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For proofs and further explanations of the results presented herein we 
refer the reader to the full paper ([l]). A description of the crypt- 
analytic algorithms is appended. 

1. Extended Abstract 

A common type of running key generator employed in stream cipher systems 
consists Of n (mostly maximum-length) binary linear feedback shift reg- 
isters (LFSR's) whose output sequences are combined by a nonlinear 
Boolean function f .  The output of several combining functions previously 
proposed in the literature is known to be correlated to some input vari- 
ables with probabilities p up to 0.75 (this holds, e.g. for the genera- 
tors of Geffe, Pless, or Bruer). These generators have been broken in 
[ 2 ]  for LFSR-lengths k < 50 (roughly), according to the computational 
complexity of the attack (based on an exhaustive search over all phases 
of the LFSR). But also other generators, e.g. certain types of multi- 
plexed sequence generators, are known to be correlated to LFSR- 

components. In fact any generator having such correlations may be vul- 
nerable to a correlation attack. 

Let the output sequence I .  of a running key generator be correlated 
to a linear feedback shift register sequence (LFSR-sequence) 2 with COT- 
rGlatiOn probability p > 0 .5 .  Then two new correlation attacks (algo- 
rithms A and B) are presented to determine the initial digits of 5 ,  Pro- 
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vided that the number t of feedback taps is small (t < 10 if p 2 0 . 7 5 ) .  

The computational complexity of algorithm A is of order O (  Zck) , where k 
denotes the length of the LFSR and c c 1 depends on the input parameters 
of the attack, and algorithm B is polynomial (in fact, even linear) in 
the length k of the LFSR. These algorithms are much faster than an ex- 
haustive search over all phases of the LFSR, and are demonstrated to be 
successful on shift registers of considerable length k (typically 
k = 1000). On the other hand, for correlation probabilities p 5 0.75 the 
attacks are proven to be infeasible on long LFSR's if they have a 
greater number of taps (roughly k 2 100 and t 2 10). 

In order to set out our results in more detail, suppose that N 
digits of the output sequence 2 are given, and correlated to an LFSR- 
sequence 5 ,  produced by a LFSR with t taps. We assume that the feedback 
connection is known. Observe that this is no essential restriction as 
there is only a very limited number of maximum-length feedback connec- 
tions with few taps. Hence an exhaustive search over all primitive feed- 
back connections is possible. 

The sequence 5 may be viewed as perturbation of the LFSR-sequence 
by a binary asymmetric memoryless noise source (with Prob(0) = p). For 
the purpose of reconstructing the LFSR-sequence 5 from 5 the following 
principle is essential to the algorithms: Every digit an of 
several linear relations derived from the basic feedback relation, all 
of them involving t other digits of 2. By substituting the corresponding 
digits of 2 in these relations, we obtain equations for each digit zn, 
which either may or may not hold. To test whether zn = an, we count the 
number of all equations which turn out to hold for zn. Then the more of 
these equations hold, the higher is the probability for zn to agree with 
an. This can be justified by a statistical model, computing the cor- 
responding conditional probabilities. 

satisfies 

On the basis of this idea, we roughly outline algorithm A: We use 
the test to search for correct digits (i.e. digits zn with zn = a,). 
This is done by selecting those digits which satisfy the most equations. 
In this way we obtain an estimate of the sequence 9 at the corresponding 
positions. Under favourable conditions these digits have high probabil- 
ity of being correct, which means that only a slight modification of our 
estimate is necessary. This results in a considerably reduced exhaustive 
search to rule out sufficiently many correct digits, in order to 
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determine the LFSR-sequence by solving linear equations. 

We can give precise conditions under which this procedure is suc- 
cessful, and determine its computational complexity, which in general is 
of order 0(zCk) , where c < 1 is a function of t; p and N/k . To il- 
lustrate this estimate we mention that for t = 2 taps, N/k = l o 6 ,  and 
p 2 0.6, the number c is smaller than 0 . 2 5 ,  and for p > 0 . 6 7  Table 1 
shows that c is below 0 . 0 0 1 .  This is a considerable improvement compared 
to exhaustive search, where c = 1. On the other hand, for large t 
(t 2 1 6 )  o.ur estimate shows, that c comes very close to H(p), where H(p) 
denotes the binary entropy function. This proves that algorithm A for 
large t gives no advantage over (a modified) exhaustive search. 

