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Abstract. We show that claims of “perfect security” for keys produced
by quantum key exchange (QKE) are limited to “privacy” and “in-
tegrity.” Unlike a one-time pad, QKE does not necessarily enable Sender
and Receiver to pretend later to have established a different key. This
result is puzzling in light of Mayers’ “No-Go” theorem showing the im-
possibility of quantum bit commitment. But even though a simple and
intuitive application of Mayers’ protocol transformation appears suffi-
cient to provide deniability (else QBC would be possible), we show sev-
eral reasons why such conclusions are ill-founded. Mayers’ transformation
arguments, while sound for QBC, are insufficient to establish deniability
in QKE.
Having shed light on several unadvertised pitfalls, we then provide a
candidate deniable QKE protocol. This itself indicates further shortfalls
in current proof techniques, including reductions that preserve privacy
but fail to preserve deniability. In sum, purchasing undeniability with an
off-the-shelf QKE protocol is significantly more expensive and dangerous
than the mere optic fiber for which “perfect security” is advertised.

1 Introduction

Privacy and integrity are the cornerstones of security. But a third, more subtle
property is often overlooked: deniability, or the ability to pretend, after sending
a message, that a different message was sent (perhaps by pretending a different
key was used). The ability to deny a message is important in settings such as
voting (to inhibit selling or coercion) and free, private speech.

A one-time pad is private, supports integrity, and easily provides deniability:
after actually sending c = m0 ⊕ k, one can pretend that the cleartext was m1
by pretending the key was k′ = k ⊕m0 ⊕m1. But OTP’s cannot be generated
from scratch, and the length of an OTP must be at least as long as the total
cleartext. Otherwise, the key equivocation – Shannon’s pioneering measure of
information-theoretic security – will not be sufficient, and information will be
leaked, ultimately limiting the range of alternate, fake keys.

Private and public key cryptography address these issues by ensuring that
finding the key or cleartext is computationally difficult, under widely-accepted
complexity assumptions. But it is amply clear that they provide no key equivoca-
tion whatsoever. Even though it is difficult to findm frommemod n, or gabmod p
from ga and gb, it is obvious that there is a unique solution in each case. (Pre-
tending that m′ �= m was sent is impossible, since (m′)e �≡ me.) Moreover, the
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mere fact that the keys are used to encrypt long messages makes it immediately
obvious that, from an information-theoretic viewpoint, equivocation is limited.

With limited equivocation, and with the obviously unique mathematical so-
lutions behind me or gab, it is unsurprising that RSA and Diffie-Hellmann key
exchange are undeniable. There is no false message or key that can possibly
match the public record, even though finding the real message or key might be
difficult.

1.1 Perfect, Unconditional Security

Along comes quantum key exchange (QKE), offering to establish a key with
“perfect, unconditional security.” How is this possible in a world where each
party has unlimited computing power? Unlike the classical information-theoretic
world, determining the precise state of a particle prepared in an unknown fashion
is generally impossible. Thus, one can obtain asymmetries in knowledge that are
not achievable in classical settings.

Wiesner pioneered the cryptographic application of this principle in a pro-
posal to authenticate money, and Bennett and Brassard showed the first key
exchange protocol based on it [Wi83,BB84]. The canonical example is conjugate
coding: a polarized photon represents a bit in one of two ways: either using a +
basis where 0◦ indicates 0 and 1◦ indicates 1, or using a × basis where 45◦ indi-
cates 0 and 135◦ indicates 1. Knowing the right basis, it is easy to discover the
bit. Without knowing the basis, any attempted observation is likely to extract
possibly-incorrect information at the cost of irreversibly leaving the photon in a
changed state. (This is not an engineering issue but a fundamental corollary of
physics.)

Thus it is possible to detect attempted eavesdropping, unlike the classical
world, where complete information about a given transmission can be obtained
by direct inspection (in ideal principle). Moreover, if the level of eavesdropping
is low, then the extracted information is low, ultimately enabling successful key
exchange (and quantum money). Best of all, this can be done “from scratch,”
assuming that a Sender and Receiver also have a classical, authenticated public
line.

A series of papers show that QKE is “perfectly, unconditionally secure.” Want
to avoid Shannon’s key equivocation bounds? Just generate more key. Since there
are no computational issues, this looks like a convenient way (engineering aside)
to create a OTP of unlimited length.

The current work offers a strong note of caution: advertised “perfect, uncon-
ditional security” is not the same as equivalence to a OTP. In particular, while
privacy and integrity have been provably established for QKE, deniability is not
covered, nor is it implied.

