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Abstract. We describe Community Grids built around Integration of
technologies from the peer-to-peer and Grid fields. We focus on the
implications of Web Service ideas built around powerful event services using
uniform XML interfaces. We go through collaborative systems in detail
showing how one can build an environment that can use either P2P approaches
like JXTA or more conventional client-server models.

1. Introduction

The Grid [1-5] has made dramatic progress recently with impressive technology and
several large important applications initiated in high-energy physics [6,7], earth
science [8,9] and other areas [29,30]. At the same time, there have been equally
impressive advances in broadly deployed Internet technology. We can cite the
dramatic growth in the use of XML, the “disruptive” impact of peer-to-peer (P2P)
approaches [10,11] and the more orderly but still widespread adoption of a universal
Web Service approach to Web based applications [12-14]. We have discussed this
recently [15,16] with an emphasis on programming environments for the Grid [17]. In
particular we described the important opportunities opened up by using Web service
ideas as the basis of a component model for scientific computing [18-22]. This builds
on the DoE Common Component Architecture (CCA). This paper also discussed the
implications for portals and computational science applications on the Grid. In the
following, we look at other facets of the integration of Grid with P2P and Web
Service technology. In particular we discuss the overall architecture in section 2 with
attention to the implications of adopting a powerful event service as a key building
block [23-24]. Web services are discussed in section 3 with special focus on the
possibility of building science and Engineering as a Web Service – what can be
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termed e-Science. P2P technologies are very relevant for collaboration [25,26] and we
discuss this in section 4; an area addressed for the Grid [31], including a seminal
paper by Foster and collaborators [27] addressing broad support for communities.
Section 5 gives more detail on our proposed event model, which integrates both P2P
and more traditional models – in particular, that of the commercial Java Message
Service [28].

2. Architecture

We view the “world” as built of three categories of distributed system components:
raw resources, clients and servers shown in fig. 1. These describe the different roles of
machines in our distributed system. Clients provide user interfaces; raw resources

provide “raw data” either from simulations or data sources; servers map between
clients and raw resources and are specified by two XML specified interfaces; that
between raw resource and server and that between client and server. Actually
exploding the “server” layer inside fig. 1 finds an interlinked set of servers each of
which linkage is itself described by XML interfaces. Note that the three functions can
be thought of as roles and a given computer can have one, two or all of these three
roles. Our architecture then should be termed as a three-role model rather than the
more traditional three-tier model used in many current systems. We need to view our
system in this way because in a peer-to-peer (P2P) system [11,23], one does not see
the clear identification of machine and roles found in a classic Grid application
involving say a workstation client going through some middleware to clearly
identified back-end supercomputers.
The components of our system of whatever role are linked by message passing
infrastructure shown in fig. 2. This we also term the event-bus and it has significant
features, which we will elaborate later. We assume that all messages will be defined
in XML and the message infrastructure – called GMS (Grid Message Service) in fig.

Fig. 1: XML-based Architecture
Fig. 2: Distributed Raw

Resources, Servers, and Clients
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Fig. 3: One View of System Components

Fig. 4: Simplest View of System Components

2 – can support the publish-subscribe mechanism. Messages are queued by GMS from
“publishers” and then clients subscribe to them. XML tag values are used to define

the “topics” or “properties” that
label the queues. We can
simplify and abstract the
system as shown in figs. 3  and
4. We have divided what is
normally called Middleware
into two. There are routers
and/or brokers whose function
is to distribute messages
between the raw resources,
clients and servers of the
system. We consider that the

servers provide services (perhaps defined in the WSDL [12] and related XML
standards) and do NOT distinguish at this level between what is provided (a service)
and what is providing it (a server). Actually the situation is even simpler as shown in
fig. 4. All entities in the system are resources labeled in the spirit of W3C [32,33] by
URI’s of form gxos://category/someheader/blah/…/blah/foo/bar/leaf and resources
communicate by events. We do not distinguish between events and messages; an
event is defined by some XML Schema including a time-stamp but the latter can of
course be absent to allow a  simple message to be thought of as an event. Note an

event is itself a  resource
and might be archived in a
database raw resource.
Routers and brokers
actually provide a service –
the management of (queued
events) and so these can
themselves be considered
as the servers
corresponding to the event
or message service. Note
that in fig. 1, we call the

