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Abstract. In this article we analyse computational processes and in-
vestigate characteristics of iterative stochastic algorithms for control and
identification based on the auxiliary performance index (API) approach.
A workable API is the one which (1) depends on available values only,
(2) has the same domain as the original performance index (OPI) has,
and (3) achieves its minimum at the same point in the domain as the
OPI does. In the article we show that the proposed method for replac-
ing the OPI by an API is applicable for identification the discrete-time
steady-state Kalman filter included into the closed-loop stochastic con-
trol systems.

1 Introduction

In order to obtain a good model for control under the real conditions of uncer-
tainty, it has been shown that iterative design procedures are adequate [1]. One
iteration involves direct identification of plant model from experimental data and
replacement the old model by the new one. Thus the question of identifiability
is central in the procedure. This question is twofold: theoretical identifiability
and practical identifiability. Basic concepts of theoretical identifiability for plants
described by linear difference equations with constant coefficients are set forth
in [2]. Numerical methods of parameter identification have also received much
consideration, e.g., [3], [4]. A review and unification of linear identifiability con-
cepts can be found in [5].

System identification combines system modelling with parameter estimation.
In-depth coverage of system identification in its first unified and mathematically
rigorous exposition, including the new general theory of Minimum Prediction
Error (MPE) identification methods, is given by Caines [6]. Consistency and
other basic qualitative properties of parameter estimators have been thoroughly
analyzed, e.g., for a broad class of MPE methods in [6] and [7].

In order to relate the contribution of this paper to the existing control systems
literature, we emphasize the fact that in classical MPE methods [6] the set of
modelsM(θ) with a vector parameter θ is constructed to predict the given, i.e.,
available observation process y, for example, y =

[
z
u

]
as for closed-loop control

systems with the applied control input u and observed output z. By virtue of the
fact, the prediction error e(ti) in classical MPE methods is available to specify
the criterion functions. In our paper, we consider stochastic control systems,
however the prediction error we have is not available because it is defined as
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difference between the output ofM(θ) and the optimal (steady-state) estimator
of state vector x. Hence the object for which we construct a set of M(θ) is not
given, i.e. is not available, being the optimal (steady-state) Kalman filter. It is
a sort of hidden object to be identified from the observed data y. This object,
intended to be used in the system feedback, is hidden in the given data source,
and we must “extract” it from there.

We do it by constructing an auxiliary error-like process ε(ti) such that the
relation holds:

Jε(θ)
def
= E{||ε(ti)||2} = E{||e(ti)||2}+Const (1)

where Const > 0 denotes a quantity independent of M(θ). Auxiliary Perfor-
mance Index Jε(θ), when minimized instead of Original Performance Index

Je(θ)
def
= E{||e(ti)||2}, theoretically gives the indirect way to estimate the true

(i.e., optimal) parameter θ◦ because the set of M(θ) containsM(θ◦) [8], [9].
In this paper, by doing a number of computational experiments, we consider

the practicality of this approach as applied to filters that are included into the
closed-loop stochastic control systems described by the following equations

x(ti+1) = Φx(ti) + Ψu(ti) + Γw(ti)
z(ti) = Hx(ti) + v(ti)
u(ti) = −G0x̃(t

+
i )

(2)

where x(ti) ∈ Rn is the state vector, z(ti) ∈ Rm is the measurement vector,
u(ti) ∈ Rr is the control input calculated, for lack of optimal filtered estimate
x̂(t+i ) and optimal regulator matrix Gr, through their suboptimal values x̃(t+i )
and G0, and {w(t0), w(t1), . . .} and {v(t1), v(t2), . . .} are zero-mean independent
sequences of independent and identically distributed random vectors w(ti) ∈ Rq

and v(ti) ∈ Rm with covariances Q and R respectively.

2 General Algorithm

In this section we present the general computational algorithm for adaptive
estimation of parameters that are subject to change. We assume that the uncer-
tainity can reside in matrices Φ, Γ and covariances Q and R. The model state
estimates under conditions of uncertainty are obtained by the feedback subopti-
mal filter

x̃(t−i+1) = Φ0x̃(t
+
i ) + Ψu(ti)

x̃(t+i ) = x̃(t−i ) +K0ν(ti)
ν(ti) = z(ti)−Hx̃(t−i )

(3)

where control u(ti) is calculated by a suboptimal control law u(ti) = −G0x̃(t
+
i ).

The gain K0 is replaced by the result of each iteration (the whole identification
process) and G0 is recalculated after each iteration according to LQG control
theory. The initial values for K0 and G0 are set as some nominal values which
are chosen a’priori to satisfy the stability conditions. The adaptive model is
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appended to this closed-loop system and started with initial state taken from
the suboptimal filter (3). It has the following form

g̃(xi+1) = Aĝ(ti) +Bu(ti)
ĝ(ti) = g̃(ti) +Dη(ti)
η(ti) = z(ti)−H∗g̃(ti)

(4)

where A = TΦT−1, B = TΨ,H∗ = HT−1 and T is the observability matrix
defined in [8], [9]. Let us assume that the collective parameter θ represents the
set of adjustable parameters in the model (the Kalman gain D and parameters
from matrix A) indexed accordingly.