1.2 How to Bind the Message?

Imagine that Eve measures only one photon. With probability 1/2, she chooses
the correct basis, obtains complete information on that photon, and transmits an
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unchanged photon to R. (Or, she uses an incorrect basis, thereby “disturbing”
the photon, but R’s later measurement coincidentally restores it.) No secrecy is
compromised; no theorems are violated.

As for deniability, however, things are different. If S and R later try to
open up their accounting records to show that a different key was established,
then they must change something in their actual records. There is some nonzero
chance that they decide to pretend a different bit was used for the one photon Eve
measured. With significantly nonzero probability, the false record they provide
will not match Eve’s observation.

1.3 Quantum Subtleties

The issue is clouded by related results in quantum cryptography. Although it was
thought that the asymmetries in knowledge might also enable bit commitment,1

Mayers showed that quantum bit commitment (QBC) is in fact impossible. One
subtle insight is that the programming command “(step n) Party P measures
particle X privately” is not enforceable against an adversary. Intuitively speak-
ing, a cheater can postpone certain required measurements (or more general
“collapses” of quantum systems), thereby keeping her options open.

At face value, this serves only to add optimism to the QKE setting, where
one might now happily conclude that QKE is fully deniable, since otherwise it
would enable QBC. Although we will extract inspiration from Mayers’ insightful
work, we also show that such off-the-shelf conclusions are logically unfounded.

It is easy to invoke Mayers’ no-commit theorem blindly to (1) dismiss the
significance of a positive result (“it follows easily”) or (2) dismiss correctness of
negative results (“it contradicts no-commitment”). Ordinarily, one would imag-
ine that a demonstration that BB84 is binding would be sufficient prima facie
to show that the no-commit theorem does not apply.

But nothing quantum is prima facie. Instead, without deeper investigation,
many have been tempted to challenge the “counterexample” (namely, the asser-
tion of undeniability). Our deeper investigation displays why Mayers’ result is
true against QBC but insufficient against QKE. In fact, it is somewhat surprising
that deniability might in fact be achievable through LOCC (local operations and
classical communication), since the no-commitment proof demands potentially
nonlocal operations on S and R.

1.4 Contributions

Our work is directed at (1) making the properties of QKE fully apparent for
existing and newly-designed protocols, and (2) analyzing the extent to which
existing techniques (such as Mayers’ methods for QBC) apply to QKE, and
extending them where needed. In sum:

1 In bit commitment, a bit to be committed must be kept secret from the “receiving”
party, at least until much later, when it is to be “decommitted/unveiled.”.
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– The merely “perfectly, unconditionally secure” key established through quan-
tum key exchange is not completely equivalent to a one-time-pad.

– Perfect privacy and integrity do not imply deniability.
– Quantum protocols are not necessarily deniable, even if “perfectly secure.”
– The BB84 quantum protocol is binding.
– Mayers’ “no-commitment” theorem is not sufficient to imply deniability.
– Deniability can be achieved through extensions that require a quantum com-
puter.

Our positive result balances the need for purification with the need to use the
public, authenticated, classical channel of QKE. It represents the first deniable
quantum key exchange protocol.

2 Background, Notation, Definitions

We employ standard terminology from quantum computing and cryptography.
Let |0〉 and |1〉 denote an orthonormal basis for a two-dimensional complex
Hilbert space H2. Using the Dirac bra-ket notation, 〈φ| ≡def |φ〉†. The Pauli
matrices are

X = 1
2

(
0 1
1 0

)
, Y = 1

2

(
0 −i
i 0

)
, Z = 1

2

(
1 0
0 −1

)

Conjugate coding uses two bases: B+ = {|0〉, |1〉} and B× = {(1/√2)(|0〉 +
|1〉), (1/√2)(|0〉 − |1〉)}. (N.b.: subscript “+” is interchangeable with “0”, and
subscript “×” with “1.”) The Bell basis describes entanglement:

β00 = 1√
2
(|00〉+ |11〉) , β10 = 1√

2
(|00〉 − |11〉)

β01 = 1√
2
(|01〉+ |10〉) , β11 = 1√

2
(|01〉 − |10〉)

A state can be represented as a density matrix over Hn for some n. A density
matrix ρ is a weighted sum of projectors, with Tr(ρ) = 1. A density matrix
can represent a mixed state or, in the case that ρ = |φ〉〈φ|, a pure state φ. We
typically consider “binary” Hilbert spaces, expressible as (H2)⊗n.

