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ABSTRACT 

A Shannon-theoretic cryptographic model is described in which the pur- 
pose of the cryptanalist is to find a set of M elements containing the solu- 
tion, rather than finding the solution itself. For h.l = 2 we introduce the 
notions of semientropy, semiequivocation and duplicity distance, which 
are counterparts to well-known notions met in the case M = 1. It is ar- 
gued that in some situation our model takes into account the semantical 
competence of the cryptanalist.(as opposed to his statistical competence) 
better than the usual model does. 

I. Introduction 

In Shannon-theoretic cryptography the clearmessage source is usually 
described as a stochastic process. In the literature results have appeared 
for substitution and transposition ciphers (cf e.g. /1/ to / 5 / )  which hold 
assuming that the message source has a well-defined statistical behaviour, 
for example that it is memoryless and stationary; the letter probabilities 
might be given, as in /1/ to /5/, or might be left unspecified. The latter 
point of view is called "universal" in non-secret coding theory, but we feel 
that this term is rather misleading in the context to follow (statisticians 
prefer the less ambitious term "robust"). In /6/ also the case of Markov 
sources is covered. 

Let us assume that the clearmessage is written in a natural language 
like English. Describing English as a Markov process with memory 3 is 
often considered to be reasonably adequate; actually, in non-secret cod- 
ing much coarser descriptions have brought forth considerable practical 
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success, starting with the Morse code of 1838. As a matter of fact, a 
natural language results from the superposition of comparatively simple 
frequency-type dependences and extremely complicated semantical de- 
pendences which can act even on a very large range. In principle, also this 
latter type of dependences can be captured in a single all-comprehensive 
statistical description: its intricacy, however, is far past the possibility of 
numerical assessments. 

In cryptography, unlike in non-secret coding, keeping only short- 
range frequency-type dependences does not seem to be a wise policy. 
Frequency-type descriptions are too optimistic, because they ignore the 
semantical competence of the cryptanalyst. This is the opposite of what 
one should do in cryptography, where, if need be, models have to be 
over-pessimistic, and not the other way round. 

In /6/ and / 5 /  this author has pointed out certain unpleasant "para- 
doxes" which result from assuming that the clearmessage source has a 
simple and well-defined statistical behaviour, like, say, niemoryless and 
stationary, or Markov with given memory. Certainly, no paradox arises 
in the case of results which are "universal" in the proper sense of this 
term. Take the perfection of the one-time pad (cf e.g. /8/), which holds 
true whatever the message statistics may be; no assumption is needed, 
not even ergodicity or stationarity. This result, covering even the most 
misterious long-range dependences, is perfectly sound and ready to be 
used. Unfortunately, accepting only results which have such universal 
validity is a very restrictive policy, indeed. 

Below we describe an alternative Shannon-theoretic model which 
takes inspiration from historical cryptanalytic practice. The idea is the 
following: a cryptanalyst would first use his frequency-type Statistical 
knowledge to curtail the number of possible solutions; when this num- 
ber is small, semantics gets the upper hand of frequency-type statistics, 
and he can find directly the solution without further bother. 111 other 
words, the purpose of the spy is not to find the solution by frequency- 
type arguments, but only to find a "small" set of possible solutions. In 
the following we shall fix an integer M and declare "smalY a set with 
M elements; actually in calculations we shall go so far as to take 111 = 2. 
Of course, this is quite arbitrary; however, our purpose here is to explore 
the quantitative variations in the new case M = 2 with respect to the 
classical case n/r = 1 to derive qualitative information for the more gen- 
eral situation M > 1. Observe that since we assume that the first part of 
the spy's job is statistical "strict0 sensu" we are justified in using those 
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neat descriptions for the behaviour of the message source which we have 
argued to be fishy in the case M = 1. 