Denote the stackable vector of η(tj), tj ∈ [ti−s+1, ti] as H(ti−s+1, ti) where s
is the maximal partial observability index, the model error between the adaptive
and suboptimal models then can be written in the following form

ε(ti) = N (D)H(ti−s+1, ti) (5)

where N (D) is the structure transformation of adaptive model gain D as defined
in [8], [9].

The sensitivity model that reflects the influence of the adjustable parameters
on the model error (5) and in fact is the partial derivatives of vector ε(ti) wrt.
vector θ, is defined by two types of recursions according to the placement of
adjustable parameter. Let µ denote the sensitivity model state vector, then for
parameters θj of Kalman gain D we have

µ̃j(ti) = Aµ̂j(ti−1)
µ̂j(ti) = (I −DH∗)µ̃j(ti) +

∂D
∂θj

η(ti)
(6)

For the adjustable parameters θj of transition matrix A the recursions take
form

µ̃j(ti) =
∂A
∂θj

ĝ(ti−1) +Aµ̂j(ti−1)

µ̂j(ti) = (I −DH∗)µ̃j(ti)
(7)

Both recursions start with initial values µ̂j(t0) = 0 for each θj . Let vector ξj(ti)
be equal to −H∗µ̃j(ti). The history for vectors ξj(ti) and H(ti−s+1, ti) should be
accumulated during the iterations (3)-(7) till s last values are recalculated.

The sensitivity matrix S(ti) is computed as follows

S(ti) =
(

∂ε(ti)
∂θj

)
=

(
∂N (D)
∂θj

H(ti−s+1, ti) +N (D)∂H(ti−s+1,ti)
∂θj

)
(8)

where ∂H(ti−s+1,ti)
∂θj

is the stackable vector ξj(tk), tk ∈ [ti−s+1, ti].

The gradient model then is defined as the production of the transposed sen-
sitivity matrix S(ti) with ε(ti)

G(ti) = ST (ti)ε(ti)

Ĝ(ti) = βĜ(ti−1) + (1− β)G(ti) (9)

where β is the exponential smooth factor.
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Three types of adaptation procedures can be used to generate the new es-
timates for adjustable parameters. Simple stochastic approximation procedure
(SSAP)

π(ti) = θ̂(ti)− λ(ti+1)Ĝ(ti), λ(ti+1) = 1/(ti+1 + 1) (10)

(Here and below π(ti) denotes a trial value for θ̂(ti+1)). The suboptimal adap-
tation procedure (SAP) is defined for each adjustable parameter θj through
recursion

pj(ti+1) = pj(ti) + ‖∂ε(ti)
∂θj

‖2

π(ti) = θ̂(ti)− diag(pj(ti+1))Ĝ(ti),
(11)

The optimal adaptation procedure (OAP) is given by

P (ti+1) = P (ti) + ST (ti)S(ti)
P (ti+1)∆θ̂(ti) = −Ĝ(ti)

π(ti) = θ̂(ti) +∆θ̂(ti)

(12)

The stability condition

ρ [(I −DH∗)A] < 1 (13)

for estimate π(ti) should be checked and if new estimates satisfy (13), θ̂(ti+1) =
π(ti).

3 Numerical Experiments

We start from the statement of the examples to demonstrate the features of
auxiliary performance index (API) algorithm considered in the section 2. The
subsection 3.2 is dedicated to the analysis and investigation of the adaptive
model estimates behaviour.

3.1 Numerical Examples

We consider on the following examples:

E1 Controlled plant. The first order controller model that follows the dynamics
of the reference variable and is described by the equations

x(ti+1) = Φx(ti) + Ψu(ti) + wd(ti)
z(ti) = x(ti) + vd(ti)

(14)

where Φ = 0.82, Ψ = 0.18. Covariances Qd of the zero-mean white Gaussian
noise wd(ti) that is equal to Qd = 0.084Q (Q is the parameter of the ex-
periment) and Rd of vd(ti) are subject to change their values. The reference
model which state should be tracked is given by

xr(ti+1) = Φrxr(ti) + wdr(ti)
zr(ti) = xr(ti) + vdr(ti)

(15)

where Φr = 0.61 and covariances of the noises Qdr and Rdr may change
their values. Two Kalman gains of controller and reference model should be
independently estimated.
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E2 Second order model with possible changes in the covariances of the measure-
ment and state noises is

x(ti+1) =

[
0 1
f1 f2

]
x(ti) +

[
0
β

]
u(ti) +

[
0
α

]
wd(ti)

z(ti) = Hx(ti) + vd(ti)

(16)

where α = 0.4, β = 1.0, f1 = −0.8 and f2 = 0.1. The measurement matrix
H is

[
0, 1

]
. Kalman gain vector of dimension 2 should be estimated in the

adaptation process.