Let A be Hermitian. Traditionally, a measurement of A is seen as “collapsing”
the state ρ to an eigenvector of A. The expected value of A will be 〈A〉 = Tr(ρA).
We allow parties to perform generalized measurements through the standard
toolkit: (1) appending an unentangled ancillary subsystem; (2) applying a uni-
tary transformation; (3) making an orthogonal measurement; (4) tracing out a
local part of the system.2

Let C1 and C2 be [n, k1] and [n, k2] binary codes, respectively, with

{0} ⊂ C2 ⊂ C1 ⊂ GF(2)n.

2 This is tantamount to discarding part of the system. In this paper, we accept this
approach at face value.
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The CSSx,z quantum encoding [CSS96] maps v ∈ C1 to the following codeword:

v → 1√
|C2|

∑
w∈C2

(−1)z·w|x+ v + w〉.

In the context of BB84, phase errors turn out to be irrelevant and the straightfor-
ward protocol purification of BB84 (see infra) is more like CSSx,z with z omitted
or averaged out.

2.1 Protocol Execution

We use a circuit model for protocol execution. A global state Φ, described over a
basisBk+ for some k, is advanced through applying each party P (i.e. each circuit)
to a collection of registers, where a register is a local subset of the “wires” of the
overall circuit. We use superscripts to indicate location of given registers; thus,
e.g., Φ =

∑
v1..v5

αv1..v5 |v1v2v3〉A ⊗ |v4v5〉B describes a state with Alice holding
the first three registers/wires and Bob holding the rest. The tensor product sign
⊗ is omitted when clear from context. We also use the shorthand HA ⊗ HB to
express the state space.

A transition of the system thus consists of applying a local unitary transfor-
mation UP ⊗1 to the registers held by party P , along with a possible orthogonal
measurement. More precisely, UP applies to the Hilbert subspace Hm

2 at indices
k1, . . . , km that are labelled as under P ’s control. Subsequent communication is
modelled by reassignments of those labels.
Initialization.We say that a protocol is properly initialized if each party starts
with quantum registers in unentangled states |0〉. In particular, there is no en-
tanglement with other parties, nor with the auxiliary-parties that comprise the
“environment.”
Communication. As noted, communication is generally just a reassignment of
the register labels. When an eavesdropper is present, the register is assigned to
the eavesdropper first before being reassigned to the destination party. Generally,
the eavesdropper can forward any transformation or substitution she pleases.

This suffices to model QBC, but in QKE there is an additional channel:
the reliable public classical channel. One way to regard this channel is as a
separate party who first measures the input, then broadcasts the result to the
source, destination, and eavesdropper (who is not allowed to alter the result).
This irrevocable measurement induces a mixture among several outcomes of the
overall protocol.

The collection of such auxiliary parties consists the “environment” and is
described by an environment space Henv. Thus a two-party protocol is executed
over HA ⊗ HB ⊗ Henv.
Views and Outputs. The distribution produced by running a quantum pro-
tocol is obtained by tracing out each party. The view of party P includes her
state in HP along with the classical strings in any environmental/classical chan-
nels she used or saw. In particular, direct erasure of classical information is not
allowed. For some purposes, we may more generally regard the view as the col-
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lection of registers along with the measurement history of a party, rather than
tracing out the final state.
Parameters. We generally use κ to denote a security parameter, k to denote
a key (generated or exchanged), and we sometimes overload k when describing
error correction: [n, k] connotes an error correcting code mapping k logical bits
to n representation bits.

2.2 Deniability

There are several variants on the meaning of deniability [CDNO97,Be96] and
binding, depending on the parties attempting to equivocate and what their suc-
cess rates may be.

Let m1 and m2 be arbitrary messages. Run S(m1), R and E, obtaining
global state ρ(m1) whose registers are |φS〉, |φR〉, |φE〉, |φenv〉. Let DS and DR
be local computations (not necessarily unitary operations). Let ρ(m1,m2) =∑ |DS(m1,m2, φS)〉|DR(m1,m2, φR)〉|φE〉|φenv〉, representing an attempt at de-
nial: pretending that m2 was really sent.

Let J be a judge, who has inputs for registers φS , φR, φE , and φenv. J ’s
final state is described in registers d and J ′, where d is a single-bit, “decision”
register. Flip a coin c in the environment to determine whether denial will be
attempted. If c = 0, run J on ρ(m1); if c = 1, run J on ρ(m1,m2) (namely apply
DR and DS before submitting to the judge). The final result is of the form

ρ(m1,m2, c) =
∑

|cd〉|φJ′〉|φenv〉.