Our approach leads us to define a new measure of equivocation, 
which we call semiequivocation. Key equivocation, say, represents the 
uncertainty of the spy who has intercepted the cryptogram and wants 
to identify the correct key (cf e.g. /8/); instead, key semiequivocation 
will represent the uncertainty of the spy who only wants to find a dou- 
bleton containing the correct key. Equivocation is a conditional entropy; 
its meaning is based on the fact that Shannon's entropy is an adequate 
measure of statistical uncertainty. Before introducing our new measure of 
semiequivocation, we shall have to introduce an (unconditional) new mea- 
sure of "semi-uncertainty", called sernientropy, which will be the counter- 
part to Shannon's entropy. This will be done in section 11, while section 
I11 is devoted to the notions of semiequivocation and duplicity distance, 
the latter being the counterpart to that of unicity distance (cf e.g. / 8 / ) ;  
an example is given. Section IV contains a final comment. 

We adopt the notation of /9/ for information-theoretic concepts; in 
particular, H ( X )  = H ( P )  is the entropy of the random variable (r.v.) 
X with probability distribution (p.d.), or probability vector, P = @I,  

p2 , .  . . , p ~ ) ,  while I ( X ;  Y )  = I (P ,  W )  is the mutual information between 
the r.v.'s X and Y ,  the probability distribution of this random couple 
being determined by the p.d. P of X and the stochastic matrix W 
which gives the conditional probabilities of Y given X; h(p)  is the hi- 
nary entropy function: h(p)  = H ( P )  with P = ( p ,  1 - p ) ;  D(P I &) is 
the informational divergence (cross-entropy) of P and Q, in this or- 
der. Logarithms are to any base greater than 1. The source alphabet 
is N = {ul , a2, . . . , a K }  , K 2 2; we s h d  write indifferently p i  or P(a;) .  

11. Semientropy 

Shannon's entropy is considered to be an adequate measure of statisti- 
cal uncertainty. There are several justifications, both "axiomatic" and 
"pragmatic", to this interpretation (cf e.g. /9/). The pragmatic point of 
view derives the meaning of entropy from coding theorems which, roughly 
speaking, state that H ( X )  = H ( P )  is the minimum (not necessarily in- 
teger) number of bits needed to reliably describe the outcome of r.v. X; 
these bits are "nearly" independent and equidistributed, so that each hi- 
nary digit contains almost exactly one binary bit of information (cf /9/); 
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(we suppose here that  the logs are to  the base 2). In our setting a '7re- 
liable description" of the outcome of X must be understood in a slacker 
sense. Actually, we are not interested in knowing the exact value of X, 
but rather in finding out a n  M-set to which this value belongs. We shall 
take inspiration from rate-distortion theory. Let us take a reproduction 
alphabet whose "letters" are the M-sets of primary letters (we assume 
M 5 K ) ;  let us consider a distortion measure d(a,y)  which is zero iff (if 
and only if) letter a belongs t o  set y (one may define d(a ,y )  = 1 other- 
wise, but this is irrelevant for zero distortions). We shall resort to R p ( O ) ,  
the rate-distortion function computed for distortion level 0, to measure 
the "reduced uncertainty" contained in X which is relevant to us. Of 
course, for M = 1 one re-finds Shannon's entropy; for M = 2, R p ( 0 )  will 
be called the semientropy of X ,  or of P ,  and denoted by S ( X )  = S ( P ) .  
In the following, unless otherwise specified, we assume M = 2. 

S ( P )  represents the minimum (not necessarily integer) number of 
bits (of D-its if logs to  the base D are used) needed to reliably describe 
the outcome of X, taking into account our reduced needs of fidelity with 
respect to the classical case A4 = 1. 

Definition 1. The  semientropy S ( X )  = S ( P )  of r.v. X with p.d. P is 
defined as 

Above the first minimum is taken with respect to stochastic matrices 
W such that W ( y  I a )  > 0 implies a E y, or d(a ,y )  = 0; the second with 
respect to a random couple X Y  with distribution given by P and W ,  
Ty as above. Corollary 2.3.7. in /9/ allows us to  give an alternative 
definition of S( P )  : 

Above Q = ((11, q z ,  . . . , QK) is a d.p. over the primary alphabet H. 
The theorem below gives an explicit formula for S ( P ) .  

