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Abstract. In recen t years, the study of immune response behaviour

through mathematical and computational models has been the focus of

considerable eÿorts. We propose a mesoscopic model to combine the most

useful features of the microscopic and macroscopic approaches, which

have been the alternatives to date. Cellular automata and Monte Carlo

simulation are used to describe the humoral and T-cell mediated immune

response, where the nature of the response induced depends on the po-

larization of TH1 and TH2 cells. Memory immunity is introduced to our

model, so that we can simulate primary and secondary immune response.

The high aþnity betw een memory B-cells and antibodies contributes to

a quick and intense response to repeated infection. The experiments on

PaffBÿAB and PaffMBÿAB, which control antibody production, explore

the diÿerent roles of B-cell and memory B-cell in immune response stages.

The duration of immunological memory is also studied.
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1 Introduction

A number of mathematical and computational models have been developed over
recent years to describe the human immune system and its response to threat.
These eÿorts can be grouped principally in terms of their focus on microscopic
or macroscopic features respectively. Microscopic models thus provide detailed
information on the immune system, such as T-cell polarisation, (where naiv e
CD4 T-cells diÿerentiate into TH1 and TH2 cells) [1-2], vaccine complexity [1],
repertoire descriptors, (where receptors of T and B-cells, epitope and peptide of
antigen and antibody are described by bit-strings [3]), and antigen-speciþc clonal
expansion, (where only one kind of T-cell is likely to be speciþc to a particular
antigen) [4, 5]. The microscopic model IMMSIM is a well-known and much stud-
ied example [4, 5]. It includes seven entities or cell t ypes, with bit-strings used to
simulate the key-lock interactions betw een the elements of the immune system.
In comparison to the detailed microscopic approach, other cellular automata-
based or similar models have until no w used less cell types or simpler inter-cell
interactions [9-16], whereas ordinary diÿerential equations (ODE)-based [6-8] or
continuous models are essentially macroscopic in outlook. The aim has been to
study the overall disease evolution, such as global aspects of the viral infection,
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overall symptoms, and related statistics. Thus, use of reduced and simpliÿed
interactions and system parameters permits an overview of the entire popula-
tion of cells and molecules. Mannion et al. [9, 10], proposed models of cellular
automata (Monte Carlo) type for the T-cell mediated response to HIV. Four
cell types, two sets of interactions, and two global parameters, Pmut and Pmob,
which built on earlier models with few cell types [12, 13], are involved in this
MC model.

In contrast, we propose a mesoscopic model here, which seeks to bridge mi-
croscopic and macroscopic features. The cell types and global parameters in the
original model [9,10] are retained, and an increasing number of cells of diþerent
types are used to more densely populate the host space. This approach thus in-
creases the detail on the immune space, with all cell populations interacting on
an individual cell-by-cell basis, rather than as a well-mixed cell population de-
scribed by ODEs [6-8]. Furthermore, Instead of using the combination of scalars
for immune cells and antigen and allowing several of them on a single lattice
site (like IMMSIM [4, 5]), we choose Booleans for all cell states. We simplify
the cell populations, permitting a maximum of one cell of each type per site,
which allows us to simulate on a larger-scale (computationally expensive for a
detailed microscopic model), but compromises on highly local detail (at a given
site). However, population dynamics of immune cells and overall disease evolu-
tion is obtained from the whole lattice, which is large scale. Hence, we describe
an intermediate approach between microscopic and macroscopic.

In particular, we include both humoral and T-cell mediated immune response
in what follows. Thus, the mesoscopic model attempts to describe T-cell polar-
izations, and to characterise primary and secondary humoral response.