Tracing out J ′ and the environment gives a mixture over |cd〉’s.
A judge is safe if |01〉 has zero probability, namely the judge makes no false

accusations.

Definition 1. Let (S,R) be a quantum key exchange protocol with denial pro-
grams (DS , DR). For eavesdropper E and judge J , let PJ,E(m1,m2, κ) be the
probability J gives |11〉, on security parameter κ. We say the protocol is deniable
if, for any E, any safe J , and for any m1,m2: PJ,E(m1,m2, κ) = κ−ω(1).

Simplifying, let P (κ) be the maximal probability of |11〉 over all messages of size
O(κ). A protocol family indexed by integers C is perilously deniable if P (κ,C) =
O(κ−C), namely S and R can reduce their vulnerability to a small (but non-
negligible) polynomial fraction. A protocol is weakly binding if P (κ, c) = Ω(κ−c)
for some c > 0. (Thus a protocol family can be perilously deniable while each
given value of C produces a weakly binding protocol.) A protocol is binding if
P (κ) = 1− κ−ω(1).

(Variants on this approach include sender-only and receiver-only deniability,
single-bit messages, unsafe judges, and many others. Note that when an ex-
changed key is used like a one-time pad, “key” can often be interchanged with
“message” to simplify the discussion.)
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BB84
1. S selects 2(4 + δ)n random bits {b[i, 0], b[i, 1]}.
2. S encodes {b[i, 0]} as qubits {p[i]}, each in basis + or × depending on {b[i, 1]}.
3. S sends {p[i]}.
4. S chooses random vk ∈ C1.
5. E forwards {q[i]} to R (possibly unchanged).
6. R measures each {q[i]} in random basis {c[i]}.
7. S announces {b[i, 1]} on the classical channel.
8. S and R discard indices wherever b[i, 0] �= c[i]. S selects and announces a random
remaining subset of 2n bits, along with a random n-subset π of check indices.
(Abort if impossible.)

9. S and R reveal p[i] and q[i] classically for i ∈ π and abort if any (resp. more
than t) disagree.

10. S announces x⊕ vk, where x is the n-bit remaining string in {b[i, 0]}.
11. R computes y⊕x⊕vk, where y is the n-bit remaining string in {q[i]}, and applies

C1 to correct it to vk (presumably).
12. S and R calculate k from the coset vk + C2.

Fig. 1. BB84 protocol for n-bit key k, in modern conventions, with C1 used for
reconciliation and cosets of C2 used for privacy amplification.

3 Quantum Key Exchange

The relevant steps of the BB84 protocol, with eavesdropper, are sketched in
Fig. 1. While arbitrary hashing and privacy amplification techniques can be
used with the basic BB84 approach, we have illustrated the typical approach of
employing binary codes. More particularly, we follow the conventions of [ShPr01]
so that we can connect to related work.

It can be shown that an eavesdropper gains information only with O(2−k)
probability, or gains at most O(2−k) as measured by entropy, where k = k1 −k2.

3.1 Variants of BB84

In the original [BB84] protocol, R measured the photons before knowing the
proper bases; the mistaken bases were discarded. Since photons were difficult to
store without measuring, this made the theoretical protocol more feasible. As
discussed in [BBM92], however, if S and R simply try to establish EPR pairs,
the result is similar to having R postpone her measurements until S announces
the bases on the classical channel. Since S will wait until he has confirmed that
R has the particles, namely that Eve no longer has a chance to change what she
has forwarded, this is “okay.” [BBM92] suggest that such a protocol has security
equivalent to the original [BB84].

Further degrees of purification are possible. Note that the specific resulting
protocol depends on the particular reconciliation and amplification routines.

– (BB84) No entanglement or purification.
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– (BB84-EPR/Ekert) Use entangled qubits, then measure; no other purifica-
tion.

– (PQECC) Use entangled qubits; measure check subset; measure key; leave
other registers in superposition; (more details later).

– (BB84-Key) Purify completely according to [Ma96]; measure key.
– (BB84-Pur) Purify completely according to [Ma96].

Apart from PQECC, these variants turn out to be either binding, vacuous (non-
transmitting), or or unimplementable within the communication model.

The common instantiations of universal hashing and privacy amplification
[BBCM95,Ma93,BBR88] correspond to error correcting codes over GF(2). Al-
though any number of reconciliation protocols are available, let us expand and
simplify a natural path. S and R will statistically sample half the particles to
put a cap on how much interfering Eve did. As long as it is sub-threshold (say,
less than 1%), they continue. This means that (with exponentially-high proba-
bility) Eve has only measured a small fraction (say << 1/100) of the remaining
indices. (More precisely, she has applied a measurement/alteration with “small”
quantum entropy; it may affect any number of particles and in superposition.)

