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ABSTRACT 

A new concept of the substantial number of cryptographic keys (SNK) in key 
spaces is proposed and is applied to encryption designs. SNK is defined as the 
number of keys which is far from each other. It must be greater than 256, for 
instance, to have essentially the same number of keys in DES. This SNK condition 
restricts design parameters of encryption systems. In this paper, SNK is strictly 
defined in key spaces, followed by illustrations of SNK's in fundamental encryption 
algorithms and product ciphers. Then SNK is applied to the design of encryption 
systems to decide the design parameters. It is usefui for designing product cipher 
in particular. SNK should be considered as one of the criteria of encipherment 
strength. 

I .  INTRODUCTION 

In encryption designs, the technique of combining two or more fundamental en- 
cryption algorithms is very useful, because it produces a complicated encryption 
scheme and a lot of keys. The product of the numbers of keys in the fundamental 
encryption algorithms is usually regarded as the number of keys in the combined 
encryption scheme. Some product ciphers, however, do not have so many keys. 
In Fig.1, for example, the total number of keys in the product cipher of an n bit 
block substitution cipher and an n bit block transposition cipher is not substan- 
tially equal to n ! 2 " ! ,  but 2"!. This shows all encryption scheme inust have the 
property of key independence from each other. In other words, the deciphered 
message with a wrong key must be totally different from the original message. 
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There are two methods of designing encryption schemes to overcome the mu- 
tual dependence of keys. The first method is based on the key selection such that 
the keys to select are separated from each other in the key space, called ‘sphere 
packing cipher’. Na.kamura[l] showed this kind of seKsynchronizing stream cipher 
scheme using error correcting codes. The design of transposition ciphers using 
Reed-Solomon codes in [2] is also based on the same idea. 

The second method is based on the design scheme such that the probability 
of any key lying in the neighborhood of any other key is to be made as small as 
2-56, for instance. This method does not require special selection of keys as in the 
first method. Users can select any key in the key space. 

The second method leads to a new concept of the number of keys, Substantial 
Number of Keys (SNK). Roughly speaking, SNK is the number of keys which are 
different from each other in the sense that the close keys are regarded as one key. 
In this paper, the difference of two keys in the key space is defined precisely and 
SNK is discussed in this space. The design parameters of any encryption scheme 
are restricted by the condition that the encryption scheme should have enough 
SNK to avoid exhaustive key attacks. The sphere packing cipher is also reviewed 
from the point of SNK. The SNK should be considered as one of the criteria of 
encipherment strength. 

11. SUBSTANTIAL NUMBER OF KEYS (SNK) 

1. Definition of SNK 
A key space consists of a set of all keys, probabilities of selecting any key and 
differences between any two keys. The key set of transposition cipher, for example, 
contains all transpositions including the through one of input data. Let Qd(K) be 
the probability of selecting a key lying in the sphere of radius d from key K .  Then, 
the substantial number of keys, SN&,  regarding any two keys within difference 
d of each other as same, is defined as 

where A[ ] means the average with respect to the probability of selecting keys. 
This definition is justified by the following example: the total number N of stones 
is given by l / Q  when the probability of selecting any one stone from all stones is 
Q ,  because Q = 1 / N .  

Although the difference of two keys in the key space could be defined variously, 
this paper employs reversed-bits rate[l],  r (K1,  K 2 ) ,  to define it. 
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p(Kl,K2) = - - - - T(Kl,K2) 
2 2  l 1  

Here, M is any message, and EK( ), DK( ) are encryption and decryption with 
key K ,  respectively. Key K2 is not necessarily the corresponding decryption key 
of K1. Function h( , ) shows Hamming distance, and L( ) shows length. In the 
Eq.(2), A [  ] is the average when message M is randomly selected from the message 
space which contains all messages. Then, the difference p(Kl,K2) between two 
keys K1 and K2 is defined as 

. (3) 

The difference p is the reversed-bits rate T when T 5 1/2, or 1 - T when r > 1/2. 
In other words, it means the minimum difference between the reversed-bits rate 
and 0 or 1. The measure is useful especially for voice data. 

2. Examples of SNK 

This section illustrates SNK's of four block ciphers in Fig.2. In the figure, (a),(b) 
and (c) are examples of fundamental ciphers and (d) is an example of a product 
cipher. Every key is selected with equal probability. The integer n meam block 
length of ciphers. 

a) Exclusive-or cipher 

An exclusive-or cipher has vector P as a key. The key space is an n dimensional 
space which contains 2" keys in all. If the Hamming distance between the en- 
crypting key P1 and the decrypting key P2 is h,  the reversed-bits rate r is given 
by 

h 
n 

r = - .  (4) 

If P2 is a uniform random variable, the distance h is a binomial random variable. 
Then the probability of Q d  = A[Qd(Pl)] is 