XML Interfaces “virtual”.
This signifies that the interface is logically defined by an XML Schema but could in
fact be implemented differently. As a trivial example, one might use a different syntax
with say <sender>meoryou</sender> replaced by sender:meoryou which is an easier
to parse but less powerful notation. Such simpler syntax seems a good idea for “flat”
Schemas that can be mapped into it. Less trivially, we could define a linear algebra
web service in WSDL but compile it into method calls to a Scalapack routine for high
performance implementation. This compilation step would replace the XML SOAP
based messaging [34] with serialized method arguments of the default remote
invocation of this service by the natural in memory stack based use of pointers to
binary representations of the arguments.
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Fig 5: Communication Model showing
Sub-services of Event Service

In the next four subsections we summarize some features and issues for the four
components of the architecture events/messages, clients/users, servers/services and
raw resources.

2.1 Event and Message Subsystem

We discuss  the  event  or   message   service  further  in  Sec. 5   but  we elaborate
first on our choice of this as an essential feature. We see several interesting
developments in this area where we can give four examples: there is SOAP messaging
[34]; the JXTA peer-to-peer protocols [10]; the commercial JMS message service
[28]; and finally a  growing interest in SIP [35] and its use in instant messenger
standards [36]. All these approaches define messaging principles but not always at the
same level of the OSI stack; further they have features that sometimes can be
compared but often they make implicit architecture and implementation assumptions
that hamper interoperability and functionality. We suggest breaking such frameworks
into subsystem capabilities describing common core primitives. This will allow us to
compose them into flexible systems, which support a range of functionality without
major change in application interfaces. Here SOAP defines a message structure and is
already a  “core primitive” as described above; it is “only” XML but as discussed
above, a message specified in XML could be “compiled to other forms such as RMI
either for higher performance or “just” because the message was linking two Java
programs. In some of our work, we use publish-subscribe messaging mechanisms but

of course this is often unnecessary
and indeed occurs unacceptable
overhead. However it does appears
useful to define an event
architecture such as that of fig. 5,
allowing communication channels
between Web services which can

either be direct or pass through
some mechanism allowing various

services on the events. These could be low-level such as routing between known
source and destination or the higher-level publish-subscribe mechanism that identifies
the destinations for a  given published event. Some routing mechanisms in peer-to-
peer systems in fact use dynamic routing mechanisms that merge these high and low
level approaches to communication. We use the term virtual queue in fig. 5 because
again we can in many cases preprocess (or “compile”) away the queue and transmit
messages directly. As an example, consider an audio-video conferencing web service.
It would use a  simple publish/subscribe mechanism to advertise the availability of
some video feed. A client interested in receiving the video would negotiate (using the
SIP protocol perhaps) the transmission details. The video could either be sent directly
from publisher to subscriber; alternatively from publisher to web service and then
from web service to subscriber; as a third option, we could send from the web service
to the client but passing through a  filter that converted one codec into another if
required. In the last case, the location of the filter would be negotiated based on
computer/network performance issues –  it might also involve proprietary software
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only available at special locations. The choice and details of these three different
video transport and filtering strategies would be chosen at the initial negotiation and
one would at this stage “compile” a generic interface to its chosen form. One could of
course allow dynamic “run-time compilation” when the event processing strategy
needs to change during a particular stream. This scenario is not meant to be
innovative but rather to illustrate the purpose of our architecture building blocks in a
homely example. Web services are particularly attractive due to their support of
interoperability, which allows the choices described. One could argue that the
complexity of fig. 5 is unnecessary as its “luxury” features are an unacceptable
overhead. However as the performance of networks and computers increase, this
“luxurious” approach can be used more and more broadly. For instance, we have
shown that JMS (the Java Message Service which is a simple but highly robust
commercial publish-subscribe mechanism) can be used to support real-time
synchronous collaboration. Note this application only requires latencies of
milliseconds and not the microseconds needed by say MPI for parallel computing.
Thus JMS with a message-processing overhead of a millisecond in good
implementations can be used here. As explained in Sec. 5, we have developed a
system that allows general XML-based selection on our message queues and this
generalizes the simple topic and property model of JMS. The XML selection can
specify that the message be passed though a general Web service, and so the
“subscription” mechanism supports both event selection and filtering of the messages.
In the collaboration application, this mechanism allows the same event service to
support multiple clients – say a hand-held device and a high-end workstation – which
would need different views (versions) of an event.