For single-bit messages, there are two canonical superpositions that S will
have sent, depending on whether k = 0 or k = 1:

φk = 1√
|C2|

∑
z∈P (k)

|z〉

where P (k) denotes all strings in the coset vk+C2 (with vk being a fixed member
corresponding to k).

For example, let BB-EPR-PAR(k) be the variant of BB84 in which P (m) con-
tains all k-bit strings whose parity is m. To alter a given word requires reversing
at least one bit.

4 Eavesdropping and Binding BB84

We now consider what happens when an eavesdropper listens in on BB84. Tak-
ing a cue from standards bodies, we let “must” indicate an apparent intuitive
requirement (not necessarily necessary), and let MUST indicate a requirement
that we do assert as factual.

The intuitive observation is that S and R “must” change a bit somewhere
in order to pretend to have sent the opposite cleartext. While this classical
reasoning is not justifiable in the quantum setting, it approaches the same final
conclusions.

Even though (S,R) face an unknown adversary, they MUST select a strategy
(DS , DR) in advance. Clearly, the actual computation can depend dynamically
on the results of the transmission. But there can be no argument: the encryp-
tion/denial programs (S,R,DS , DR) MUST be written down by a designer.

Let eavesdropper M(a, k) trade a qubit at position a:

|z〉S |00〉E |0k〉R → |z〉S |z(a)0〉E |z(a:0)〉R
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where z(a) indicates the ath bit in z, and z(a:0) indicates replacing bit a in z by
0. Like measuring a photon, this action disturbs the stream of bits, although it
does not give M information about the overall “key.” (Recall that the notation
was simplified by adjusting it after S announces the bases. When M acts, she
does not know the correct basis, and simply uses +. We now consider only those
paths in which S announced + at index a.)

Consider BB-EPR-PAR (parity-based) with odd k ≥ 3. Let Φ(E,m) be the
state obtained after sending bitm. There are a variety of equivocation transforms
U available to patch Φ(∅, 0) to Φ(∅, 1) against a passive eavesdropper. Some
simple ones are (cf. one-time pad) to negate all qubits; a given qubit; a random
qubit. Luckily, these are all local transforms, too. We take Uneg which negates
all qubits.

We now show this leads to catastrophe, as do other similar choices. Let
P (m; a, b) = {z ∈ P (m) | z(a) = b}, and let ρ(E,m) = TrHE,env

Φ(E,m).

ρ(M(a, k), 0) =
∑

P (0;a,0)

|z〉S |z〉R〈Z|R〈Z|S +
∑

P (0;a,1)

|z〉S |z(a:0)〉R〈Z(a:0)|R〈Z|S

ρ(M(a, k), 1) =
∑

P (1;a,0)

|z〉S |z〉R〈Z|R〈Z|S +
∑

P (1;a,1)

|z〉S |z(a:0)〉R〈Z(a:0)|R〈Z|S

Unegρ(M(a, k), 0)U†
neg=

∑
P (1;a,0)

|z̄〉S |z̄〉R〈Z̄|R〈Z̄|S+
∑

P (1;a,1)

|z̄〉S |z̄(a:1)〉R〈Z̄(a:1)|R〈Z̄|S

=
∑

P (1;a,0)

|z〉S |z(a:1)〉R〈Z(a:1)|R〈Z|S +
∑

P (1;a,1)

|z〉S |z〉R〈Z|R〈Z|S

There is clearly 0 fidelity between ρ(M(a, k), 1) and Unegρ(M(a, k), 0). A judge
simply calculates d = (⊕iz

S(i)) ⊕ (zR(k)). Even if the protocol designer opts
to use Uneg only some of the time, then against a passive adversary or against
M(a, k), equivocation is detected with probability at least 1/2 (again, in at least
1/2 of all paths). By inspection, the judge is both safe and binding.

If the protocol designer uses “Uneg,p”, in which qubit at location p is negated,
then M(p, k) (versus passive) presents a problem. If “Uneg,r” is used, in which a
randomly selected qubit is negated, then M(1, k) leads to (1− 1/k) fidelity. This
is better for S and R, but still binding.
Observations. We avoided constructing a single eavesdropper who randomly
chooses to be passive or to invade. Other objections aside, this could pose the
risk of enabling an equivocation strategy (insofar as E’s program were to become
public), as mentioned earlier (§6.1). This is a subtle but important issue that
differentiates classical cryptography from quantum.