Theorem 1. 
S ( P )  = H ( P )  - log2 if p* 5 3, 

S ( P )  = H ( P )  - h(p*)  if p a  2 $, 
p' being the largest probability in P .  
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Proof. The bound S ( P )  2 H ( P )  - log 2 follows from I ( X ;  Y )  = H ( X )  - 
H ( X  I Y )  = H ( P )  - H(X I Y )  because, given doubleton Y ,  X takes 
at most two values with positive probability, the two elements of Y .  
We explore the conditions for equality in that bound. The bound is 
attained when an admissible W exists such that P(u I y) = P(b I y) = f 
for any y = {a ,b}  such that  R(y) > 0 (the notation is self-explaning; R 
is the marginal distribution over the secondary alphabet). Therefore the 
criterion for having equality in the bound is W(y 1 u )  = a, a E y. 
Suppose R has been fmed over the set of couples. A W giving that  R 
exists iff, for each a: 

(non-negativity for W is ensured by non-negativity for P).  Therefore the 
lower bound is attained iff the system: 

has non-negative solutions R(y) (these sum to 1 as ensured by Cpi = 1: 
the sum of the first sides is 2 Cy R(y)). For p* > the system is clearly 
impossible. In the Appendix we prove that the system does admit of 
positive solutions for p' 5 i. Then S ( P )  = H ( P )  - log 2 for p* 5 i, 
S ( P )  > H ( P )  - log 2 for p* > 4. Fix letter a and use a test matrix W 
defined as follows (u # b):  

A computation shows that  in this case I ( P ,  bV) = H ( P )  - h(P(a) ) .  Then, 
for all i : S ( P )  5 H ( P )  - h ( p i ) .  Consider now the alternative defini- 
tion (1) of S ( P ) .  Without real restriction assume p l  = p'; we shall use 
the test distribution Q with components proportional to ( p * ,  1 - p', 
1 - p * ,  ..., 1 - p ' ) .  I f p ' ? f ,  o r p ' > l - p ' > o n e o b t a i n s a f t e r  a f e w  
calculations: 

Therefore, for p' 2 i: S ( P )  2 H ( P )  - h(p*) .  Combining the two in- 
equalities for S ( P )  one has S ( P )  = H ( P )  - h(p') for p' > +. QED 
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As a corollary to the theorem we soon obtain a list of properties of 
S ( P )  which vindicate its interpretation as an uncertainty measure to be 
used when the ”experimenter” does not care about the precise value taken 
by r.v. X ,  but is satisfied as soon as he knows a doubleton containing X: 

Corollary 1. 

i) S ( P )  is a concave function of P; 

ii) 0 5 S ( P )  5 log 5; S ( P )  = 0 iff P has at most two positive compo- 
nents; for K > 2: S ( P )  = log 4 iff P is uniform; 

iii) H ( P )  - log 2 5 S ( P )  5 H ( P ) ;  S ( P )  = H ( P )  - log 2 iff p* 5 3 (cf 
theorem 1); S ( P )  = H ( P )  iff H ( P )  = 0: that is iff X is determin- 
istic. 

The properties in i) and ii) are obvious counterparts to similar prop- 
erties of Shannon’s entropy H ( P ) ;  we stress that, as soon as there are at  
least three positive probability letters, S ( P )  is positive too. In iii) S ( P )  
and H ( P )  are compared; the inequality S ( P )  5 H ( P )  is always strict in 
the non-deterministic case. The difference H ( P )  - S ( P )  is largest when 
the uncertainty H ( P )  is ”large”, in the sense there is no single 77event” 
of ”high” probability. 

Remark. Observe that similar properties with M instead of 2 can be 
derived also in the general case 2 5 M 5 K directly from the definition 
of S ( P )  extended to the case M > 2 (take the secondary alphabet to 
be the set of M-sets of primary letters; in the alternative definition (1) 
one has to consider the sum of the M ,  and not of the two, most Q- 
probable letters). Property i) is a general property of the rate-distortion 
function for fixed distortion-level and follows from the (weak) concavity 
in P of I ( P , W )  (cf /9/); the left side of ii) is trivial; the right side can 
be obtained from representation (1) computing the maximum in P of the 
right side of (1) and interchanging the two extrema; the left side of iii) 
can be obtained generalizing the arguments given at the beginning of the 
proof of the theorem; the right side is trivial. We go back to the case 
M = 2. 

