LINEAR RECURRING m-ARRAYS

Dongdai Lin, Mulan Liu
Institute of Systems Science, Academia Sinica
Beijing, 100080, China

ABSTRACT

In this paper, the properties, structures and translation equivalence relations of linear recurring m-arrays are systematically studied. The number of linear recurring m-arrays is given.

1. Intrduction

Reed and Steward [11], Spann [5] and [2] have studied the arrays of so-called perfact maps. This has ied co research on various types of window properties for arrays (see [2]-[11]).

In this paper, we make a systematic study of the linear recurring marrays of dimension 2. We characterize their structure, discuss their properties of translation - addition, pseudo-random and sampling. We also give the number of linear recurring m-arrays.

All the results in this paper are obtained over the finite field $G F(2)$. One can easily generalize the results to any finite field GF(q).
2. Basic concepts

Let $A=\left(a_{i j}\right){ }_{i \geqslant 0, j \geqslant 0}$ be an array. An mxn submatrix $A(i, j)=\left(a_{i j}\right) 0 \leqslant i<m, 0 \leqslant j<n$ of A is called an $m \times n$ window of A at (i, j). $\bar{A}(i, j)$ is the row vector (a_{t}) $0 \leqslant t<m n$ of dimension $m n$, where $a_{t}=a_{i+i}, j+j, i^{\prime}=t h e ~ i n t e g e r ~ p a r t ~[t / n]$ of t / n, and $j^{\prime}=(t / n)=t-n[t / n]$.

Definition 2.1: Let A be an array of period rxs. If all mxn windows in a period of A are exactly all non-zero mxn matrices over $G F(2)$, then we call A an menth order m-array of period rxs or ($r, s ; m, n$) m-array in short.

Corollary 2.1.1: There exists an ($r, s ; m, n$) m-array only if $r s=2^{m n}-1$.
Definition 2.2: Let $A=\left(a{ }_{i j}\right)_{i \geqslant 0, j \geqslant 0}$ be an array, mand nare two positive integers. If there exist two mnxmn matrices T_{h} and T_{V} as in (2.2) such that

$$
\begin{array}{ll}
\bar{A}(i, j) T_{h}=\bar{A}(i, j+1) \\
\bar{A}(i, j) T_{v}=\bar{A}(i+1, i) & \text { for all } i, j \geqslant 0
\end{array}
$$

and
where the entries at $\div s$ ' positions are elements in F_{2}, then we say A is an LR array of order mxn. The window $A(0,0)$ (or $\mathbb{A}(0,0)$) is called the initial state of A.

Definition 2.3: If an LR array of order $m \times n$ is also an marray of order mxn, then we call it an $L R$ m-array of order $m \times n$.

Definition 2.4: Let $A=\left(a_{i j}\right)_{i \geqslant 0, j \geqslant 0}, \bar{B}=\left(b_{i j}\right)_{i \geqslant 0, j \geqslant 0}$ be two periodic arrays. If there exist two non-negative integers p, q such that

$$
b_{i j}=a{ }_{i+p, j+q} \quad \text { for all } i \geqslant 0, j \geqslant 0
$$

then B is called (p, q)-translation of A, denoted by $B=A . q_{p}$.
Obviously, the translation relation is an equivalence relation.
Proposition 2.1: Given T_{h}, T_{v} as in (2.2), let $G\left(T_{h}, T_{v}\right)$ be the set of all LR arrays with linear recurring relations (2.1) and let $A, B \in G\left(T_{h}, I_{v}\right)$. Then

1) $A_{p, q} \in G\left(T_{h}, T_{v}\right)$ for any integers $p, q \geqslant 0$.
2) Define $1^{*} A=A, O * A=0$. Then $G\left(T_{h}, T_{v}\right)$ is a vector space over $G F(2)$.
3) If there exists one $I R$ m-array of order $m \times n$ in $G\left(T_{h}, T_{v}\right)$, then every one in $G\left(T_{h}, T_{v}\right)$ is an LR m-array of order mxn. Futhermore $T_{h} T_{v}=T_{v} T_{h}$ and T_{h}, T_{v} are non-degenerate.