+<d - h<dn 
r > l - d  h>(l-d)n 

Since binomial distribution is approximated by Gaussian: 

k k - np c (n) p'qn-' 21 1 - e7-f 
a 

i=O 

p + q = l  
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The probability Q d  is nearly equal to 

Qd N 2 erf ((1 - 2 d ) L ) .  (9) 

Therefore SNKd is 
1 

Figure 3 (a) shows the SNK curve of exclusive-or ciphers with respect to  n, 
where d is regarded as a parameter. The number k is a length of SNK: 

k = log, S N K .  (11) 

The data block length n should be more than 500, if S N K  > 256 and the 
reversed-bits rate lies between 0.3 and 0.7. 

b) Substitution cipher 

A substitution cipher of n-bit block is a permutation of n-bit patterns, hence the 
total number of keys is 2"!. Let Kl,K2 denote keys of encryption and decryption 
transformations, respectively, and D K , E K ~  be the composite transformation of 
the two transformations. The reversed-bits rate between any input bit to D K Z E K ~  
and any output bit from it is equal to that of between the MSB's (most significant 
bit) of the input and the output. Figure 4 illustrates an example of substitution 
ciphers when n = 3. When Hamming distance between column I1 (MSB in the 
input bits) and 01 (MSB in the output bits) is 2h, which is always even, the 
reversed-bits rate is 

2h 
N '  

r = -  

and the total number of substitution ciphers is given by: 

Therefore, a probability of T < d or T > 1 - d is 

4.. 
h<dM 

h > ( l - d ) M  
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where M = N / 2  = 2"-'. As the binomial distribution is approximated by 

the probability Qd is approximately equal to 

The equation (14) is the same as Eq.(9), if the integer n in Eq.(9) is replaced 
with 2". This means substitution ciphers might be exponentially stronger than 
exclusive-or ciphers. Hence, SNK of substitution ciphers is equal to: 

Figure 3 (b) shows the SNK curve of exclusive-or ciphers with respect to n, 
where d is regarded as a parameter. The data block length n should be more than 
8, if S N K  > 256 and the reversed-bits rate lie between 0.3 and 0.7. 

c) Transposition cipher 

There are n! transposition ciphers of n-bit block in all. Since an inverse of a 
transposition cipher and a composite transformation of two transposition ciphers 
are transposition ciphers, the transformation D K ~ E K I  is another transposition 
cipher. An example of D ~ z l . 3 ~ 1  is illustrated by Fig.5. In the figure, the integer 
h is the number of bits permutated actually in the product transposition. The 
reversed-bits rate of the product transposition cipher is 

h 1  
2n 2 

r = - < - .  

The total number of transposition ciphers whose h bits are actually permuted is 

The symbol Dh means 
h 

j = o  
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In other words, Dh is the number of transpositions (ul, u2,. . . , a h )  of (1,2, ..., h )  
such that a1 # 1, a2 # 2,. . . , Uh # h. When h is large enough, Dh is approximately 
equal to h!/e: 

Dh - - e-' 
h! 

(h  - m) . 

more than 2 When h > 5 ,  &/h! coincides with 
Y- < d is obtained by 

(18) 

digits. The probability of 

Though Dh is not equal to h!/e  if h is small, we can ignore it in Eq.(19), because 
then both (L) and Dh are much smaller than that of other terms and so is h!/e.  
Therefore, 

2 dn 

= F((1 - 2d)n, 1) , 

where F is Poisson distribution: 

Since Poisson distribution citn be approximated by Gaussian distribution, SNK is 
approximately 

SNKd M e L( 1 - 2d)nJ ! . (22) 

The symbol L.1 denotes the maximum integer not greater than 2. Figure 3 (c) 
shows the SNK curve of exclusive-or ciphers with respect to n, regarding d as a 
parameter. The data block length n should be more than 45, if S N K  > 256 and 
the reversed-bits rate lie between 0.3 and 0.7. 

d) Transposition & Exclusive-or ciphers 

The substantial number of keys in a product cipher of a transposition cipher and 
an exclusive-or cipher is calculated as an example of SNK in product ciphers. The 
product cipher has 2"n! keys in all. Although this product cipher is simple, it is 
rather important in radio transmission, for instance, because it is the general form 
with no error propagation[3]. That is, the decryption process does not expand 
errors occurred in transmission, and the cipher with no error propagation is only 
the transposition and exclusive-or product cipher. 

The composite transformation of the encryption with key K1 and the decryp- 
tion with key 11'2 is another transposition and exclusive-or transformation. Figure 



367 

6 shows an example of the product cipher L ) K ~ E K I .  In the figure, the reversed-bits 
rate is 

h 

( 2 3 )  
U f T  r=-. 
n 

The integer h is the number of actually permutated bits, and a is the number of 1's 
in P that are not permutated. The total number of transposition and exclusive- 
or ciphers which have h bits permutated actually and a bits of 1's in P as just 

Using Eq.(18), the total number equals to 

Z h  n! 
e (n  - h - a)! a! 

