−1 U (3)]−1 D(3)

G(3) = (D(3))−1 + (V (3))t (R(3))−1 U (3). (24)

In the matrix form:

G(3) =
(

D−1
0 + At

0A0 +
∑2

i=1(T
(3)
i )t(R(2)

i )−1T
(3)
i At

0

−A0 0

)
=

(
Ĝ(3) At

0

−A0 0

)
. (25)

The validity of (23) follows from the same reason as for the two-stage model.
Thus, the solution of R(3) dy(3) = b(3) can be expressed by the inversion as
dy(3) = p(3) − s(3) while

R(3)p(3) = b(3), (26)

G(3)q(3) = (V (3))tp(3), (27)

R(3)s(3) = U (3)q(3). (28)

The equations (26)-(28) represent the decomposition of the original problem
into three sub-problems. An advantage of such decomposition is that R(3) is the
block-diagonal matrix amenable to further decomposition.

3.1 Solving the Equation R(3)p(3) = b(3)

It is easy to see from the equation

R(3)p(3) =




Im0

R
(2)
1

R
(2)
2





p

(3)
0

p
(3)
1

p
(3)
2


 =


 b

(3)
0

b
(3)
1

b
(3)
2


 (29)

that this system represents the following independent systems

p
(3)
0 = b

(3)
0 (30)

R
(2)
i p

(3)
i = b

(3)
i , i = 1, 2, (31)
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where R
(2)
i = A

(2)
i D

(2)
i (A(2)

i )t, i = 1, 2 represent the matrix of the two-stage mo-
del problem, which has been described in Sect.2. Therefore, (31) can be solved by
the procedure Findy or Parallel Findy, depending on the number of processors.
Its input parameters are readable from the entries of matrix A

(2)
i ,D

(2)
i defined in

(18)-(19). The right-hand side and the solution vector are b
(3)
i and p

(3)
i , i = 1, 2,

respectively. It is clear that in our case the parameters are

Findy(R(2)
i , Ai0, Di0, Ti1, . . . , Ti3, b

(3)
i , p

(3)
i ), i = 1, 2

where R(2)
i is the diagonal matrix in the decomposition R

(2)
i , i.e.

R
(2)
i = R(2)

i + U
(2)
i (W (2)

i )t i = 1, 2 (32)

and

R(2)
i = Diag(Imi0 , Ri1, Ri2, Ri3), Rij = AijDijA

t
ij , i = 1, 2 j = 1, 2, 3

U
(2)
i =




Ai0 Imi0

Ti1

Ti2

Ti3


 , (W (2)

i )t =
(

Di0

Imi0

) (
At

i0 T t
i1 T t

i2 T t
i3

−Imi0

)
. (33)

If this procedure is applied for the given values, having in the mind the relations
(30)-(31) we are able to compose the vector p(3).

3.2 Solving the Equation G(3)q(3) = (V (3))tp(3)

Solving of this equation requires to have the entries of the right-hand side vector
and the sub-block matrix Ĝ(3) available .With this aim we denote the elements
of the vector (V (3))tp(3) as (v̂(3)

1 , v̂
(3)
2 )t. Then we have(

v̂
(3)
1

v̂
(3)
2

)
=

(
At

0p
(3)
0 +

∑2
i=1 T t

i0p
(3)
i0

−p
(3)
0

)
, (34)

where p
(3)
i0 , i = 1, 2 is the vector of the first mi0-elements of p

(3)
i . We know from

(25) that

Ĝ(3) = D−1
0 + At

0A0 +
2∑

i=1

(T (3)
i )t(R(2)

i )−1T
(3)
i . (35)

For the relatively complicated expression (T (3)
i )t(R(2)

i )−1T
(3)
i we can prove that

(T (3)
i )t(R(2)

i )−1T
(3)
i = T t

i0(T̂i0 − Ti0), i = 1, 2 (36)

where T̂i0 is the solution of the equation

[Ai0 (Ĝ(2)
i )(−1) At

i0 ] T̂i0 = Ti0, i = 1, 2. (37)
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Really, according to (6) we have

(T (3)
i )t(R(2)

i )−1T
(3)
i =

(T (3)
i )t [ (R(2)

i )−1− (R(2)
i )−1 U

(2)
i (G(2)

i )−1(V (2)
i )t(R(2)

i )−1 ]T (3)
i =

(T (3)
i )t(R(2)

i )−1T
(3)
i − (T (3)

i )t(R(2)
i )−1U

(2)
i (G(2)

i )−1(V (2)
i )t(R(2)

i )−1T
(3)
i .