It is straightforward to imagine extensions to BB84 that apparently provide
perilous deniability. For instance, by lengthening the “ciphertext” to contain κ2C

bits, arranging equivocation could be as simple as changing a “small” (1/κC)
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fraction of bits. For each fixed C, there remains a non-negligible chance to get
caught (hence perilous and still weakly binding). But even this weak goal is much
harder to prove in the quantum setting than initial intuition suggests, since Eve
can spread her eavesdropping among many bits, not just focus on a particular
small subset. Space does not permit a full analysis here.

5 Mayers’ Theorem

Mayers takes great care to state the model precisely, and we follow his descrip-
tions [Ma96].

5.1 Defining Bit Commitment

In a bit commitment protocol, Alice encodes her input bit b into a state |ψb〉
of HA ⊗ HB ⊗ Henv, using an initial protocol, commit(b). A second protocol,
unveil(|ψb〉), is used to give Bob b or a “refusal” string ⊥.

Alice has the power to choose p(b | not ⊥) by behaving honestly. The goal of
the commit protocol is to prevent her from subsequently changing p(b | not ⊥)
even if she was dishonest. Let unveil’ denote running unveil with possibly dis-
honest A. A state |ψ〉 is perfectly committing if every attack unveil’ either returns
⊥ with probability 1 or returns b with probability p′(b | not ⊥) = p(b | not ⊥).

Bob may attempt to gain b prematurely. Let ηB be Bob’s classical information
fromHenv∩B , as the state is collapsed into |ψb,η〉 ofHA⊗HB⊗Henv. The reduced
density matrix of Bob given η is:

ρB(|ψb,η〉) = TrHenv∩A
(|ψb,η〉〈ψb,η|).

If b is fixed by η, we let F (η) = 0. Otherwise, we let F (η) be the fidelity
between ρB(|ψ0,η〉) and ρB(|ψ1,η〉). (The fidelity F (α, β) is the supremum of
| ψ†

αψβ | over all purifications ψα, ψβ of α, β. Note that F (α, β) = 1 only when
α = β.) A state is perfectly concealing if η is independent of b and the expected
value of F ′(η) is 1, where F ′ refers to executions with a possibly cheating Bob.

A commitment protocol is perfectly secure if it is both perfectly committing
and perfectly concealing. One can replace “perfect” by a tolerance of ε (or ε(k)
for some security parameter k) in the preceding definitions.

5.2 Previous Work: No Bit Commitment

Mayers’ Theorem states that quantum bit commitment is impossible:

Theorem 1. [Mayers’ Theorem, or No-Commitment] No properly initial-
ized quantum bit commitment protocol is unconditionally secure.

The proof is based on what we call an equivocation strategy that allows A to
change the bit even after protocol commit. We sketch some of the ideas here.

Consider a properly initialized quantum bit commitment protocol. Let dis-
honest A′ refrain from making measurements. Mayers shows that there is a
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purification |ψ01〉 of ρB(|ψ′
0,η〉) such that 〈ψ01 | ψ′

1,η〉 ≥ F ′(η). Moreover, there
is a unitary transformation U = UA ⊗ 1 mapping |ψ′

0,η〉 → |ψ01〉.
Because an ε-concealing protocol must have fidelity F (η) ≥ 1−ε, this implies

an equivocation strategy for A′. If she wishes to set b = 0, she makes the mea-
surements required of A and continues with unveil. To set b = 1, she applies U ,
performs the measurements required of A in commit, and continues with unveil.
The result is that Bob accepts this unveiling with probability approaching 1.

We refer to this strategy as Mayers Equivocation. Unfortunately, there is an
intuitive but incorrect way to paraphrase the theorem, which goes something
like this:

Claim 2 [NoGo Folk “Theorem”] In any quantum protocol, whenever
F (ρB(|ψ0,η〉), ρB(|ψ1,η〉) ≈ 1, then Alice can equivocate successfully with proba-
bility ≈ 1. (to be disproved)

6 Limitations on Applying No-Commitment

The No-Commitment theorem is obtained through two methods: (1) abstaining
from private measurement, followed by (2) applying a unitary transformation to
change |ψ0〉 to |ψ1〉.

There are several aspects of the model and the result that make it insufficient
to apply automatically to QKE. These include the quantifiers, colocation, and
the impact of generic abstinence from measurement.

6.1 Quantifier Problems

Mayers’ result essentially says, (∀B)(∃UA(B)) such that a cheating committer
A can employ UA(B) to equivocate. The strategy can depend on B’s program,
which is acceptable because the honest programs for A and B must be declared.
Naturally, the cheating programs need not be disclosed, but to disprove security,
it suffices to show that no honest program is protected.