Definition 2.5: we call an array A non-degenerate, : (2.1) holds for some nondegenerate matrices T_{n} and T_{v} as in (2.2).

Corollary 2.5.1: $\{$ non-degenerate LR array must be geriodic.
Since we are interested in studying LR m-arrays, fran now on, we always assume that T_{h}, T_{v} are non-degenerate and that they commute.

3. $\alpha \beta$-Array

 $j \geqslant 0$, where $\alpha, \beta \in G F(q), L$ is a linear function on $G F(q)$ over $G F(2)(G F(2) \subset G F(q))$.

In this section, re will mainly study linear recurfing relations of $\alpha \beta$-arrays and the necessary anc sufficient condition for an as-array to be an m-array. We will
also compute the number of equivalence classes of $\alpha \beta$-in-arrays.
Lemma 3.1: Let $r s=2^{m n}-1,(r, s)=1, o(2 \bmod r)=m\left(i . e\right.$. the order of 2 in \mathbb{Z}_{r} is m) or $\circ(2 \bmod s)=n$ and let $A=\left(a_{i j}\right)_{i \geqslant 0, j \geqslant 0}$, where $a_{i j}=L\left(\gamma^{i s+j r}\right)$ for alli>0, $j \geqslant 0$, L is a non-zero linear Eunction on $G F\left(2^{m h}\right)$ over $G F(2), \gamma$ is a primitive element of $G F\left(2^{m n}\right)$. Then A is an ($I, 5 ; m, n$) LR m-array.

Proof: See [13].
Let L be a non-zero function on the field $G F(q)$ over its prime field $G F(p)$. We define L^{*} to be an elementwise transformation between vectors or matrices over $G F(q)$ and those over $G F(p)$ respectively as follows

$$
\left(a_{t}\right) L^{*}=\left(L\left(a_{t}\right)\right) \text { and }\left(a_{i j}\right) L^{*}=\left(L\left(a_{i j}\right)\right)
$$

where (a_{t}) is a row or column vector over $G F(q)$ and ($a_{i j}$) is a finite or infinite matix over GF(q).

Proposition 2.2: Let $\alpha, \beta \in \operatorname{GF}\left(2^{m}\right), o(\alpha)=r, o(\beta)=s$. If $r s=2^{m}-1$ for some m and $(r, s)=1$, then there exists a primitive element γ of $G F\left(2^{m}\right)$ such that $\boldsymbol{\alpha}=\boldsymbol{\gamma}^{s}$ and $\boldsymbol{\beta}=\boldsymbol{\gamma}^{\boldsymbol{r}}$.

Theorem 3.3: Let $A=\left(\alpha^{i} \beta^{j}\right) L^{*}$ be an $\alpha \beta$-array, where L is a non-zero linear function on $F_{2}(\boldsymbol{\alpha}, \boldsymbol{\beta})$. Then A is a non-degenerate LR arrays. Furtermore, A is an ($r, s ; m, n$) m-array if and only if the following conditions are satisfied.

1) $o(\beta)=s, o(\alpha)=r$ and $r s=2^{m n}-1$.
2) $\left\{\beta^{i} \alpha^{j} \mid 0 \leqslant i<s, 0<j<r\right\}$ is the set of all non-zero elements of $G F\left(2^{m n}\right)$.
3) $\left\{\alpha^{i} \beta^{j}\{0 \leqslant i<m, 0 \leqslant j<\pi\}\right.$ is a basis of $\operatorname{GF}\left(2^{m n}\right)$ over $\operatorname{GF}(2)$.