2.2 Clients

In the “pure view” of the architecture of the previous two sections, the traditional
workstation (desktop) client has at least two roles – rendering and providing services.
There has been a trend away from sophisticated clients (Java Applets and complex
JavaScript) towards server based dynamic pages using technologies like ASP and JSP
(Active and Java Server Pages). This reflects both the increased performance of
networks and the more robust modular systems that can be built in the server-based
model. There are several good XML standards for rendering – XHTML [37] and SVG
[38] define traditional browser and 2D vector graphics respectively. These are the
XML display formats of fig. 1; their support of the W3C Document Object Model
[39] (DOM) allows both more portable client-side animation and shared export
collaboration systems described in sec. 4. We do not expect this to replace server side
control of “macroscopic” dynamic pages but built in animation of SVG (which can be
considered a portable text version of Flash technology) and scripted event control will
allow important client side animation. XML standards on the client should also allow
universal access and customization for hand-held devices -- possibly using the WML
[40] standard for PDA’s and VoiceXML [41] for (Cell)-phones. The 3D graphics
standard X3D [42] is likely to be another important XML rendering standard.
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2.3 Servers and Services

Servers are the most important feature of our community grid architecture. They
“host” all application and system services ranging in principle from Microsoft word
through a  1024 node parallel simulation. They have multiple input and output ports
defined by (virtual) XML Interfaces. There has been substantial work on many system
Services in both the Grid and broader communities. We find Object registration,
lookup and persistence; security, fault tolerance, information and collaboration. There
are also the set of services common in computing environments such as Job
submission, transparent login, accounting, performance, file access, parameter
specification, monitoring, and visualization. An online education system using this
architecture would have curriculum authoring, course scheduling and delivery,
registration, testing, grading, homework submission, knowledge discovery,
assessment, and learning paths as some of the services. We see current typically
monolithic systems being broken up into small Web services and this will enable
easier delivery of capabilities customized to particular communities. As one makes
the basic services “smaller”, flexibility increases but typically performance suffers as
communication overhead increases. Here efficient “compilation” techniques will be
important to use the optimal implementation of communication between the ports (see
fig. 5) of linked web services. Static “compilation” can be supplemented by
dynamic choice of communication mechanism/stub that will use the optimal solution
(based on many criteria such as bandwidth, security, etc.). Looking at peer-to-peer
technology, we see important issues as to the appropriate implementation
infrastructure. Is it to be based on a  relatively large servers or a  horde of smaller
peers.

2.4 Raw Resources

The XML interfaces exhibited by servers represented “knowledge” or processed data
and have typically “universal” form. The raw resources –  databases, sensors, and
supercomputers – also use XML interfaces but these can reflect nitty gritty detail. One
sees approaches like JDBC (databases), SLE (spacecraft sensors [43]), HDF
(scientific data) and MathML. The first two are true interfaces, the last two “raw” data
format.

Fig. 6. An Online Shopping system with component Web Services
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Fig. 7. Schematic of two bindings of a Web Service
(a) Single address Space and (b) Distributed

3. Web Services

Web Services are being developed actively by many major companies (Ariba, IBM,
Microsoft, Oracle, Sun) with the idea typified in fig. 6 of componentizing Business to
Business and Business to Customers applications.
We suggest that a  similar approach is useful in both Grid system services shown in
table 1 but also more generally to develop „Science as a Web Service“ –  one could
term the latter e-Science.