It holds

(T (3)
i )t(R(2)

i )−1T
(3)
i = T t

i0Ti0, (T (3)
i )t(R(2)

i )−1U
(2)
i = (T t

i0Ai0, T
t
i0), (38)

(V (2)
i )t(R(2)

i )−1T
(3)
i =

(
At

i0Ti0

−Ti0)

)
. (39)

Therefore

(T (3)
i )t(R(2)

i )−1T
(3)
i = T t

i0 Ti0 − (T t
i0Ai0, T t

i0)
(

Ĝ
(2)
i At

i0

−Ai0 0

)−1 (
At

i0Ti0

−Ti0

)
. (40)

Now let (
K L
M N

)
=

(
Ĝ

(2)
i At

i0

−Ai0 0

)−1

. (41)

According to [6]

N = [Ai0(Ĝ
(2)
i )−1At

i0 ]−1 (42)

L = −(Ĝ(2)
i )−1At

i0 [Ai0(Ĝ
(2)
i )−1At

i0 ]−1 (43)

M = [Ai0(Ĝ
(2)
i )−1At

i0 ]−1 Ai0(Ĝ
(2)
i )−1 (44)

K = (Ĝ(2)
i )−1 − (Ĝ(2)

i )−1At
i0[Ai0(Ĝ

(2)
i )−1At

i0 ]−1Ai0(Ĝ
(2)
i )−1. (45)

Now, if we use (42)-(45) in ( 40) we obtain

(T (3)
i )t(R(2)

i )(−1)T
(3)
i = T t

i0[Ai0(Ĝ
(2)
i )−1At

i0 ]−1Ti0 − T t
i0 Ti0. (46)

Thus,

Ĝ(3) = D−1
0 + At

0A0 +
2∑

i=1

T t
i0(T̂i0 − Ti0). (47)

We remember that the Cholesky decomposition of matrix Ai0(Ĝ
(2)
i )−1At

i0 has
been performed during the procedure Findy applied on matrix R

(2)
i , i = 1, 2.

Thus, this decomposition is available already, only triangular solver is used for
the computation of T̂i0, i = 1, 2 in this step. Having the values of Ĝ(3) and
(v̂(3)

1 , v̂
(3)
2 )t we can solve the system

(
Ĝ(3) At

0

−A0 0

) (
q
(3)
1

q
(3)
2

)
=

(
v̂
(3)
1

v̂
(3)
2

)
. (48)
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The standard elimination process applied on this system yields

[(A0 (Ĝ(3))−1 At
0] q

(3)
2 = A0 (Ĝ(3))−1 v̂

(3)
1 + v̂

(3)
2 (49)

Ĝ(3) q
(3)
1 = v̂

(3)
1 −At

0 q
(3)
2 . (50)

Thus, to solve (48) the following procedure is required:

PROCEDURE Updy(Ĝ(3), A0, v̂
(3)
1 , v̂

(3)
2 )

(a) Form the Cholesky decomposition of Ĝ(3)

(b) Solve the systems Ĝ(3)B0 = At
0

(c) Form the Cholesky decomposition of A0B0

(d) Solve the systems (49) and (50).

3.3 Solving the Equation R(3)s(3) = U (3)q(3)

The system R(3) s(3) = U (3)q(3) could be solved in a similar way as in Sect. 3.1.
The right-hand side equals

U (3)q(3) =




A0 Im0

T
(3)
1 0

T
(3)
2 0




(
q
(3)
1

q
(3)
2

)
=


A0 q

(3)
1 + q

(3)
2

T
(3)
1 q

(3)
1

T
(3)
2 q

(3)
1


 . (51)

Thus, the system has the form

R(3)s(3) =




Im0

R
(2)
1

R
(2)
2





s

(3)
0

s
(3)
1

s
(3)
2


 =


A0 q

(3)
1 + q

(3)
2

T
(3)
1 q

(3)
1

T
(3)
2 q

(3)
1


 , (52)

from which we obtain independent equations

s
(3)
0 = A0 q

(3)
1 + q

(3)
2 (53)

R
(2)
i s

(3)
i = T

(3)
i q

(3)
1 , i = 1, 2. (54)

The last two equations are again solvable by the procedure Findy as in Sect.
3.1 with the right-hand side T

(3)
i q

(3)
1 , i = 1, 2. But, owing to the structure of

this vector, where only the first mi0- entries are nonzero, we suggest for its
computation a modification the already mentioned procedure Findy.
The solution s

(3)
i of (54) can be expressed as s

(3)
i = p̂

(3)
i − ŝ

(3)
i , where p̂

(3)
i and

ŝ
(3)
i , i = 1, 2 fulfil

R(2)
i p̂

(3)
i = T

(3)
i q

(3)
1 (55)