Likewise, it is hard to imagine an encryption protocol in which S and R are
allowed to know what E’s program is. Their attempts to communicate, and to
deny, must be successful even without being given details of E’s program. (There
may be some dynamic deductions to make about E based on her behavior,
but this is vastly different than knowing her full program.) A quantification,
“(∀E)(∃S,R) such that S and R successfully communicate,” is insufficient.

Yet the natural generalization of Mayers’ result to QKE is precisely back-
wards. S and R are not given E’s program and then allowed to equivocate.

The “folk no-commit theorem” fails to hold: an arbitrary E does indeed gain
no information, and indeed there mathematically exists a Mayers equivocating
transform on the joint (S,R) state, but S and R have no way to determine what
it is, since E is arbitrary and inaccessible. Further problems occur; see below.
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6.2 Colocation

To equivocate a one-time pad, one merely needs to reverse a bit. This can be
done individually and locally by S and R, without communication (apart from
knowing they must equivocate).

The direct application of No-Commitment treats (S,R) as the committer,
who, for any trustee/eavesdropper, has an equivocation transformation U . (For-
get about the order of quantifiers.) There is no mathematical guarantee that U
can be factored into local transforms US and UR. Therefore, the (nevertheless
correct) proof given in [Ma96] does not provide sufficient grounds to apply to
QKE. There may indeed be local strategies for S and R for particular QKE
protocols, but they are not implied directly by [Ma96].

If S and R need to communicate or be co-located in order to equivocate, the
deniability property is weakened. A vote-coercing Mafioso simply interrogates
them separately. While deniability that requires colocation may be better than
nothing, it is not always sufficient.

6.3 Abstinence Makes the Bit Grow Weaker

An extremely critical (and clever) aspect of Mayers’ approach is the demand
that parties refrain from making internal measurements. This gives them the
flexibility to equivocate later.

In bit commitment, abstaining seems to have no obvious impact. There is no
particular reason why A should do any measurements. She already knows her
bit and doesn’t stand to discover anything much.

But [BB84] specifically requires measurements to be peformed, both to check
how invasive E is and to discern what the message is. In the full protocol pu-
rification, BB84-Pur, R cannot receive the cleartext privately. Depending on
interpretation, either no measurement is made at all, or the only actionable
information is whatever was transmitted over the clear classic channel.

In the BB84-Key variant, close inspection reveals that the previously clas-
sical channel is now used to send check-information as qubits to R. But this
presupposes the end result: a secure quantum channel. Thus BB84-Key is not
implementable within the rules of the model.

Even the limited purification to BB84-EPR/Ekert does not buy anything.
An attack similar to the one against BB84 in §4 will work against entanglement
purification of a tainted EPR source.

7 PQECC: Deniable QKE

We now propose a protocol to achieve deniability, although it requires a quan-
tum computer. Normally, quantum error-correcting codes are useful to protect
against decoherence. Typically, a syndrome is measured and then used to restore
the original state. We applied QECC in an unusual twist: we avoid measuring the
relative syndrome. Instead, a postulated quantum computer applies the QECC
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PQECC
1. S constructs duplicate registers (K, B, Π, Y, V, W ) with respective lengths k, 2n,
2n log 2n, n, n, n, in superposition

∑ |K′, B′, Π ′, Y ′, V ′, W ′〉|K, B, Π, Y, V, W 〉,
(except W ′ = W = |0n〉). All computations are quantum (except explicit mea-
surements later), including error correction.

2. S quantum-computes the Y -selected ECC representation of K and places it in
W , leaving K = |0n〉.

3. S applies interleaving Π against the 2n qubits in (V, W ), leaving Π = |02n log 2n〉.
4. Let T be the joint 2n-qubit register (V, W ). S applies Hadamards based on B
to corresponding qubits in T .

5. S sends T to E.
6. E attacks T via operator UE .
7. R receives the manipulated T register and reports receipt.
8. S measures (b, π, v, y)← (B, Π, V ′, Y ′) and announces them.
9. R applies Hadamards to T according to b, then applies π−1 to T . Consider T
again as registers (V, W ).

10. R measures register V and aborts if there are any (or more than a threshold t)
mismatches with v.

11. R sets new register E to |0n〉 and applies error correction (using y) to (W, E).
12. S measures key kS ← K′ and R measures key kR ←W . Encryption is as a OTP:

ciph← kS ⊕m, mrcv ← ciph⊕ kR.

