
STG: A Symbolic Test Generation Tool

Duncan Clarke1, Thierry Jéron2, Vlad Rusu2, and Elena Zinovieva2

1 University of South Carolina,
Columbia, South Carolina, USA

2 IRISA/INRIA Rennes,
Campus de Beaulieu, Rennes, France

dclarke@cse.sc.edu, {jeron|rusu|lenaz}@irisa.fr

Abstract. We report on a tool we have developed that implements con-
formance testing techniques to automatically derive symbolic tests cases
from formal operational specifications. We demonstrate the application
of the techniques and tools on a simple example and present case studies
for the CEPS (Common Electronic Purse Specification) and for the file
system of the 3GPP (Third Generation Partnership Project) card.

1 Introduction

The work that we present is an attempt to leverage the ideas underlying protocol
conformance testing [9] and high-efficiency test generation as embodied in the
TGV [6] and TorX [2] tools, to automate the generation of tests for smart-
card applications. Most existing test generation tools perform their analysis by
enumerating the specification’s state space. This leads to two problems: (1) state-
space explosion, as the variables in the specification are instantiated with all
of their possible values, and (2) tests that are not readily understandable by
humans. To avoid these problems we introduce symbolic generation techniques.

2 STG: The Symbolic Test Generation Tool

Based on the theory of symbolic test generation presented in [8] we have created
the STG tool that implements the process illustrated in Fig.1. The system at the
user level is described in NTIF a high-level, LOTOS-like language developed by
the VASY team, INRIA Rhône-Alpes. The STG tool for symbolic test generation
uses IOSTS (Input Output Symbolic Transition Systems) [8] as an internal model
for reactive systems. To obtain such a model, the system written in NTIF is
automatically translated into IOSTS (cf. Fig.1 above the dashed box).

Currently the STG tool supports two processes (cf. Fig.1), which are briefly
described below.

Symbolic test generation. The process of symbolic test generation takes a speci-
fication of the system together with a test purpose and produces a symbolic test

J.-P. Katoen and P. Stevens (Eds.): TACAS 2002, LNCS 2280, pp. 470–475, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

STG: A Symbolic Test Generation Tool 471

STG

Translation

Test Purpose

to IOSTS

Specification Test Purpose

Test Case

Specification
NTIF NTIF

C++
Test Case

Object
C++

Pass, Fail, Inconclusive
Test Result:

Translation

Symbolic
Test Generation

IOSTSIOSTS

IOSTS

to C++

Fig. 1. Symbolic Test Generation Process

case, which is a reactive program covering all the behaviors of the specification
that are targeted by the test purpose. A detailed description of symbolic test
generation and its properties can be found in [8].

IOSTS to C++. To obtain an executable test, the abstract, symbolic test case
obtained after symbolic test generation is translated into a concrete test program
capable of interacting with an implementation interface-compatible with the
original specification. The test program is then ready to be compiled and linked
with the implementation for test execution. The results of a test execution are
“Pass”, which means no errors were detected and the test purpose was satisfied,
“Inconclusive” - no errors were detected but the test purpose was not satisfied, or
“Fail” - an error was detected. Here, “error” means a non-conformance between
the implementation and the specification. The conformance relation is defined
in [9,8]

We illustrate the symbolic test generation process on a simple example.

The specification. Fig.2 presents the IOSTS specification of a coffee machine. As
shown in the figure, the IOSTS is made up of control states called locations and
of transitions between locations that describe either input, output, or internal
actions and manipulate symbolic data. A transition can be fired if its guard is
true, then executes its action and performs assignments that set its variables to
new values
The machine starts in the Begin location with the initial condition pPrice > 0,
that is, the price of any beverage dispensed by the machine is strictly posi-
tive. Then, the machine moves to the Idle location by initializing the vPaid
variable, which memorizes the amount already paid. Next, the machine ex-
pects a coin, denoted by the Coin? input action that carries in mCoinValue the
value of the inserted coin, and the variable vPaid is increased by mCoinValue
and the machine moves to the Pay location. If the payment is not enough

472 D. Clarke et al.

(pPrice > 0)

tau
vPaid:=0

(mCoinValue > 0)
Coin ? (mCoinValue)

vPaid:= vPaid + mCoinValue

Cancel ?