The concavity of S ( P )  is not strict, since S ( P )  = 0 for all P with 
at most two positive components. Theorem 2 below deepens property 
i). It turns out that there is more linearity than that brought about by 
the case S ( P )  = 0; therefore, from the point of view of concavity S ( P )  
and H ( P )  exhibit an important difference of behaviour (cf the discussion 
after corollary 2 below). 
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Theorem 2. Consider the closed segments of p.d.'s of the following form: 

i) [R,Q],  with R and Q deterministic, R # Q; 

ii) [R,Q], with ri = $ ) q i  = 1. 

S ( P )  is linear over all segments of this form and nowhere else. If P is a 
p.d. over a segment of type i) one has S ( P )  = 0; if P is a p.d. over a seg- 
ment of type ii) one has S ( P )  = 2(1  - pi)S(R) = 2(1 - p i ) [ H ( R )  - log 21. 

Proof. In the "inner region" maxp; 5 , S ( P )  is strictly concave, H ( P )  
being so. Let us go to the "outer region" maxpi 2 $ (the regions' fron- 
tiers overlap). The case i) when S ( P )  = 0 has already been disposed 
of. We go to  case ii) assuming K 2 3 else S ( P )  is identically zero. A 
p.d. P over [R, Q] has the form P = ( p l ,  e n ,  pr3,. . . , p K ) ,  fr 5 p l  I 1, 
e = 2(1 -PI), 0 5 e 5 1 (we have taken i = 1 without real restriction). 
A computation shows that: 

S ( P )  = H ( P )  - h(p1) = e [ H ( R )  - log21 = eS(R)  (3) 

Clearly, S ( P )  cannot be linear over a proper super-segment of [R,Q], 
else one would trespass into the inner region. We have still to prove that 
S ( P )  is linear only over segments i) and ii). Take R and Q distinct in 
the outer region. First assume that R and Q have their maximum in the 
same position, say the first. Then this is true also of the outer region 
point V = $ R  + $Q. Assume S ( P )  is linear over segment [R,Q]. Then 
S ( V )  can be computed in two ways (use linearity and (3)): 

1 1 
2 2 S ( V )  = -S(R)  + - S ( Q )  = (1 - T l ) S ( - I l )  + (1 - qr)S(Q) 

and 
S ( V )  = 2(1 - ?Jl)S(iq 

Above R,  Q, V are suitable p.d.'s over the region intersection with 
= g1 = ijl = I 2 .  By comparison, recalling that ~ 1 1  = + &Q: 

or: 

u H ( f i )  + (1 - a ) H ( Q )  = H ( c ) ,  with Q = 2--rl'ql 1-r 

(the denominator is not zero, because R and Q are distinct). Actually, 
= O R  + (1 - a)Q,  as a computation shows (convert the definition of V 
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into a n  equality for p7 R and a) .  It is enough to observe that H ( P )  is 
strictly concave to conclude = R = Q; then V ,  R and Q lie on one of the 
old segments. Assume now that R has its maximum in the first position, 
while Q in the  second, say. If r1 = q2 = 1 2 '  the open segment ]R,  &[ lies 
in the inner region, and there S ( P )  is strictly concave. If T I  > 3, say, 
there is a sub-segment of [R, Q] with positive length for whose points the 
first component is at least $. Taking into account this sub-segment, we 
go back to  the cases already dealt with. QED 

The figure shows some of the Linearity segments in the case K = 3; 
the dotted lines show the region intersection. 

III. Semiequivocation and dupl ic i ty  distance 

Below we deal with the case iW = 2; however. much of what follows can 
be extended to  the case of any M (cf the remark in section I1 ). 

So far we have defined a measure of unconditional "semi-uncertain- 
ty". Now we define a measure of conditional semi-uncertainty. Assume 
S C  is a finite random couple; for convenience S will he interpreted as 
the random key (also the random message would be a suitable interpre- 
tation) and C as the random cryptogram. For an observed cryptogram c. 
S(X I c;' = c), the unconditional semientropy of the conditional distribu- 
tion of S given C = c, is well-defined unless c has zero probability. We 
set: 
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Definitzon 2. The semiequivocation of r.v. X given r.v. C is 

S ( X  I C) = x P r o b { C  = c} S ( X  I C = c ) ,  

the sum being extended to all c's of positive probability. 

can be defined in a similar way. 

rives properties for the semiequivocation S ( X  1 G) (use corollary 1): 

Corollary 2. 