2 Model

2.1 The entities

The immune system is extremely complex with many diþerent cell types, proteins
and molecules involved in its eýcient operation. It is impossible to take into
account all factors in a computational model, so we limit the cell types to eight
key ones in the humoral and T-cell mediated immune response. These cells are
not precisely those of a former 8-cell model proposed by Pandey [17], since some
diþerent entities are included and some omitted. Included here are Macrophage
(M), TH1 cell (T1), TH2 cell (T2), Cytotoxic T-cell (CT), Memory T-cell (MT),
B-cell (B), Memory B-cell (MB), Antibody (AB) and Antigen (AG). As well
as the key entities described, receptors, molecules and other signals are also
involved in immune response operation, which control e.g. the proliferation and
elimination of the eight on which we focus. In our model, we do not consider these
factors in terms of separate units, but present their function through parameters,
which control cell-cell interactions.
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2.2 Updating cells on the host systemic spatial lattice

The human immune system is represented bya simple cubic lattice, where eac h
site has six neighb ouring sites, with square cross-section. The lattice has linear
dimension L, w ithL3 sites, and p erio dicb oundary conditions, so that edges of
the lattice are wrapped. Any site can b e occupied by a nyone of the eigh t cell
typ es, butthere is at most one cell of eac hcell typ e ata site. The cellular state
is described by a Boolean variable, where \true" is used to indicate the high
concentration of a giv encell typ e atone site and \false" the low concentration.

A Monte Carlo method is used, which sto chasticallyup datescellular states,
follo wingin teractions, with one up dateof the whole lattice equal to one Monte
Carlo step (MCS): (asynchronous up dating).A site is randomly selected to b e
up datedand this selection is rep eatedL3 times for oneMCS. Around 1000 MCS
are used to monitor the disease ev olution.

In up datingcell typ es atan yone site, a numb er offeatures, such a s growth,
in ter-cell in teractions and death must b e considered in order to mimic real bio-
logical pro cesses.States of all cells at a given site are simultaneously up dated.
A tthe b eginning of an up date,the information is saved in temporary states.
All states ev olv e fromthese temporary ones, so that results of up datingall cell
typ esare independent of the sequence used.

2.3 The growth

Every cell typ e at a site at timet+1 depends on the states of its six neighb ouring
sites at time t. In Equation (1), if an ycell typ e at a giv ensite has a neighb ouring
site, o ccupiedbythe same cell typ e withstate = \true" at time t, then the state
of the giv encell typ ewill ev olv e to\true" at time t+ 1 .

S0

ic
(x; y ; z ; t+ 1 ) =Sic(x; y ; z ; t):or :Sic(x+ 1; y ; z ; t)

:or :Sic(xÿ 1; y ; z ; t):or :Sic(x; y+ 1; z ; t):or :Sic(x; yÿ 1; z ; t)
:or :Sic(x; y ; z+ 1; t):or :Sic(x; y ; zÿ 1; t)

(1)

where S0 is the in termediate state of a giv encell; ic is the cell typ eand x,
y and z are the co ordinates of the site. Equation (1) is the same as that of our
original model [9, 10], but cells may not always proliferate successfully. In every
in ter-site in teractionof an yone cell typ e, a probability (Pprolrate(ic)) is assigned
to successful gro wth.Diÿerent values of Ppr olrate(ic) reþect the fact that ev ery
cell typ ehas diÿerent gro wth rate to proliferate in real immune system. After
gro wth, the cellular states are temporary as b efore, and are used as a basis for
up datingthe cellular states in in ter-cell in teractions.These involv e diÿerent cell
typ esat an yone site, i.e. account for aýnities and triggers b etw eencell typ es.

2.4 In teractions

The follo wing set of in tra-site in ter-cell in teractions are used to describe the
immune-response to an tigens.All cellular states at time t + 1 are evolv edfrom
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the temporary states (S0

ic) after growth.