P\t 

0 . 5 1  
0 .53  
0 . 5 5  
0 .57  
0 .59  
0 . 6 1  
0 . 6 3  
0 . 6 5  
0 . 6 7  
0 .69  
0 . 7 1  
0 . 7 3  
0 . 7 5  

2 4 6 8 1 0  1 2  1 4  1 6  

0 . 9 9 9  
0 . 9 7 6  
0 . 8 7 0  
0 . 6 4 2  
0 . 3 6 2  
0 . 1 3 2  
0 . 0 3 9  
0 . 0 0 7  
0 . 0 0 1  
0 .000  
0 .000  
0.000 

0.. 000 

1 . 0 0 0  
0 . 9 9 7  
0 . 9 9 2  
0 . 9 8 2  
0 . 9 6 3  
0 . 9 2 6  
0 . 8 5 6  
0.734 
0.555 
0 . 3 2 7  
0.150 
0 . 0 4 3  
0 . 0 0 9  

1 . 0 0 0  
0 . 9 9 7  
0 . 9 9 3  
0 . 9 8 6  
0 . 9 7 6  
0 . 9 6 3  
0 . 9 4 5  
0 . 9 1 7  
0 . 8 7 5  
0 . 8 0 5  
0 . 6 9 2  
0 . 5 1 5  
0 . 3 1 1  

1 . 0 0 0  
0 . 9 9 7  
0 . 9 9 3  
0 . 9 8 6  
0 . 9 7 6  
0 . 9 6 5  
0 . 9 5 0  
0 . 9 3 2  
0 . 9 1 0  
0 . 8 8 0  
0 . 8 3 6  
0 . 7 6 8  
0 . 6 6 0  

1 . 0 0 0  
0 . 9 9 7  
0 . 9 9 3  
0 .986  
0 .976  
0 . 9 6 5  
0 , 9 5 1  
0 .934  
0 .914  
0 . 8 9 1  
0 . 8 6 3  
0 . 8 2 5  
0 . 7 7 1  

1 . 0 0 0  1 . 0 0 0  
0 . 9 9 7  0 . 9 9 7  
0 . 9 9 3  0 . 9 9 3  
0 . 9 8 6  0 . 9 8 6  
0 .977  0 . 9 7 7  
0 . 9 6 5  0 . 9 6 5  
0 . 9 5 1  0 . 9 5 1  
0 .934  0 . 9 3 4  
0 . 9 1 5  0 . 9 1 5  
0 . 8 9 3  0 . 8 9 3  
0 .868  0 . 8 6 8  
0 . 8 3 8  0 . 8 4 1  
0 .800  0 . 8 0 8  

1 . 0 0 0  
0 . 9 9 7  
0 . 9 9 3  
0 . 9 8 6  
0 . 9 7 7  
0 . 9 6 5  
0 . 9 5 1  
0 . 9 3 4  
0 . 9 1 5  
0 . 8 9 3  
0 . 8 6 9  
0 . 8 4 1  
0 . 8 1 1  

m 

1 . 0 0 0  
0 . 9 9 7  
0 . 9 9 3  
0 . 9 8 6  
0 . 9 7 7  
0 . 9 6 5  
0 . 9 5 1  
0 . 9 3 4  
0 . 9 1 5  
0 . 8 9 3  
0 . 8 6 9  
0 . 8 4 1  
0 . 8 1 1  

Table 1: c(p,t,N/k) for N/k = l o 6  

In algorithm B we do not search for the most reliable digits. In- 
stead we take into account a l l  digits, together with their probabilities 
of being correct. A priori, with probability p a digit of f agrees with 
the corresponding digit of 5 .  Now to each digit zn of 5 we assign a new 
probability p*, which is the probability for zn = an, conditioned on the 
number of equations satisfied. This procedure can be iterated with the 
varied new probabilities p* as input to every round. After a few rounds, 
all those digits of are complemented whose probability p* is lower 
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than a certain threshold. Under suitable conditions we can expect that 
the number of incorrect digits decreases. In this case we restart the 
whole process several times, with the new sequence in place of 2, until 
we end up with the original LFSR-sequence 5 .  