Recall that the usual equivocation (conditional entropy) H ( X  I C) 

From the properties of the semientropies S(X  I C = c)  one soon de- 

j )  S ( X  1 C) 5 S ( X ) ;  if X and C are independent S ( X  I C) = S ( X ) ;  

jj) o 5 S ( X  I C )  5 log C; S ( X  I C )  = o iff for any cryptogram of posi- 
tive probability there are at most two keys with positive conditional 
probability; for IC > 2: S ( X  1 C )  = Eog5 iff for any such cryptogram 
the conditional probability of the random key is uniform. 

The inequality in j), which is an essential requirement for any mea- 
sure of conditional uncertainty, follows from concavity; note that the in- 
dependence of X and C is not a necessary condition to have S ( X  I C)= 
S ( X ) :  actually S ( X  I C )  = S ( X )  iff the conditional distributions of X 
given the cryptograms c of positive probabilities lie all on the same lin- 
earity segment (use theorem 2), or if they coincide, that is if X and C 
are independent. This is at  variance with the case of the usual equiv- 
ocation H ( X  1 C), where independence is also a necessary condition to 
have H ( X  I G) = H ( X ) .  An explicit expression for S ( X  I C) follows (use 
theorem 1). 

Corollary 3. Set h * ( p )  = h(p)  if p 2 f ,  h*(p) = log 2 else. Then 

S(X I C )  = H ( X  I C )  + Prob{G = c }  h*(maxProh{X = z I C = c } )  
2 

the sum being extended to  all cryptograms c of positive probability and 
the max to all keys z. 

We can now consider two functions of the non-negative integer n. 
Below C, is the random cryptogram of length n made up of the first n 
random outputs of the cryptogram letter source. We use the equivocation 
function e ( n )  and define a semiequivocation function s(n): 

s(,n) = S ( X  1 C J ,  s(0) = S ( X ) .  
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It is known that e (n )  is non-increasing; using j )  one obtains a similar 
property for s ( n ) .  The corollary below lists also properties derived from 
corollary 1: 

Corol lary  4 .  The semiequivocation function s ( n )  is a non-negative non- 
increasing function of n. One has: 

e ( n )  - log2 5 s ( n )  5 e ( n ) ,  

with equality on the left iff there are no keys with a conditional probability 
exceeding 3, and equality on the right iff e (n )  = 0. 

Now we fix a "negligible" positive real number E . We use the u n i c -  
i t y  d i s tance  d l  and define a duplici ty  dis tance dz. The former is the 
least integer for which e(n) 5 E ,  the latter is the least integer for which 
s ( n )  5 E ;  if one or both of these integers do not exist, the corresponding 
distance is set equal to +m . As for their meaning, d l  and d2 represent 
the least number of cryptogram letters to be intercepted before the key 
equivocation, or the key semiequivocation, respectively, become negligi- 
ble. If d l  = +a, the cipher system with random key X and random 
cryptogram C, is called (simply) ideal, if d2 = +oo the cipher system is 
called doubly  ideal. (Note that different definitions of unicity distance 
and ideal ciphers are found in the literature; the notions to be captured, 
however, are similar). As s ( n )  5 e ( n ) ,  one has d2 5 d l .  In particular: 
any doubly ideal cipher is also simply ideal. The possibly void set of 
integers {n  : s ( n )  _< ~ , e ( n )  > E }  = {n : d2 _< n < d l }  is of relevance here: 
if the cryptogram length is in that set the cipher is unbreakable for a 
cryptanalyst who is devoid of "semantical competence" ( M  = l), but is 
breakable for a cryptanalyst whose "semantical competence" is M = 2. 