Hence, the probability of r < d or r > 1 - d is 

j - [ : e v e n  

1 
2e-' c fi 

I= ( 1 - 2 d)n 

Here, the second and third w hold because the terms corresponding with j = 2 
and 1 = (1 - 2 d ) n  are much larger than other terms. Therefore, SNK of the 
transposition and exclusive-or cipher is obtained by 

The length of SNK of the transposition and exclusive-or ciphers, JCTkE, is nearly 
equal to 

kT&E kT + (1 - 2d)n - 1, ( 2 6 )  
where kT indicates the length of SNK of the transposition cipher. This shows the 
SNK length of the transposition cipher increases owing to exclusive-or of bit pat- 
tern P. Figure 3 d) illustrates the SNK. The data block length of the transposition 
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and exclusive-or ciphers should be more than 37, when SNK is more than 256 and 
the reversed-bits rate lies between 0.3 and 0.7. 

111. BOUNDARY OF SNK 

The substantial number of keys are closely related with sphere packing. In this 
section, boundary of SNK is given with the number of spheres packed in key spaces. 
Though the difference defined by Eq.(3) does not necessarily constitute distance 
in key spaces, the key spaces are assumed to be metric spaces in this section. 
The differences in exclusive-or ciphers or nonlinear feedback shift register stream 
ciphers[l], for instance, are proved to be distance. 

Sphere packing is to pack as many spheres in thP key space as possible. The 
maximum number of spheres of diameter d, that is the number of keys of the 
sphere packing cipher Nd, is less than or equal to SNKd:  

This inequality may be considered as nearly equal. However, Nd is much larger 
than SNKd in general, because the radius of the sphere is d / 2 :  

Hence, SNKd is bounded by: 

IV . APPLICATION T O  ENCRYPTION DESIGN 

In encryption designs, both substantial number of keys SNK and difference d (or 
reversed-bits rate T) are given as design parameters. When S N K  = 256 and the 
reversed-bits rate is more than 0.3 and less than 0.7 ( d  = 0.3), for example, Fig.3 
shows the block size n should be 
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~ T & E  2 38. 

Under these SNK conditions, one can pick up any key in the key space as 
an encryption key. One does not have to select special keys. An arbitrary n-bit 
pattern P can be used as a key in the exclusive-or cipher. You don’t have to worry 
about an eavesdropper happening to pick up a decipher key close to the right key, 
because the probability is less than SNK-’ = 2-56. 

The sphere packing ciphers have to satisfy the SNK condition too. Though 
N d  is the number of keys of the ciphers, the condition N d  2 Z56 is not enough. 
The ciphers must also satisfy SNKd 2 256. Otherwise, the key picked up by an 
eavesdropper, which is not necessarily the key of this scheme, is close to the right 
key with probability greater than 2-56. This shows the condition Nd 2 256 is 
meaningless. Eq.(28) shows SNKd, not Nd, is critical. 

DES probably satisfies the SNK condition, because SNK of DES is much larger 
than 256. SNK of DES is approximately given by 2 e(217(1--2d)2)/7r using EQ.(15), 
if DES is treated as a huge substitution cipher. When DES is considered as a 
product cipher, SNK would be less than that, but much larger than 256 ,  though 
actual calculation is very complicated. 

The SNK condition is useful when one wishes to construct a rather simple 
encryption scheme by the combination of fundamental ciphers. 

V . CONCLUSION 

The substantial number of keys, SNK, is defined and illustrated with examples 
of fundamental ciphers and a product cipher, SNK is one of the encipherment 
strength criteria. In encryption designs, SNK is used to condition design parame- 
ters. The SNK is useful for designs of product cipher in particular. 

I would like to thank Mr. Nakamura and Ms. Tanaka for lots of helpful 
discussions. 
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Tr a n s p o s  i t i o n  Subs t i tu t i on 

F i g .  1 Product C i p h e r  

P 

n n n n 

(a> Excl us ive-or (b) Substitution 

P 

( c >  Transposition ( d )  Transposition & Exclusive-or 

Fig. 2 Examples of Cipher 
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l o g z  SNK 

1 d = 0 . 2  0 . 3  0 . 4  l o g z  SNK 

100 I d=O. 3 
d=O. 2 

00 
c 
0, a 
x 
z 
rn 

+n 500 1000 1500 ZOO0 2600 

Block Length 
(a> Exclusive-or 

l o g z  SNK 
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F i g . 3  Examples o f  SNK 
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Input 

0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
I 1 0  
1 1 1  

--------I-- 

Output 

1 0 1  
O i l  
1 1 0  
I l l  
0 0 1  
0 0 0  
I 0 0  

- 

----- 

- 0 1 0  

Fig. 4 Substitution Cipher 

D;* GI 

h = 3  

Fig. 5 Transposition Cipher 

G 2  E L  
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I p  
w -  

n - h  h 

T I E  ET&E 
K I  Fig.6 Product Cipher OK, 