In fact, A is an ($r, s ; m, n$) LR m-array.
Corollary 3.3.1: Let ras be the period of an $\alpha \beta$ - m -array. Then (r, s) $=1$.
Let $f(x)=x^{m}+\sum_{i=1}^{m} c_{i} x^{m-i}$ be a monic polynomial of degree m over $G F(2)$. Let $T=\left(d_{i j}\right)_{0 \leqslant i<m, 0 \leqslant j<n}$ be an mxn matrix over $G F(2)$ and $A=\left(a_{i j}\right){ }_{i \geqslant 0, j \geqslant 0}$ an arbitrary array. If

$$
\begin{array}{ll}
a_{I+m, j}=\sum_{i=1}^{m} c_{i}^{a} m+I-i, j \\
a_{I, J+n}=\sum^{3-1} \sum^{n-1} d, a & \text { for } a: 1 . I, J \geqslant 0 \tag{3.1}
\end{array}
$$

we say $A \in G(f, T)$.
Proposition 3.4: Suppose f, I as above. Then there exist T_{h}. T_{v}, such that $T_{h} T_{v}=T_{v} T_{h}, G\left(T_{h}, T_{v}\right)=G(E, T)$.

Proposition 3.5: Let f, T be as in prop. 3.4. If all non-zero arrays in $\mathrm{G}(\mathrm{f}, \mathrm{T})$ are m-array of orde $=m \times n$, then $f(x)$ must be irreducible.

Proposition 3.6: Let $A \in G(f, T)$ be an marray of order man and period rxs. Then $r=t h e$ period $p(E)$ oE $f(x)$ and $o(2 \bmod r)=m$.

Proposition $3.7:$ If $r s=2^{m n}-1$, then either $o(2 \bmod r)=m n$ or $o(2 \bmod s)=m n$.

Proposition 3.8: Let E, T be as in prop. 3.4, ail arrays in $G(f, T)$ be ($r, s ; m, n)$ m-arrays, $o(2 \bmod r)=m$ and α be a root of $f(x)$. Construct a polynomial $g(x)$ of degree n aver $\mathrm{F}_{2}(\boldsymbol{\alpha})=\mathrm{CF}\left(2^{\mathrm{m}}\right)$ as follows:

$$
g(x)=x^{n}+\sum_{t=0}^{n-1} \sum_{t^{\prime}=0}^{m-1} d_{t^{\prime}, t^{\prime}} \alpha^{t^{\prime}} x^{t}
$$

chen $g(x)$ is irreducible over $F_{2}(\alpha)$ and $p(g)=s$.
Theorem 3.9: Let $A=\left(L\left(\beta_{1}^{j} \alpha_{1}^{i}\right)\right)_{i \geqslant 0, j \geqslant 0}, B=\left(L\left(\beta_{2}^{j} \alpha_{2}^{i}\right)\right)_{i \geqslant 0, j \geqslant 0}$ be two $\alpha \beta-m$-arrays of period rxs. Then A and B are equivalent if and only if the following statements are satisfied.

1) α_{1} and α_{2} are conjugate over $G F(2)$.
2) if $\alpha_{1}=\alpha_{2}^{2^{i_{0}}}$ (for some i_{0}), then β_{1} and $\beta_{2}^{2^{i_{0}}}$ are conjugate over $F_{2}\left(\alpha_{1}\right)=F_{2}\left(\alpha_{2}\right)$.

Theorem 3.10: The number of equivalence classes of $\alpha \beta$-marrays of period rxs is $\phi(r s) / \log _{2}(r s+1)$, where ϕ is Euler function.
4. General LR m-Array

In this section, we discuss general L R m-arrays. The main results are about their structure, enumeration and the necessary and sufficient conditions for existence of arrays with given period rxs.

Proposition 4.1: Suppose $A \in G\left(T_{h}, T_{v}\right)$ is an ($r, s ; m, n$) LR m-array. Then $p\left(T_{h}\right)=s$, $p\left(T_{v}\right)=r$ and the order of any eigenvalue of $T_{h}\left(T_{v} r e s p.\right)$ is $s(r$ resp.).