Fig. 2. PQECC protocol for n-bit key k, rewritten to be compatible with modern
conventions. The ECC steps are quantum-level calculations for the random hashing
and error correction in BB84 et seq.

without measuring the relative syndrome at all. The goal is to purify the BB84
protocol as much and as carefully as possible. Only the most necessary measure-
ments are actually performed. (Note that the key/message is emphatically not
the only register that is measured.)

This purified QECC, or PQECC protocol, is the basis for establishing denia-
bility. Although it was investigated several years ago [Be96d], it is closely related
by convergent evolution to the “modified Lo-Chau” and “QKD-CSS” protocols
[ShPr01], discussed below. We have tried to present it in a form that illustrates
its connections to those protocols.

First, we comment on the registers and computations. The B and Π registers
correspond to random axis choices and random interleaving of key bits with
check bits. (Π can certainly be a permutation, as suggested by [ShPr01]. The
random hashing and amplification in BB84 is purified to a random ECC selected
by Y (corresponding to the (x, z) choice in [ShPr01]). The decoding procedure
decouples the signal (W ) from the noise (E).

7.1 Related Protocols

Two related protocols, called QKD-CSS and “modified Lo-Chau,” appeared sub-
sequent to the first consideration of PQECC as the maximal effective protocol
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purification of BB84 [Be96d]. If one imagines a hierarchy of protocol classes de-
pending on purification and/or specific error-correction codes, PQECC is more
or less subsumed by “modified Lo-Chau” while it more or less subsumes QKD-
CSS.

The motivation for PQECC was to obtain deniability, while the motivation
for Lo-Chau and QKD-CSS was to find a proof of privacy for any kind of QKE,
and especially QKE without quantum computation. Hindsight shows that this
independent convergence to similar protocols is natural given the drive to use
protocol purification as (1) a tool for proving privacy and (2) a tool for achieving
deniability.

7.2 Privacy and Deniability

Recently, simplified proofs of privacy have appeared for BB84 [LC99, GoPr00,
ShPr01]. There are two important ingredients that concern us.

It is useful to try to establish the secret key as a sequence of k ebits shared
by S and R, namely Φ = β⊗k

00 , starting with a noisy pair of n-bit registers in
state ρ. Let ρ′ describe the state of the k-bit key registers after the full protocol.
Lo and Chau’s approach employs a result shown by Gottesman and Preskill:

〈β⊗k
00 |ρ′|β⊗k

00 〉 ≥ Tr(Πρ),

where Π projects onto Bell states differing from β⊗n
00 by at most t bit-flip errors

(applications of Pauli X) and at most t phase-flip errors (applications of Pauli
Z). Indirectly argued, the sampling test gives an accurate bound on Tr(Πρ),
ultimately implying that the fidelity between ρ′ and β⊗k

00 is exponentially close
to 1. This demonstrates privacy for the Lo-Chau protocol, although a quantum
computer is necessary.

In a second stage, Shor and Preskill apply this to a protocol (QKD-CSS) that
uses CSS codes. By then instructing S and R to perform measurements sooner
rather than later, the QKD-CSS protocol “reduces to” BB84, and the requisite
quantum computer can be avoided without introducing any information leak
to Eve.

For deniability, the first ingredient is essential. It ultimately allows us to
conclude that Eve is entangled negligibly with K ′ (and instead overwhelmingly
with register E) in protocol PQECC. This means that the simple OTP denial
strategy is overwhelmingly effective: pretend k′ = k⊕m0⊕m1. Without sufficient
space for proof, we merely assert:
Claim. PQECC is a deniable quantum cryptosystem.

This analysis should also extend to other cryptosystems such as the “modified
Lo-Chau” protocol.

8 Conclusions

The BB84 protocol is weakly binding on S and R. Despite the reaction of some,
Mayers’ no-commit theorem [Ma96] does not suffice to turn BB84 into a deni-
able QKE. There are formal improprieties with quantifiers, insufficient support
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for equivocation without co-location, conflicts between measurement abstinence
and correct or allowable transmission, and counterintuitive adversarial binding
arguments. (None of this impugns the correct work on bit commitment.)

This paper seeks to make practitioners aware of the incomplete analysis of
QKE, despite claims of “perfect, unconditional security.” An off-the-shelf optic-
fiber-based QKE might enable a private electronic vote but it will support coer-
cion and vote-selling.

Using protocol purification in a refined manner can provide a deniable QKE,
in the form of the PQECC protocol, but a quantum computer is required. But
there remains a great deal of turbidity in current quantum “security reductions.”
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