To obtain conditions under which algorithm B succeeds, a function 
F(p,t,N/k) is introduced to measure the correction effect. Thus if 
F(p,t,N/k) S 0 there is no correction effect and algorithm B will not be 
able to reproduce the LFSR-sequence 5 .  Therefore we get a definite limit 
to this attack (which is attained for t 2 10, if p 5 0 . 7 5 ) .  In the 
other direction, investigations of F(p,t,N/k) show, that for t = 2 or 
t = 4 taps algorithm B still remains effective f o r  correlation probabil- 
ities quite close to 0 . 5  (cf. Table 2 ) .  This implies in particular that 
a LFSR with two feedback taps is completely breakable if its output 
shows correlation to a known sequence f. The striking efficiency of al- 
gorithm B, as observed in numerous experiments, is explained by the fact 
that its computational complexity is of order O(k) (i.e. linear in the 
length k of the LFSR, f o r  fixed t, p and N/k). 

For given t and d = N/k Table 2 shows the value p = p(t,d) with 
F(p,t,d) = 0. p(t,d) turns out to be the limit probability where algo- 
rithm B may still be successful 

d/t 2 4 6 8 1 0  1 2  1 4  1 6  1 8  

0 . 5 8 4  

0 . 5 3 3  

0 . 5 2 1  

0 . 5 1 4  

0 . 5 1 1  

0 . 5 0 9  

0 . 5 0 8  

0 . 5 0 7  

0 . 5 0 6  

0 . 5 0 5  

0 . 7 3 9  0 . 8 0 4  0 . 8 4 1  

0 . 6 7 3  0 . 7 5 0  0 . 7 9 6  

0 . 6 4 8  0 . 7 2 7  0 . 7 7 6  

0 . 6 2 9  0 . 7 0 9  0 . 7 6 0  

0 . 6 2 0  0 . 6 9 9  0 . 7 5 2  

0 . 6 1 2  0 . 6 9 2  0 . 7 4 5  

0 . 6 0 5  0 . 6 8 4  0 . 7 3 8  

0 . 6 0 1  0 . 6 8 0  0 . 7 3 3  

0 . 5 9 7  0 . 6 7 6  0 . 7 2 9  

0 . 5 9 2  0 . 6 7 1  0 . 7 2 5  

0 . 8 6 4  

0 . 8 2 7  

0 . 8 0 9  

0 . 7 9 5  

0 . 7 8 7  

0 .782  

0 . 7 7 5  

0 . 7 7 1  

0 . 7 6 8  

0 . 7 6 4  

0 . 8 8 1  0 . 8 9 4  0 . 9 0 4  0 . 9 1 2  

0.849 0 . 8 6 5  0 . 8 7 8  0 . 8 9 0  

0 .833  0 . 8 5 2  0 . 8 6 6  0 . 8 7 8  

0 . 8 2 1  0 . 8 4 1  0 . 8 5 6  0 . 8 6 9  

0.815 0 . 8 3 4  0 . 8 5 0  0 . 8 6 3  

0 .809  0 , 8 3 0  0 . 8 4 6  0 . 8 6 0  

0 . 8 0 3  0 . 8 2 5  0 . 8 4 2  0 . 8 5 5  

0 . 8 0 0  0 . 8 2 1  0 . 8 3 8  0 . 8 5 2  

0.797 0 , 8 1 8  0 . 8 3 6  0 . 8 5 0  

0 . 7 9 3  0 . 8 1 5  0 . 8 3 2  0 . 8 4 7  

Table 2:  p with F(p,t,d) = 0 
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Algorithms A and B enable attacks on LFSR's of considerable length 
(e.g. k = 1000 or greater) with software implementation. However, a 
comparison shows that algorithm A is preferable if c < c  1 and p is near 
0 . 7 5 ,  whereas algorithm B becomes more efficient for probabilities p 
near 0.5. (Simulations of algorithm B have shown to be successful in at- 
tacks with p = 0.55 even on a personal computer). 