(mRemaningValue = vPaid)
Return ! (mRemaningValue)

((vPaid < pPrice) and (mRemaningValue = pPrice - vPaid))
Return ! (mRemaningValue)

((vPaid >= pPrice) and (mRemaningValue = vPaid - pPrice))
Return ! (mRemaningValue)

vPaid:=pPrice

ChooseBeverage ? (mBeverage)
vBeverage:=mBeverageCancel ?

(vBeverage = mBeverage)
Deliver ! (mBeverage)

Start

Begin

Idle

Pay

Choose

Return Delivery

Fig. 2. Example of IOSTS: a Coffee Machine

i.e., vPaid < pPrice, the machine moves back to the Idle location and returns
(through the Return!(mRemaningValue) output action) the difference between
the paid amount and the cost of beverage, i.e. pPrice − vPaid. Otherwise, the
machine moves to the Choose location and returns in mRemaningValue the dif-
ference between vPaid and pPrice. In the Choose location, the machine waits for
the choice of the beverage (tea or coffee), then delivers the beverage, and moves
back to the Begin location. Note that in locations Idle and Choose, the Cancel
button can be pressed, in which case the machine returns the amount already
paid and moves back to the initial location.

The test purpose. Fig.3 presents one possible test purpose for the coffee machine,
which describes behaviors where the machine delivers coffee and the user does
not introduce coins more than once and does not cancel. An accepted behavior
is indicated by arrival at location Accept. The test purpose rejects behaviors
that correspond to delivery of tea to the user, or pressing the Cancel button, or
inserting more than one coin. Note that rejected behaviors are not necessarily
erroneous, they are just behaviors that are not targeted by the test purpose.

(mBev = COFFEE)
Deliver ! (mBev)

(mBev = TEA)
ChooseBeverage ? (mBev) Cancel ? (vPaid < pPrice)

Return ! (mRemVal)

Start

Begin

Accept Reject

Fig. 3. Test Purpose

STG: A Symbolic Test Generation Tool 473

The test case. Fig.4 presents the IOSTS test case automatically generated by
STG which covers all the behaviors of the specification (cf. Fig.2) that are tar-
geted by the test purpose of (cf. Fig.3). Note that the test case is limited to the
behaviors targeted by the test purpose: it accepts only one payment and does
not exercise pressing the cancel button or require delivery of tea (cf. Fig.4).

(pPrice > 0)

((vPaid < pPrice) and (mRemaningValue = pPrice - vPaid))
Return ? (mRemaningValue)

((vPaid >= pPrice) and (mRemaningValue = vPaid - pPrice))
Return ? (mRemaningValue)

vPaid:=pPrice

not (mBeverage = TEA)
ChooseBeverage ! (mBeverage)

vBeverage:=mBeverage

((vBeverage = mBeverage) and (mBeverage = COFFEE))
Deliver ? (mBeverage)

((vBeverage = mBeverage) and not (mBeverage = COFFEE))
Deliver ? (mBeverage)

(mCoinValue > 0)
Coin ! (mCoinValue)

 vPaid:=(0 + mCoinValue)

<Start,Start>:L2P

<Begin,Begin>

<Pay,Begin>

Inconclusive <Choose,Begin>

Inconclusive

<Delivery,Begin>

Pass

Fig. 4. Test Case

Test case execution. The test case is now ready to be translated to C++ and to
be linked and executed on an implementation under test. For example, suppose
the implementation has a method as shown in Fig.5, which corresponds to the
ChooseBeverage! output in the test case (cf. Fig.4). The returning value of this
function corresponds to the Deliver? input. Then, the delivery of tea after the
coffee request (cf. Fig.5: lines 4, 5) denotes such a non-conformance [9,8], i.e. a
difference between the implementation and the specification. As a consequence,
by execution the test case on such an implementation we get a “Fail” verdict.

STG uses OMEGA [7] to detect unsatisfiable guards for simplifying the test
cases, and dotty [5], a tool for drawing graphs to view IOSTS in graphical form.
Figures 2, 3, 4 were produced by dotty.

3 Case Studies

The STG tool was applied for testing simple versions of the CEPS (Common
Electronic Purse Specification) [3] and of the file system of the 3GPP (Third
Generation Partnership Project) card [1].