Proposition 4.2; Suppose $A \in G\left(T_{h}, T_{v}\right)$ is an (r,s;m,n) LR m-array and $o(2$ mod $s)=m n$. Then

1) the characteristic polynomial of T_{h} is irreciucible, and both T_{h} and I_{v} are similar to a diagonal form under same transsormation.
2) the minimal polynomial $g(x)$ of T_{v} is irrecucible and $\operatorname{deg}(g(x))=m^{\prime}$ if o(2 mod r) $=m$?

Theorem 4.3(Existence): For given positive integers r and s, there exists an m-array with period rxs, if and only if ($r, s)=1$ and $r s=2^{m}-1$ (for some m).

Theorem 4.4(Stzucture): Any LR m-array must be an $\alpha \beta$-m-array.
Remark 4.5: By Prop. 3.2, we know that there is a primitive element \mathcal{Y} in $G F\left(2^{m n}\right)$ such that

$$
\begin{equation*}
A=\left(L\left(Y^{i s-j r}\right)\right)_{i \geqslant 0, j \geqslant 0} \tag{4.1}
\end{equation*}
$$

Therefore each LR m-array can be determined by a primitive element 9 and a linear function L. We denote A by $A_{r x s}(\gamma, L)$, where $r x s$ is the period of A. Obviousiy, for different linear functions, $A_{r \times s}(\gamma, L)$'s are equivaient.

Corollary 4.4.1: An ($r, s ; m, n$) LR m-array is also an ($r, s ; m, 1$) or ($r, s: 1, m n$) LR
m-array according which one of $o(2 \bmod r)$ and $o(2 \bmod s)$ is mn .
Corollary 4.4.2: The number of equivalence classes of $L R$ m-arrays of period rxs is $\phi(r s) / \log _{2}(r s+1)$.

Remark 4.6: By Prop. 3.9, it is easy to prove that, for any two conjugate primitive elements γ_{1} and γ_{2} of $G F\left(2^{m n}\right)$ with respect to $G F(2), A_{r x s}\left(\gamma_{1}, L\right)$ and $A_{r x s}\left(\gamma_{2}, L\right)$ are equivalent. But the number of conjugate classes of primitive elements of $\operatorname{GF}\left(2^{\mathrm{mn}}\right)$ with respect to $G F(2)$ is also $\phi(r s) / \log _{2}(r s+1)$, so that there is a $1-1$ correspondence between the equivalence classes of $r \times s$ periodic LR m-arrays and the conjugate classes of primitive elements of $G F\left(2^{\operatorname{mn}}\right)$ (or all primitive polynomials of degree mn over GF(2) (see Remark 4.5 and Corollary 4.4.2). This map can be obtained by (4.1) of Remark 4.5.

The above correspondence is very powerful in Section 5 for studying the properties of $L R$ m-arrays. From now on, $G_{r x s}(f)$ will denote the set of all the arrays of period rxs which are corresponded to a primitive polynomial f.
5. Properties of LR m-Arrays

LR m-arrays can be thought of as generalized m-sequences. LR m-arrays have many good properties, as m-sequences do. In this section, we study the properties of translation-addition, sampling and correlation.

Proposition 5.1: An infinite matrix A of period rxs is an LR marray if and only if

1) $(r, s)=1$
2) For any given integers $p_{1}, p_{2}, q_{1}, q_{2} \geqslant 0$, either $A_{p_{1}}, q_{1}+A_{p_{2}}, q_{2}=0$ or $=A p, q$ for some $p, q \geqslant 0$.

The property given above is a characteristic property of $L R$ m-arrays called the translation-addition property of $L R$ m-arrays.