Table 1. Basic Grid services

Security Services Authorization, authentication, privacy
Scheduling Advance reservations, resource co-scheduling
Data Services Data object name-space management, file staging,

data stream management, caching

User Services Trouble tickets, problem resolution
App Services Application tracking, performance analysis
Monitoring Service Keep-alive meta-services

We see WSDL [12-14] –
the Web Services
Definition Language – as
a well thought through
proposal. It is incomplete
in some ways and more
research is needed to
decide how best to
enhance it in such areas as
the integration of multiple
services together to form
composite systems.

Figure 6 shows 4
component Web
services, which integrate
to form an online

shopping Web Service. WSFL [44] and WSCL [45] are candidate integration
standards but another possibility is to build a programming environment on top of
basic XML (for data) and WSDL (for methods). Then integration of services could be
specified by scripts in this environment. There are several interesting research
projects in this area [49,50]. WSDL has (at least) two important features:
1) An XML specification of properties and methods of the Web Service. This is an

XML „equivalent“ of IDL in CORBA or Java in RMI.
2) A distinction between the abstract application interface and its realization gotten

by binding to particular transport (such as HTTP) and message (such as SOAP)
formats.

28 G. Fox et al.



Fig. 8. An approach to integrating high performance
and commodity systems

The result is a model for Services with ports communicating by messages with a
general XML specified structure. WSDL allows multiple bindings of a given interface
and so supports the “compilation model” described in section 2. As an extreme

example, fig. 7 illustrates
that one could use WSDL
to specify purely local
methods and allow
implementations that are
either distributed or
confined within a given
address space. This
carefully defined model
can be integrated with the
ideas of DoE’s common
component architecture
(CCA) project [18-20]
and this leads to an
interesting “Grid
programming model for
high performance
applications”. Substantial
research is needed into the
optimization
(“compiling”) of Web
services but we seem to

finally have a promising approach to integrating the best approaches of the high
performance computing and commodity software communities. In fig. 8, we show
how one can potentially define (composite) Web services with both commodity
(SOAP, IIOP, RMI) messaging and high performance parallel MPI standards. For
instance the Gateway [46-48] approach to integrating distributed object and high
performance modules, builds a wrapper for the latter and implements a very loose
coupling between a backend “parallel raw resource” and its proxy in the commodity
layer. WSDL allows a tighter integration and this could lead to better commodity
interfaces to high performance services. In the same vein as fig. 7, some variant of
WSDL could provide a portable framework for linking shared and distributed
memory parallel programming models. A WSDL formulation of MPI could involve
two types of ports; firstly high performance with “native bindings” where basic data
transfer would implemented; however one could use “commodity ports” for the less
compute intensive MPI calls and for resetting some of the overall MPI parameters.

It is very important to note that Web Services are and should be composable.
However as long as composed service can be exposed through WSDL it does not
matter how they were composed. Therefore all those composition mechanisms are
really interchangeable by means of WSDL - this is layer of abstraction that adds up to
the robustness of Web Services technology. There are other Web Service technologies
-- UDDI [51] and WSIL [52] are two approaches for registering and lookup of such
services. This is a critical service but current approach seems incomplete. The
matching of syntax of Web Service port interfaces is addressed but not their
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semantics. Further the field of XML meta-data registering and look up is much
broader than Web Services. It seems likely that future versions of UDDI should be
built on terms of more general XML Object infrastructure for searching. Possibly
developments like the Semantic Web [53,54] will be relevant.
We expect there to be many major efforts to build Web Services throughout a broad
range of academic and commercial problem domains. One will define web services in
a hierarchical fashion. There will be a  set of broadly defined services such as those
defined in table 2. These (WSDL) standards will presumably be defined either
through a body like W3C or through de facto standards developed by the commodity
industry.