474 D. Clarke et al.

...
1. BeverageType ChooseBeverage(BeverageType mBeverage){
2. cerr << "ChooseBeverage(";
3. if(mBeverage == COFFEE){
4. cerr << ”TEA)”;
5. return TEA;
6. }
7. if(mBeverage == TEA){
8. cerr << "TEA)";
9. return TEA;
10. }
11. }
...

Fig. 5. Implementation of the “ChooseBeverage” Function

The CEPS is a standard for creating inter-operable multi-currency smart card
e-purse systems. The specification of the CEPS, which is presented as an IOSTS
model, has about 100 transitions and 40 variables of various types, including
structured types built with records and arrays. The feature that we generate
tests for is the “CEP Inquiry - Slot Information” specified in Section 8.7.1 of the
CEPS technical specifications [3]. It provides a means for iterating through the
slots, where each slot corresponds to one currency and its respective balance.
The paper [4] presents our results of this experiment.

The 3GPP card is a multi-applications microprocessor smart card. We gener-
ate tests for the file system of the card, which is organized as follows: it has
one master file (a root of the system) which contains dedicated (directory files),
application dedicated (special directory files for the applications), and different
kinds of elementary files where data are organized either as a sequence of bytes
or a set of records. The current specification of the file system for the 3GPP
card allows to create files on the card, to search a record in the files, and to
get a response from the card after the search is performed. The specification
has been written in the NTIF language, and automatically translated into the
IOSTS model, which has about 100 transitions, 50 locations, and 30 variables of
various types, including structured types built with records and arrays.

Using STG we automatically generate executable test cases for these sys-
tems. The test cases are executed on implementations of the systems, including
mutants. Various errors in the source code of the mutants were detected.

4 Summary

This paper has presented a tool that automates the derivation of test cases in
order to check conformance of an implementation with respect to the behaviors

STG: A Symbolic Test Generation Tool 475

of a specification targeted by test purposes; and determines whether the results
of the test execution are correct with respect to the specification. It performs
test derivation as a symbolic process, up to and including the generation of
test program source code. The reason to use symbolic techniques instead of
enumerative is that symbolic test generation produces (1) more general test
cases with parameters and variables which need to be instantiated only at the
test execution time, and (2) test cases that are more readable by humans.

We have presented a simple example that demonstrates the application of the
method and the tool to a software testing problem, and reported case studies
for the CEPS and for the file system of the 3GPP card.

References

1. 3GPP. Third Generation Partnership Project (http://www.3gpp.org).
2. A. Belinfante, J. Feenstra, R. de Vries, J. Tretmans, N. Goga, L. Feijs, and S. Mauw.
Formal test automation: a simple experiment. In International Workshop on the
Testing of Communication Systems (IWTCS’99), pages 179–196, 1999.

3. CEPSCO. Common Electronic Purse Specifications, Technical Specification
(http://www.cepsco.org), May 2000.

4. D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. Automated test and oracle gen-
eration for smart-card applications. In Proceedings of the International Conference
on Research in Smart Cards, volume 2140 of LNCS, pages 58–70, Cannes, France,
September 2001.

5. E. R. Gansner and S. C. North. An open graph visualization system and its applica-
tions to software engineering. Software: Practice and Experience, 30(11):1203–1233,
September 2000.

6. T. Jéron and P. Morel. Test generation derived from model-checking. In Computer
Aided Verification (CAV ’99), volume 1633 of LNCS, pages 108–122, 1999.

7. W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpiesman, and D. Wonnacott. The
Omega library interface guide. Available at
http://www.cs.umd.edu/projects/omega.

8. V. Rusu, L. du Bousquet, and T. Jéron. An approach to symbolic test generation.
In International Conference on Integrating Formal Methods, volume 1945 of LNCS,
pages 338–357, Dagstuhl, Germany, November 2000. Springer-Verlag.

9. J. Tretmans. A formal approach to conformance testing. In The 6th International
Workshop on Protocol Test Systems, number C-19 in IFIP Transactions, pages 257–
276, 1994.

	STG: A Symbolic Test Generation Tool
	Introduction
	STG: The Symbolic Test Generation Tool
	Case Studies
	Summary
	References