G
(2)
i q̂

(3)
i = (V (2)

i )t p̂
(3)
i (56)

R(2)
i ŝ

(3)
i = U

(2)
i q̂

(3)
i . (57)
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In the matrix form

R(2)
i p̂

(3)
i =




Imi0

Ri1

Ri2

Ri3







p̂
(3)
i0

p̂
(3)
i1

p̂
(3)
i2

p̂
(3)
i3


 =




Ti0 q
(3)
1

0
0
0


 , (58)

from which we have immediately

p̂
(3)
i0 = Ti0q

(3)
1 , i = 1, 2 (59)

p̂
(3)
ij = 0, i = 1, 2 j = 1, 2, 3. (60)

To find the solution of (56) means to solve the following matrix equation

(
Ĝ

(2)
i At

i0

−Ai0 0

)(
q̂
(3)
i1

q̂
(3)
i2

)
=

(
At

i0 p̂
(3)
i0

−p̂
(3)
i0

)
. (61)

The last equation (57) represents the system

R(2)
i ŝ

(3)
i =




Imi0

Ri1

Ri2

Ri3







ŝ
(3)
i0

ŝ
(3)
i1

ŝ
(3)
i2

ŝ
(3)
i3


 =




Ai0q̂
(3)
i1 + q̂

(3)
i2

Ti1q̂
(3)
i1

Ti2q̂
(3)
i1

Ti3q̂
(3)
i1


 , (62)

from which we have

ŝ
(3)
i0 = Ai0 q̂

(3)
i1 + q̂

(3)
i2 , i = 1, 2 (63)

Rij ŝ
(3)
ij = Tij q̂

(3)
i1 , i = 1, 2 j = 1, 2, 3. (64)

With the vector ŝ
(3)
ij available, we have the result

s
(3)
i = p̂

(3)
i − ŝ

(3)
i =




p̂
(3)
i0 − ŝ

(3)
i0

−ŝ
(3)
i1

−ŝ
(3)
i2

−ŝ
(3)
i3


 , i = 1, 2. (65)

Finally, the computing of s
(3)
i , i = 1, 2 consist of the following steps:

PROCEDURE Findysparse(R(2)
i , Ai0, Ti1, Ti2, Ti3, T

(3)
i q

(3)
1 , s

(3)
i )

1. Set p̂
(3)
i0 = Ti0q

(3)
1 , i = 1, 2

2. Solve the system (61)
3. (a) Set ŝ

(3)
i0 = Ai0q̂

(3)
i1 + q̂

(3)
i2 , i = 1, 2

(b) Solve Rij ŝ
(3)
ij = Tij q̂

(3)
i1 , i = 1, 2; j = 1, 2, 3

4. Set s
(3)
i = p̂

(3)
i − ŝ

(3)
i i = 1, 2.
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Note that the Cholesky decomposition of the system matrices is available in step
2 and 3(b). These decomposition has been computed by the procedure Findy.
In the end, the result of a three-stage stochastic model problem equals
dy(3) = p(3) − s(3). This difference is obtained by the following computational
process :

1. Call Findy (R(2)
i , Ai0, Di0, Ti1, . . . , Ti3, b

(3)
i , p

(3)
i ), i = 1, 2,

2. Call Updy(Ĝ(3), A0, v̂
(3)
1 , v̂

(3)
2 )

3. Call Findysparse(R(2)
i , Ai0, Ti1, Ti2, Ti3, T

(3)
i q

(3)
1 , s

(3)
i ) i=1,2

4. Form dy(3) as difference p(3) − s(3).

The procedures in steps 1 and 3 are independent and can be computed at the
same time. Step 2 represents a binding of existing two-stage models and enables
to calculate s

(3)
0 and the parameter q

(3)
i , i=1,2 for Findysparse(). Roughly, the

process may be symbolically written as:

dy(3) =




b0

Findy(R(2)
1 , ..., p

(3)
1 )

Findy(R(2)
2 , ..., p

(3)
2 )


−


 A0q

(3)
1 + q

(3)
2

Findysparse(R(2)
1 , ..., s

(3)
1 )

Findysparse(R(2)
2 , ..., s

(3)
2 )


 . (66)

4 Conclusion

The aim of our paper has been to use the BQ factorization technique for three-
stage stochastic program in a framework of an interior point method. As we can
see, this technique leads to the solution of independent subproblems. Moreover,
these subproblems are again scalable into smaller linear system of equations. The
whole process contains a serial coordination step, but the range of a sequential
computation is not critical for large-scale stochastic program. A parallel imple-
mentation of this algorithm within an interior point code and an extension to
the multistage model will be topics of our future work.
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