E3 Second order model the same as in E2, with changes in the parameters f1, f2

of transition matrix Φ and covariances of noises. The dimension of the vector
θ of all adjustable parameters is 4 (f̂1, f̂2 and adaptive Kalman gain).

In the examples the optimal stochastic LQG control u(ti) is calculated from
the independent Kalman estimates for the states of corresponding models.

The experiment is started under the initial conditions and then, after the
Kalman estimates become stable, switching in the covariances of the noises or
the transition matrix (in example E3) occurs. The adaptive estimator is started
to identify the new Kalman filter parameters to be used to complete the current
iteration step.

3.2 Properties of Algorithm

For the analysis of the estimation process behaviour two numerical characteris-
tics are taken into account: the integral percent error (IPE) and the average nor-
malized error (ANE) of parameters estimates. The influence of the signal-noise
ratio, dimension of the vector of adjustable parameters, stability conditions on
the calculation process characteristics are summarized in this subsection.

Adjustable Parameter Dimension. The influence of the dimension of ad-
justable parameter that may change its value and should be identified during
adaptive process has shown on the graphs Fig. 1 and Fig. 2. On the Fig. 1 the
covariance Qd of the state noise is changed from the nominal value of 0.01 to 0.1,
the Fig. 2 represents the case when both covariances Qd and Qdr are changed
from 0.01 to 0.1. The speed and quality of the estimation process is decreased as
the number of parameters that change values increases as depicted on the Fig. 1.

Adaptation Procedure. The influence of the adaptation procedure choice on
the ANE characteristic of algorithm has shown on the Fig. 3 and the Fig. 4. It
can be noted that the selection of OAP in the considered experiments increases
the estimation power of the algorithm. The compromise between the number of
calculations and the estimation quality is SAP which used in experiments.
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Fig. 1. Example E1. Adaptive estimation process (1-plant model, 2-reference model).
The changes in the covariance of plant model.
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Fig. 2. Example E1. Adaptive estimation process (1-plant model, 2-reference model).
The changes in the covariances of plant and reference models.

Signal-Noise Ratio. The IPE characteristic process for different levels of
signal-noise ratio for examples E2 and E3 depicted on the Fig. 5 and Fig. 6 shows
that the impact on the estimation quality of the algorithm differs in both con-
sidered examples. In A-graph of Fig. 5 as the SNR increases from 0.01 to 10, the
better performance in the sense of IPE can be observed. When the uncertainty
resides also in the transition matrix Φ the ability of Kalman filter to estimate
state of the object becomes crucial. As the noise component in the state equa-
tion grows the integral estimation error reaches the unimprovable lower bound
(Fig. 6).

Stability Properties. The effect of the unimprovable lower IPE bound is de-
termined also by the stability properties of the object. The contribution of the
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Fig. 3. Example E2. Average normalized error for different adaptation procedures:
1-SAP, suboptimal adaptation procedure, 2-OAP, optimal adaptation procedure,
3-SSAP, simple stochastic adaptation procedure.
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Fig. 4. Example E3. Average normalized error for different adaptation procedures:
1-SAP, suboptimal adaptation procedure, 2-OAP, optimal adaptation procedure,
3-SSAP, simple stochastic adaptation procedure.

dynamic part of the state equation depends on the placement of the object
eigenvalues with respect to unit circle on the complex plane. At the fixed level of
SNR as the eigenvalues moving to the coordinate origin the quality of obtained
estimates decreasing as depicted at the Fig. 7. The influence is more distinct in
the case of example E3 again as in the previous subsection.

Initial Values. The results of test runs of the algorithm for different initial
values of estimated parameter are shown at Fig. 9 and Fig. 10 at levels SNR 0.1
and 10.0. At the level of 0.1 the algorithm is more sensitive to the initial value
than for 10.0 as it is represented at Fig. 10.
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Fig. 5. Example E2. Integral percent error for different level of SNR: 1 - SNR = 10, 2
- SNR = 0.1, 3 - SNR = 0.01, 4 - SNR = 0.001.
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Fig. 6. Example E3. Integral percent error for different level of SNR: 1 - SNR = 10, 2
- SNR = 0.1, 3 - SNR = 0.01, 4 - SNR = 0.001.

4 Conclusions

The results reported in the paper show the applicability of the proposed API
method to the iterative stochastic control design for the descrete-time closed-loop
stochastic control systems. The numerical experiments determined the influence
of different factors (the object stability properties, the signal noise ratio, the
choice of the initial estimate value) on the algorithm robustness and performance.
Some additional experimental effects revealed during the numerical simulation
to be theoretically justified.
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Fig. 7. Example E2. Integral percent error for different level of stability of the object:
1 - ρ = 0.1, 2 - ρ = 0.2, 3 - ρ = 0.5.
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Fig. 8. Example E3. Integral percent error for different level of stability of the object:
1 - ρ = 0.1, 2 - ρ = 0.2, 3 - ρ = 0.5.
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Fig. 9. Example E2. The influence of initial value of estimates for the SNR = 0.1. 1 -
θ0, 2 - 5θ0, 3 - 10θ0.
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