Table 2. General Collaboration, Planning and Knowledge Grid Services

         People Collaboration

Table 3. Science and Engineering Generic Services

Authoring and Rendering

Access Grid - Desktop AV
Resource Collaboration P2P based document Sharing, WebDAV,

News groups, channels, instant messenger,
whiteboards, annotation systems

Decision Making Services Surveys, consensus, group mediation
Knowledge Discovery Service Data mining, indexes (myGoogle: directory

based or unstructured), metadata indexes,
digital library services

Workflow Services Support flow of information (approval)
through some process, secure authentication of
this flow. Planning and documentation

Authoring Services Multi-fragment pages, Charts, Multimedia
Universal Access From PDA/Phone to disabilities

Storage Rendering and Authoring of
Mathematics, scientific whiteboards, nD (n=2,3)
support, GIS, Virtual worlds

Multidisciplinary Services Optimization (NEOS), image processing,
netsolve, ninf, Matlab as a collaborative Grid
Service

Education Services Authoring, curriculum specification,
assessment and evaluation, self paced learning
(from K-12 to Lifelong)

Although critical for e-Science, one will build Science and engineering Services on
the top of those in table 2. e-Science itself will define its own generic services as in
table 3 and then refine them into areas like research (table 4) and education. Further
hierarchical services would be developed on the basis of particular disciplines or
perhaps in terms of approaches such as theory and experiment.
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Table 4. Science and Engineering Research

Portal Services Job control/submission, scheduling,
visualization, parameter specification

Legacy Code Support Wrapping, application Integration, version
control, monitoring

Scientific Data Services High Performance, special formats, virtual
data as in Griphyn, scientific journal publication,
Geographical Information Systems

Research Support Services Scientific notebook/whiteboard,
brainstorming, seminars, theorem proving

Experiment Support Virtual Control Rooms (accelerator to
satellite), Data analysis, virtual instruments,
sensors (Satellites to field work to wireless to
video to medical instruments (Telemedicine Grid
Service)

Outreach Multi-cultural customization, multi-level
presentations

4. Collaboration

One of the general services introduced in the earlier sections was collaboration. This
is the capability for geographically distributed users to share information and work
together on a  single problem. The basic distributed object and Web Service model
described in this paper allows one to develop a  powerful collaborative model. We
originally built a  collaborative system TangoInteractive [55,56], which was in fact
designed for Command and Control operations, which is the military equivalent of
crisis management. It was later evolved to address scientific collaboration and
distance education [57,58]. Our new system Garnet has been built from scratch
around the model of section 2. In particular Garnet views all collaboration as
mediated by the universal event brokering and distribution system described in
sections 2.1 and 5.

One of the attractive features of the web and distributed objects is the natural support
for asynchronous collaboration. One can post a  web page or host a  Web Service and
then others can access it on their own time. Asynchronous collaboration as enabled by
basic web infrastructure, must be supplemented by synchronous or real-time
interactions between community members. The field of synchronous collaboration is
very active at the moment and we can identify several important areas:
(1) Basic Interactive tools including Text chat, Instant Messenger and White boards
(2) Shared resources including shared documents (e.g. PowerPoint presentation,), as

well shared visualization, maps, or data streaming from sensor.
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Fig. 9. Typical Shared Document
System from Centra commercial
collaboration system

(3) Audio-video conferencing illustrated
by both commercial systems and the
recent high-end Access Grid from
Argonne [59] shown in fig. 5.

There are several commercial tools that
support (1) and (2) – Interwise, Centra,
Placeware and WebEx are best known
[60-63]. They look to the user similar to
the screen in fig. 9 – a shared document
window surrounded by windows and
control panels supporting the collaborative
function. All clients are presented the
same or a similar view and this is ensured
by an event service that transmits

messages whenever an object is updated. There are several ways objects can be
shared:

Shared Display: The master system brings up an application and the system shares
the bitmap defining display window of this application [64]. This approach has the
advantage that essentially all applications can be shared and the application does not
need any modification. The disadvantage is that faithful sharing of dynamic windows
can be CPU intensive (on the client holding the frame-buffer). If the display changes
rapidly, it may not be possible to accurately track this and further the network traffic
could be excessive, as this application requires relatively large messages to record the
object changes

Native Shared Object: Here one changes the object to be shared so that it
generates messages defining its state changes. These messages are received by
collaborating clients and used to maintain consistency between the shared object’s
representations on the different machines. In some cases this is essentially impossible,
as one has no access to the code or data-structures defining the object. In general
developing a native shared object is a time consuming and difficult process. It is an
approach used if you can both access the relevant code and if the shared display
option has the problems alluded to earlier. Usually this approach produces much
smaller messages and lower network traffic than shared display – this or some variant
of it (see below) can be the only viable approach if some clients have poor network
connectivity. This approach has been developed commercially by Groove Networks
using COM objects. It appears interesting to look at this model with Web services as
the underlying object model.