The methods developed for algorithms A and B allow several generali- 
zations and conclusions. To prevent attacks based on these methods, 
suitable precautions are necessary. This leads to new design criteria 
for stream ciphers: 

1. Any correlation to a LFSR with less than 10 taps should be avoided. 

2 .  There should be no correlation to a general LFSR of length shorter 
than 100 (especially when the feedback connection is assumed to be 
known). 

It is remarkable that the importance of the number of LFSR taps for 
the correlation analysis was not recognized in cryptologic literature SO 

far. 

I I .  Appendix: Description of the Algorithms 

In this appendix we give a brief outline of the algorithms. Proofs and 
further explanations are contained in [l]. 

11.1. Algorithm A 

Suppose that N digits of the sequence 5, the length k of the LFSR with t 
taps as well as the correlation probability p are given. 

Our method exploits the linear relations of the LFSR-sequence 5 to 
find correct digits, i.e. digits with zn = an. Linear relations can be 
described in terms of their feedback polynomials. By iterated squaring 
of the feedback polynomial, a variety of linear relations is generated 
for every digit an, all of them involving t other digits of 5 .  The 
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average number m of relations obtained in this way can be computed as 
(cf. [ I l l  

m = m(N,k,t) = log2(&) (t + 1) 
2k 

The probability p* for zn = an, given that h of m relations are 
satisfied, is 

p sh( 1-s)m-h 
p* = 

p sh(l-s)m-h + (1-p)(l-s) h s m-h 

where s = s(plt) can be comuted using the recursion 

S(Plt) = p s(p,t-l) + (l-P)(l - s(p,t-l)), 
S(Pt1) = p. 

( 3 )  

Moreover, the probability that a digit zn satisfies at least h of these 
m relations is given by 

and the probability that zn = an and that at least h of m relations are 
satisfied 

m 

i=h 
R(p,m,h) = c ( y )  p s i(i-~) m-i ( 5 )  

Thus the probability for zn = an, given that at least h of m relations 
are satisfied, is the quotient T(m,p,h) = R(p,m,h)/Q(p,m,h). These for- 
mulas show that with increasing m we have more freedom to choose a 
suitable h such that at the same time the two probabilities Q(p,m,h) and 
T(p,m,h) will be sufficiently large f o r  an attack. The following exam- 
ples illustrate these facts. 
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Example 1: Assume that 5 has length N = 5 0 0 0  correlated with probability 
p = 0 .75  to a LFSR of length k = 100 having t = 2 feedback taps. Hence 
in the average we obtain m = 1 2  relations to test the digits of f. TO 
determine the optimum number h of relations to be satisfied we generate 
the following table: 

h = # of relations new prob. 
satisfied P* 

1 2  
11 
10 

9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

0 . 9 9 9 3  
0 . 9 9 8 0  
0 . 9 9 4 4  
0 . 9 8 4 7  
0 . 9 5 8 6  
0 . 8 9 2 9  
0 . 7 5 0 0  
0 . 5 1 9 2  
0 . 2 8 0 0  
0 . 1 2 2 8  
0 . 0 4 8 0  
0 . 0 1 7 8  
0 . 0 0 6 5  

0 .002666  
0 .021890  
0 .085554  
0 . 2 1 4 1 4 1  
0 . 3 9 2 4 6 1  
0 . 5 7 6 2 5 1  
0 .729409  
0 .843183  
0 .922315  
0 .970429  
0 .992595  
0 .999106  
1.000000 

0 . 0 0 0 7 2 5  
0 . 0 0 1 8 5 5  
0 . 0 0 4 6 1 8  
0 . 0 1 1 0 4 0  
0 . 0 2 4 8 4 0  
0 . 0 5 1 0 9 0  
0 . 0 9 2 8 5 6  
0 . 1 4 5 1 9 9  
0 . 1 9 4 5 1 9  
0 . 2 2 8 3 6 7  
0 . 2 4 4 5 2 8  
0 . 2 4 9 3 3 5  
0 . 2 5 0 0 0 0  