Proposition 5.2: For any LR m-array of order man, the mn vectors $\bar{A}(i, j)(0 \leqslant i \leqslant m$, $0 \leqslant j<n$) are linearly independent and all $\bar{A}(i, j)$ can be linearly expressed by them.

Definition 5.1: Let $A=\left(a_{i j}\right)_{i \geqslant 0, j \geqslant 0}$, (r, s) be a pair of positive integers. We call $A^{(r, s)}=\left(a_{i r, j s}{ }_{i \geqslant 0, j \geqslant 0} a_{n}(r, s)-\right.$ sample of A. Especilly, $A^{(t, r)}$ is called a diagonal sample of A.

Theorem 5.3: Let A be an LR array with period $P_{v} \times P_{h}$ and (r, s) be a pair of positive integers. If $\left(-, P_{v}\right)=1=\left(s, P_{h}\right)$, then $A^{(r, s)}$ is again an LR m-array with period $P_{V} \times P_{h}$ and any $L R$ marray of period $P_{v} \times P_{h}$ are equivalent to some (diagonal) sample of A. Furthermore, if $\left(r^{\prime}, P_{v}\right)=\left(r, P_{v}\right)=\left(s^{\prime}, P_{h}\right)=\left(s, P_{h}\right)=1$, then $A^{(r, s)}$ and $A^{\left(r^{\prime}, s^{\prime}\right)}$ are equivalent if and only if

$$
r^{\prime} \equiv r 2^{t} \bmod 2^{m}-1 \text { and } s^{\prime} \equiv s 2^{t+m n t} \bmod 2^{m n}-1 \text { for some } t \text { and } t^{\prime}
$$

Definition 5.2: Let $A=\left(a_{i j}\right)_{i \geqslant 0, j \geqslant 0}$ be an array of period $r x$. The autocorrelation
function of A is defined as the function

$$
C_{A}: Z \times Z \longrightarrow Z: \quad C_{A}(p, q)=\sum_{i=1}^{r-1} \sum_{j=0}^{s-1} \quad \eta^{\left(a_{i j}\right)} \quad \eta\left(a_{i+p, j+q}\right)
$$

where η is a function from $G F(2)$ to $\{1,-1\}$ such that $\eta(0)=1, \eta(1)=-1$.
Difinition 5.3: Let A be a binary array with period re If

$$
C_{A}(p, q)= \begin{cases}r s & \text { when } p \equiv 0 \bmod r \text { and } q \equiv 0 \bmod s \\ -1 & \text { others }\end{cases}
$$

then we call A a pseudo-random array.
Theorem 5.4: Suppose A is a pseudo-random array with period rxs. Then rs=3 mod 4 and the difference between the numbers of 1 's and 0 's in a period of A is 1 .

Theorem 5.5: Any LR m-array is a pseudo-random array.
Definition 5.4: Let $A=\left(a_{i j}\right)_{i \geqslant 0, j \geqslant 0, B=\left(b_{i j}\right)}^{i \geqslant 0, j \geqslant 0}$ be two arrays of period rxs. Define their crosscorrelation function as follows:

$$
\left.\left.C_{A, B}: 2 \times Z \longrightarrow Z: \quad C_{A, B}(p, q)=\sum_{i=0}^{r-1} \sum_{j=0}^{s-1} \quad \eta_{i j} a_{i}\right) \quad \eta_{i+p, j+q}\right)
$$

where η is just as in Definition 5.2.
Theorem 5.6: Sppose $\boldsymbol{\gamma}$ is a primitive element of $G F\left(2^{n}\right), \boldsymbol{\gamma}^{u_{1}}, \boldsymbol{\gamma}^{u_{2}}, \ldots, \boldsymbol{\gamma}^{u_{k}}$ $\left(0<K<2^{n}-1\right)$ are the first roots of primitive polynomials $f_{u_{1}}(x), \ldots, f_{u_{k}}$ (x) respectively, $u_{1}>u_{2}>\cdots>u_{k},(r, s)=1, r s=2^{n}-1$. Then for any arrays $A \in G_{r \times s}\left(f_{u_{i}}\right), B \in G_{r \times s}\left(f_{u_{j}}\right)$ and any $t_{1}, t_{2} \geqslant 0$, we have

$$
c_{A, B}\left(t_{1}, t_{2}\right) \leqslant 2^{n}-1-2 u_{k}
$$

Thearem 5.7 (gold Optimum Pair): Let γ be a primitive element of $\operatorname{GF}\left(2^{n}\right)$.