Shared Export: This applies the above approach but chooses a client form that
can be used by several applications. Development of this client is still hard but worth
the cost if useable in many applications. For example one could export applications to
the Web and build a general shared web browser, which in its simplest form just
shares the defining URL of the page. The effort in building a shared browser can be
amortized over many applications. We have built quite complex systems around this
concept – these systems track frames, changes in HTML forms, JSP (Java Server
Page) and other events. Note the characteristic of this approach – the required sharing
bandwidth is very low but one now needs each client to use the shared URL and
access common (or set of mirrored) servers. The need for each client to access servers
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to fetch the object can lead to substantial bandwidth requirements, which are
addressed by the static shared archive model described below. Other natural shared
export models are PDF, SVG [38], X3D [42], Java3D or whatever formats ones
scientific visualization system uses.

Static Shared Archive: This is an important special case of shared export that can
be used when one knows ahead of time what objects are to be shared, and all that
changes in the presentation is the choice of object and not the state within the object.
The system downloads copies of the objects to participating clients (these could be
URL’s, PowerPoint foils or Word documents). Sharing requires synchronous
notification as to which of the objects to view. This is the least flexible approach but
gives in real-time, the highest quality with negligible real-time network bandwidth.
This approach requires substantially more bandwidth for the archive download – for
example, exporting a PowerPoint foil to JPEG or Windows Meta File (WMF) format
increases the total size but can be done as we described before the real-time session.

It can be noted that in all four approaches, sharing objects does not require
identical representations on all the collaborating systems. Even for shared display, one
can choose to resize images on some machines – this we do for a palmtop device with
a low-resolution screen sharing a display from a desktop.

Real-time collaborative systems can be used as a  tool in Science in different
modes:
(a) Traditional scientific interactions –  seminars, brainstorming, conferences –  but

done at a distance. Here the easiest to implement are structured sessions such as
seminars.

(b) Interactions driven by events (such as earthquakes, unexpected results in a phsics
experiment on-line data system, need to respond to error-condition in a  sensor)
that require collaborative scientific interactions, which must be at a  distance to
respond to a non-planned event in a timely fashion. Note this type of use suggests
the importance of collaborating with diverse clients – a key expert may be needed
in a session but he or she may only have access through a PDA.

We are developing in Garnet a shared SVG browser in the shared export model. The
new SVG standard has some very attractive features [38]. It is a 2D vector graphics
standard, which allows hyperlinked 2D canvases with a full range of graphics support
– Adobe Illustrator supports it well. SVG is a natural export format for 2D maps on
which one can overlay simulations and sensor data. As well as its use in 2D scientific
visualization, SVG is a natural framework for high quality educational material –  we
have built a  filter that automates the PowerPoint to SVG conversion. The work on
SVG can viewed as a special case of a shared W3C DOM [39] environment and it can
be extended to sharing any browser (such as XHTML [37]) supporting this document
object model.
We mentioned audio-video conferencing earlier in this section where we have used a
variety of commercial and research tools with the Access Grid [59] as high-end
capability. We are investigating using the Web Service ideas of the previous sections
to build a  Audio Video Conferencing Web Service with clients using publish-
subscribe metaphor to stream audio-video data to the port of the web service that
integrates the different systems using the H323 and SIP standards. More generally we
expect shared Web Services to be an attractive framework for future work in Garnet.
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Fig. 10. Message Transit times (labeled latencies) for
Narada Event Infrastructure as a function of Event size and
publish rate for three different subscription rates

5. Event Service

There are some important new developments in collaboration that come from the
peer-to-peer (P2P) networking field[32]. Traditional systems such as TangoInteractive
and our current Garnet environment [26] have rather structured ways of forming
communities and controlling them with centralized servers. The P2P approach [23]
exemplified by Napster, Gnutella and JXTA [10] uses search techniques with “waves
of agents” establishing communities and finding resources As described in section 2,
Peer-to-Peer Grids [16] should be built around Web services whose collaborative
capabilities support the P2P metaphors.