M(t+ 1) =M 0:or:AG0:and:[not[M 0:and:AG0]] (2.1)
T1(t+ 1) = [T10:or:[AG0:and:M 0]]:and:[not[T10:and:AG0]] (2.2)
T2(t+ 1) = [T20:or:[AG0:and:M 0]]:and:[not[T20:and:AG0]] (2.3)

CT (t+ 1) = CT 0:or:[AG0:and:M 0:and:T10] (2.4)
B(t+ 1) = B0:or:[T20:and:AG0] (2.5)

AB(t+ 1) = AB0:or:[[B0:or:MB0]:and:AG0] (2.6)
AG(t+ 1) = AG0:and:[not[CT 0:or:AB0]] (2.7)

(2)

Our model thus attempts to describe in more detail the immune system be-
haviour through simple interaction equations, limited though these still are in
terms of the biological reality. All the interactions above are taken to be stochas-
tic, and the success or failure of every interaction is controlled by independent
probabilities. Values of all parameters are set between \0" and \1", with a proba-
bility close to \1" implying that the speciÿc inter-cell interaction is highly likely.
The mechanism for cooperative interactions is described below.

In Equation (2.1), the presence of antigen, but no macrophage at one site,
implies that the antigen can induce the growth of a macrophage with a probabil-
ity PaffAGÿM . If both antigen and macrophage are present at the same site, the
antigen can kill the macrophage with a probability PinfectM . In Equation (2.2)

and (2.3), the presence of an antigen and a macrophage together can activate
growth and diþerentiation of T-cells with a probability PaffTH . A proportion
(PropT1) of the newly generated T-cells diþerentiate into TH1 T-cells, and the
others (1-PropT1) into TH2 T-cells. If no macrophage presents to the antigen,
it becomes free and can kill TH1 and TH2 cells with a probability PinfectTH .

Equation (2.4) shows that with probability PaffT1ÿCT , a cytotoxic T-cell grows
when an antigen, a macrophage and a TH1 T-cell are all present at that site.
Further, the presence of a TH2 T-cell and an antigen can induce the growth
of a B-cell with a probability PaffT2ÿB (Equation (2.5)). Antibody secretion
is described in Equation (2.6). When the antigen presents at the same site, a
B-cell secretes antibody with a probability PaffBÿAB; a memory B-cell can se-
crete antibody with a higher probability PaffMBÿAB than that for the B-cell,
and the antibodies spread to all six neighbouring sites. Equation (2.7) describes
the elimination of antigen. A cytotoxic T-cell (with a probability PkillCTÿAG)or
an antibody cell (with a probability PkillABÿAG) will kill an antigen which is
present at the same site.

2.5 Death of all cell types

One MCS simulates activity in a unit period of time equivalent to a time period
in the immune-response, which is equivalent to the smallest half-life of the eight
entities. Consequently some cells may die naturally in this period. All the cells
in the lattice are allowed to experience a natural death process with probability
Pdeath. This death process is assumed (somewhat naively) to occur after cellular
growth and the inter-cell interactions have taken place, ensuring that a new
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generation of cells are pro duced. New bo rn cells and original cells are tak en
to ha vethe same probability of natural death, (again a simpliÿcation) with no
account tak enof degradation of cell function in our model. This treatment of
new b orn cells and original cells as eþectively memory-less is assumed to ha ve
little eþect on the ev olutionof the total p opulations, which are the major fo cus
for study ,but this is clearly a limitation on the model as a whole. We ha ve
based the probability o f cell death in a unit of time on the biological half-life
data, where half-life is deÿned to b e the time required for half the numbe r of a
giv encell typ e tob e eliminated. Then

Pdeath = e
ÿ

(ln2)ÿÿ
þ (3)

where Pdeath is the death rate of the cell typ e,ÿ is half-life, þ is the p erio dthat
one MCS represents in the real immune system.