E x a m p l e .  Take a single-letter substitution cipher for a memoryless and 
stationary source (cf /1/ to /3 / ,  /6/ or / B / ) .  Assume that the cipher is 
complete (all t!  alphabet permutations are allowed to be used as keys, 
t being the number of distinct message letters in the message alphabet) 
and canonical (keys are equiprobable). Set: 

A = t l ! t z ! .  . . t,! 

where r is the number of distinct components in the message letter p.d., 
each appearing t l ,  t 2 , .  . . , tr times, respectively ( t l  + t 2  + . . . + t r  = t ) .  
One has 1 5 A 5 t ! ;  A = 1 when all the t letter probabilities are distinct, 
A = t! when the message letter p.d. is uniform. Then, for a suitable 
infinitesimal S(n): 

e (n)  = H ( X  I C,) = logA + E(n) 
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(cf /1/ where more information on the asymptotic behaviour of b(n) is 
given). This cipher has no asymptotic security for A = 1; in the sequel we 
assume that there are at  least two source letters with the same probability. 
Then, for each key z and each cryptogram c, Prob{X = 5 1 C, = c }  = 
Prob{X = 2 I C, = c} 5 3, 5 being .the alphabet permutation obtained 
from 2 by interchanging those two letters. Therefore (corollary 4): 

s (n> = e(n) - log 2 = log 4 + 6(n) 

In particular, for A = 2 (only two letters have the same probabil- 
ity) the cipher is simply ideal ( d l  = +m) and so cannot be broken how- 
ever long the intercepted cryptogram is; instead, d2 is finite (we assume 
E < log2) and so, a t  least for sufficiently long cryptograms, the cipher 
can be broken by a semantically equipped cryptanalyst. 

N. A final comment 

From the point of view of cryptographic applications our model based 
on the notions of semiequivocation and duplicity distance appears only 
as a mathematical abstraction: measuring the "semantical competence" 
of the cryptanalyst by an integer hi!, e.g. by M = 2, is certainly not a 
practical approach. On the other hand, in spite of all its drawbacks) the 
new model is more adequate than the classical one ( M  = 1)) when the 
statisticd description of the message source is not sufficiently robust so 
as to cover subtle and possibly long-range semaitical dependences. The 
weakness of a frequency-type description has already been emphasized 
by exibiting certain paradoxes which it brings about (cf /6/ and /7/). 
Our new model serves as a warning against the dangers of using "clean7' 
statistical message-source descriptions in crypt.ographic applications. 

Appendix.  We show that the system (2) has solutions when p' 5 4. We 
proceed by induction on K .  For K = 2 there is nothing to prove. For 
K = 3, H = { a ,  b, c } ,  the system is solved by R(a,  b) ,  R(a, c)  and R ( b ,  C) 

given by 

R(z,y) = P(.) + P ( y )  - P(.), zy. = abc,acb,bca 

Non-negativity holds since there is 110 single P-probability exceeding the 
sum of the other two (p' 5 f ;  we have writt.en R ( a , b )  etc. instead of 
R(b, b ) )  etc). 
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In the induction step from K - 1 to K we shall blend the two 
smallest-probability letters, c and d,  say; observe that, sinre K 2 4, 
P(c)  + P(d)  cannot exceed $. To improve readability we shall c o n h e  
ourselves to describing the step from 3 to 4: i t ,  will be transparent that  
the restriction is only in the notation. We shall be contented with solu- 
tions with R(c ,d )  = 0 and so the system to solve is: 

R ( a , b )  + R ( a , c )  + R ( a , d )  = 2P(a)  

R ( a ,  b) + R(b ,  c )  + R(b, d )  = 2P(b) 
R (a ,  c) + R(b, c) = 2P(c) 

R( a ,  d )  + R( 6, d )  = 2P( d )  

We blend c and d to form a super-letter e = {c ,d} ;  we set P(e )  = 
P(c)  + P(d) ,  R(z ,e)  = R ( z , c )  + R(z ,d ) ,  z = a , z  = b. The reduced 
system is as the one we have already solved for icI = 3, with e instead 
of c. We obtain a non-negative solution R(a ,  b ) ,  R(a,  e), R(b, e). Now we 
have to split R ( a , e )  and R(b,e)  as the sum of two non-negative terms, 
R(u,c) + R ( a , d )  and R(b,c)  + R ( b , d )  respectively, in such a way as to 
solve the unreduced system. As for the first two equations there (for the 
first I( - 2 equations in the generic induction step) any such non-negative 
splitting will do. As for the last two equations, a splitting as requested 
is feasible since we already know that one has 

[R(a ,  C) + R(b, c)] + [ R ( a ,  d )  + R(b, d ) ]  = 2[P(c) + P ( d ) ]  = 2P(e)  
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