As one approach to this, we are generalizing the design of the Garnet collaboration
system described in the previous section. Currently this uses a  central publish-
subscribe server for coordinating the collaboration with the current implementation
built around the commercial JMS (Java Message Service) [28] system. This has
proved very successful, with JMS allowing the integration of real-time and
asynchronous collaboration with a more flexible implementation than the custom Java
Server used in our previous TangoInteractive environment.

Originally we realized that Garnet’s requirements for a  publish/subscribe model
were rather different than that for which JMS was developed. Thus we designed
some extensions, which we have prototyped in Narada [25,66,67] –  a system first
described in the PhD thesis of Pallickara [68]. Narada was designed to support the
following capabilities
• The matching of Published messages with subscribers is based on the comparison

of XML based publisher topics or advertisements (in a  JXTA parlance) with
XML based subscriber profiles.

• The matching involves software agents and not just SQL-like property
comparisons at the server as used by JMS.

• Narada servers form a distributed network with servers created and terminated as
needed to get high performance fault tolerant delivery.

The Narada server
network was
illustrated in fig. 2
where each cluster of
clients instantiates a
Narada server. The
servers communicate
with each other while
peer-to-peer methods
are used within a
client subgroup. Fig.
10 illustrates some
results from our
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initial research where we studied the message delivery time as a function of load. The
results are from a system with the event brokering service supported by 22 server
processes and with the “measuring” subscriber 10 hops away from publisher. The
three matching values correspond to the percentages of subscribing clients to which
messages are delivered. We found that the distributed network scaled well with
adequate latency (a few milliseconds) unless the system became saturated. On the
average, the time per hop between brokers was about 2 milliseconds. We expect this
to decrease by a factor of about three in an “optimized production system”.
Nevertheless, our current pure Java system has adequate performance for several
applications. The distributed cluster architecture allows Narada to support large
heterogeneous client configurations that scale to arbitrary size. Now we are evolving
these ideas to explicitly include both P2P and Web service ideas. We have already
extended Narada so that it can function in a mode equivalent to JMS and are currently
comparing it with our commercial JMS (from SonicMQ [69]) when used in Garnet
and other circumstances. Soon we will integrate Narada with JXTA so that it can
interpolate between “central server” (JMS) and distributed P2P (JXTA) models. Web
services designed to use the event model of section 2 will then be able to run
“seamlessly” with the same API to either classic 3-tier (client-server) or distributed
P2P architectures.

Garnet supports PDA access and for this uses a modification – HHMS (Hand Held
Message Service) – of the event service. Currently a conventional client subscribes to
events of interest to the PDA on the JMS server. This special client acts as an adaptor
and exchanges HHMS messages with one or more PDA’s. It seems that PDA’s and
Cell-phones are a especially good example on the opposite end of the scale to clusters
and supercomputers. They also require specialized protocols because of performance
and size considerations but here because they are slow and constrained devices. In
these cases an optimized protocol is not a luxury, it is requirement and a pure XML
approach does not perform well enough. However we can still describe what is to be
done in XML/WSDL and then translate it into binary (by an adaptor as described
above). This is another example of run-time compilation.

We emphasis that it is unlikely that there will be a single event service standard
and in this case using XML for events and messages will prove very important in
gaining interoperability on the Grid. As long as there are enough similarities between
the event systems, the XML specified messages can be automatically transformed by
use of an event system adapter that can run as web service and allow for seamless
integration of event services as part of middle tier (perhaps this is a filter in Fig. 5).
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