2.6 The cellular mobility

In the immune system, realistically ,all cell typ esare mobile. F or example, T-
cells and B-cells circulate con tinuouslyfrom the blo odstreamto the lymphoid
tissues and bac kto blo od,and macrophages bring an tigensfrom blo odto lym-
phoid organs. The mobility of these cells increases the opportunity to interact
with other cells. At th e en d o f each MCS, all cells are p ermittedto move totheir
neighb ouring sites with probability Pmob, w h ich i s non-directional i.e., one cell
can move to any one of its six neighb ouring sites with equal probability. Direc-
tional mobility, in w h ich one cell can move in only selected axial directions e.g.
p ositive o n ly, m ay h ave some relev ance,for example in chemotaxis. The mobility
algorithm remains as described in the original model [9, 10] with the motivation
for movement of a giv encell based on the attraction for it to in teractwith other
cell typ es. F orexample, a cytoto xicT-cell, an tib odyor memory B-cell randomly
move to a neighb ouringsite occupiedby a n a ntigen to kill it, whereas, an an tigen
randomly moves to a neighb ouringsite occupiedbya macrophages,TH1 o r TH2
cell to infect them. The TH1 cell, TH2 cell or B-cell randomly move to anyone
of their six neighb ouring sites, and do not require further sp ecial conditions.

3 Results

In order to investigatethe immunological memory, we h ave included memory B-
cells in our model, which h ave higher aýnity to antib odiesthan B-cells. When
B-cells die in the death pro cess, some of them b ecome memory B-cells. The
parameter PtransRateMB

is the rate that decides what proportion of those dying
B-cells can diþerentiate in to memory B-cells. PtransRateMB

is set to 0.1 in the
simulations.

We sh ow a typical simulation of immunisation in Fig. 1 for selected en tities
only. A t the start of the simulation, the system has no immune cells, and only
low density o f antigen (1%) uniformly distributed on a S.C. lattice of size 50ÿ
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50 ÿ 50. The antigen induces a quick and intense immune response, in which
both humoral and T-cell mediated entities are involved. Antigen levels peak
then decrease, because the immune response suppresses further growth. Finally,
the antigen is eliminated, and the primary immune-response is complete. After
the primary immune-response, all immune cells except memory B-cells gradually
decrease then disappear, but memory B-cells remain due to their long half-life.
The immune system is thus returned to the healthy state, but retains memory
of the antigen. If the same dose of antigen is again distributed randomly into
the lattice, the secondary immune-response is activated. This is characterised by
faster and more eÿective response to antigen [18]. A large amount of antibodies
are produced very quickly, so the density of antigens is limited to a low level,
which is far below that of primary immune response. The density of B-cells is also
lower than in the primary response. This suggest secondary immune response is
far more intense and eÿective than the primary, and that the antigen causes less
damage to the immune system. This behaviour is similar to the behaviour of a
real immune system.
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Fig. 1. Immunological memory to repeated infection

In our model, the ability of B-cells and memory B-cells to secrete antibody
are controlled by parameters PaffBÿAB and PaffMBÿAB , and the humoral im-
mune response is predominantly driven by these two parameters. In Fig. 2, we
look at the eÿect of PaffBÿAB and PaffMBÿAB on the antigen population in
primary and secondary immune response. We þx the value of PaffMBÿAB , and
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increase the value of PaffBÿAB from 0.3 to 1.0 in Fig. 2a. The selection of
other parameters involv edin this humoral immune resp onseare sho wnin T able
1. We vary the parameters individually to investigateho wsensitiv eresults are
to parameter values chosen. PaffA GÿM , PaffT H and PkillABÿAG , which con-
trol the gro wthof immune cells, just aÿect the gro wthsp eed of these cells, and
ha ve littleinþuence on values of p eak densities. The p erio dof an immune cell's
half-life and PprolR ateÿAG decide the p eak densities of these immune cells and
an tigenresp ectiv ely. W ith lowdensit yof macrophage, TH2 cell or B-cell, there
are not enough an tib odiespro duced,so an tigenscan not to b e eliminated from
the immune system. If PprolRateÿAG is high, an tigensha vea high gro wthrate,
and survive the immune resp onse.