$$
\begin{aligned}
& u_{1}=2^{n-1}-1 \\
& u_{2}=\left\{\begin{array}{lll}
2^{n-1} & -2^{(n-1) / 2} & \text { if } 2 \not f_{n} \\
2^{n-1} & -2^{n / 2} & -1
\end{array} \text { if } 2 \mid n \text { but } 4 \not{ }^{n}\right.
\end{aligned}
$$

and $(r, s)=1, r s=2^{n}-1$. Then for any $A \in G_{r \times s}\left(f_{u_{1}}\right), B \in G_{r \times s}\left(f_{u_{2}}\right)$ and $t_{1}, t_{2} \geqslant 0$, we have:

$$
C_{A, B}\left(t_{1}, \tau_{2}\right)= \begin{cases}2^{(n+1) / 2}+1 & \text { if } 2 \nmid n \\ 2(n+2) / 2+1 & \text { if } 2 \mid n \text { but } 4 \not{ }_{n}\end{cases}
$$

REFERENCE

[1]. Zhe-xian Wan, "Algebra and Coding Theory." Science Press, Beijing. 1980 , revised edition.
[2]. B. Gordon, "On the existence of perfect maps" IEEE Trans. Inform. Theory Vol. IT-12 486-487 1966.
[3]. F.J. Macwilliams and N.J.A. Sloane, "Pseudo-random sequences and arrays". Proc.

IEEE vol. 64 pp 1715-1729. 1976.
[4]. T. Normura, H. Miyakawa, H. Imai and A. Fukuda, 'A theory of two dimensional linear recurring arrays". IEEE Trans. Inform. Theory vol. IT-18 pp 775-785, 1972.
[5]. R. Spann, "A two-dimensional correlation property of pseudo-random maximallength sequences". Proc. TEEE vol. 53 pp 2137, 1963.
[6]. J. H. van Lint, F. J. Macwilliams and N. J. A. Sloane, "On pseudo-random arrays". SIAM J. Appl. Math. vol 36 pp 62-72, 1979.
[7]. C. T. Fan, S. M. Fan, S. L. Ma and M. K. Siu, "On de-Bruijn arrays'. ARS Combin. vol. 19A (1985), 205-213.
[8]. S. Homer, Jerry Goldman, "Doubly-periodic sequences and two-dimensional recurrence", SIAM J. Alg. disc. Math. vol 6 (1985), 360-370.
[9]. S.L. Ma, "A note on binary arrays with a certain window property", IEEE Tran. Inform. Theory vol IT-30 (1984), 774-775.
[10]. T. Nomura and A. Fukuda, "Linear recurring planes and two-dimensional cyclic codes" Trans. Inst. Electron. Commun. Eng. Jap. vol. 54-A pp 147-154 Mar. 1971
[11]. I. S. Reed and R. M. Stewart, "Notes on the existence of perfect maps: IEEE Trans. Inform. Theory vol. IT-8 pp 10-12 Jan. 1962.
[12]. D. Calabro and J. K. Wolf, 'On the synthesis of two-dimensional arrays with desirable correlation properties:, Inform. Contr. vol. 11 pp 537-560 Nov/Dec. 1967.
[13]. M. K. Siu, "m-Arrays and M-Arrays." (1985).
[14]. L. E. Diccson, 'On the cyclotomic function', Amer. Math. Monthly vol. 12 (1905) 86-89.