P arameter V alue P arameter V alue

PtransRateMB 0.13 Ppr olRateÿAG 0.2
PaffA GÿM 1.0 Half-life of M 10(da ys)
PaffT H 1.0 Half-life of T2 10(da ys)
PT2ÿB 1.0 Half-life of AB 20(da ys)

PkillABÿAG 1.0 Half-life of MB 400(da ys)

T able1. P arameterselections in Fig.2.

With the increase of PaffBÿAB , the p eakan tigenp opulationincreases in pri-
mary resp onse,but remains at the same lev el in the secondary, which suggests
that the parameter principally inþuences the former, and is negligible for the
latter. In Fig. 2b, the value of PaffBÿAB is ýxed, and the value of PaffM BÿAB

is changed from 0.3 to 1.0. Little diÿerence in primary immune resp onse is ob-
serv ed, but pe akan tigendensit yincreases, when PaffM BÿAB is increased for
the secondary stage. This phenomenon suggests that PaffM BÿAB driv es the
secondary immune resp onse,but has little eÿect on the primary.

Immunological memory is sustained by long-lived memory B-cells, induced by
the original exp osure[18], so that memory B-cells pro videlong-term protection
after the primary immune-response is over. InFig.3, we investigate results from
our model for the maximum an tigendensit yin secondary immunity (DmaxAG)
vs. the time in tervalb etw eenan tigeninjections(ÿt), where an expression of the
form

DmaxAG / ÿt
ÿ (4)

clearly applies. If the an tigeninjection in terval is short,a more in tensesecondary
resp onse is induced, and the an tigenp opulation is limited to a low l evel. If the
in terval is verylong, the secondary immune resp onseis not as eÿective as b efore,
and maximum an tigendensity a chiev es thesame lev el as thatin primary immune
resp onse (dotted line Fig.3). Results thus support the fact that immunological
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Fig. 2. PaffMBÿAB is ÿxed to 1.0 (a) and PaffBÿAB is ÿxed to 1.0 (b); Lattice size is
30 ÿ 30 ÿ 30; Ten samples are generated for each value of PaffBÿAB and PaffBÿAB,
and the average results are displayed.

memory gradually fades after exposure to initial antigen attack. The immuno-
logical memory is related to half-life of memory B-cells and the transfer rate of
B to memory B-cells. The larger the percentage of memory B-cells, the longer
the duration of relative immunity.

4 Conclusion

In conclusion, we studied immunological memory in this paper through a meso-
scopic model incorporating key cell types and stochastic interactions with TH1
TH2 diÿerentiation. Main features of the immunological memory were captured,
but details of cell population dynamics are not presented. In repeated infection,
we obtained a more rapid and intense secondary response compared to that of
the original exposure, so that antigen population is suppressed to a low level. A
preliminary analysis of the inþuence of probabilities assigned to antibody secre-
tion of B and memory B-cells demonstrated that ýrst infection immune response
is driven predominantly by B-cells while memory B-cells drive repeated infec-
tion. Immunological memory (based on memory B-cells) diminishes with time,
so that after a very long period, the antigen invasion is treated as a ýrst infec-
tion because of the loss of memory to the antigen. This is reþected in our model
(Fig.3) with DmaxAG / ÿtÿ . The long half-life of memory B-cells and large
transfer rate from B to memory B-cells sustain long immunological memory.
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Fig. 3. Decline in immunological memory. Maximum an tigen densit yin primary im-
m uneresp onse (dotted line).

Our model attempted an in termediate approach be tween microscopic and
macroscopic, and results of this paper show t h atsome features of immune re-
sp onse could b e repro duced,notably immunological memory. Currently, w eare
also studying T-cell mediated immune resp onse sp eciÿc to HIV, and co op era-
tion of the humoral and the T-cell mediated reactions, as w ellas chemotaxis
(directional mobility) from a mesoscopic viewpoin t.
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