Table 3 

A digit that satisfies h = m = 12 relations has the highest probability 
p* = 0 . 9 9 9 3  to be correct. But according to Table 3 we can only expect 
0 . 0 0 2 6 6 . 5 0 0 0  J 13 digits to satisfy this condition which obviously do 
not determine the phase of the LFSR-sequence. However h 2 11 relations 
are expected to hold for 0 . 0 2 1 8 9 . 5 0 0 0  J 1 0 9  digits, hence a number which 
is greater than k = 100. Furthermore the entry in the 4th column shows 
that 0 . 0 0 1 8 5 5 * 1 0 9  = 0 .2  < 1 digits among these are expected to be wrong. 
Thus we can expect to have already found more than k = 100 correct 
digits. In fact this can be confirmed experimentally. 

Example 2: We extend the above example to the situation N = 2 5 0 0 0 ,  
k = 500 ,  and let p = 0 . 7 5  and t = 2 unaltered. Thus again m = 1 2 ,  and 
Table 3 also applies to this case. Hence h 2 11 relations hold for 
0 . 0 2 1 8 9 . 2 5 0 0 0  = 5 4 7  > k digits. However 0 .001855 .547  = 1 digit among 
these may be wrong. Thus in order to find at least k = 5 0 0  correct 
digits one would have to perform a number of trials of magnitude 500, 

using the correlation method as referred to in [ 2 ] .  
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In the general case the algorithm proceeds as follows. 

Algorithm A 

Step 1: Determine m according to formula (1) 

Step 2: Find the maximum value of h such that Q(p,m,h)*N Z k (e.g. by 
generating a table similar to Table 1). Then the average number 
r of errors is determined by r = (1 - T(p,m,h))-k. 

Step 3:  Search for the digits of z satisfying at least h relations and 
use these digits as a reference guess I~ of 
ding index positions. 

at the correspon- 

Step 4 :  Find the correct guess by testing modifications of 10 having 
Hamming distance 0,1,2, ... , by correlation of the correspon- 
ding LFSR-sequence with the sequence 2 

Under favorite conditions (cf. Example 1, where r << 1) step 4 is not 
necessary. In general it can be shown that the computational complexity 
of algorithm A is of order O(2H(e)) , where 8 = r/k and where H(x) 
denotes the binary entropy function (cf. [I]). 

11.2. Algorithm B 

Table 3 shows that the ccnditional probability p* is small if a digit 
satisfies only a few relations, and hence tends to be incorrect. Roughly 
speaking this observation leads us to the following method of attack: 
Any digit of the sequence 5 is complemented if it satisfies less than a 
certain number of relations. Under favourable conditions we can expect 
that the "corrected" sequence has less digits differing from the LFSR- 
sequence 2. 

An alternative and better approach is to leave the whole sequence 
unchanged in the first instance and to assign instead the new probabil- 
ity p* to every digit. This allows to iterate this process with varied 
new probabilities p* at each round, After a few rounds, the wrong digits 
tend to have low, and the correct ones tend to have high probability. 
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This gives us a refined criterion to correct the sequence 2 by com- 
plementing the digits which have a probability p* lower than a suitable 
threshold Pthr. Then we can restart the whole process with the new se- 
quence in place of z I  this time assigning the original probability to 
every digit. The intuitive idea is to repeat the procedure until we end 
up by reproducing the LFSR-sequence d .  

To give a more precise description we need some additional formulas 
for computing probabilities: 

a) The probability that a digit zn satisfies at most h of m relations 

i h 

i=O 
U(p,m,h) = ( y )  ( p s (1-s) m-i+ (1-p)(l-s) is m-i) 

b) The probability that zn = an and that at most h of m relations are 
satified 

c) The probability that zn # an and that at most h of m relations are 
satisfied 

With regard to the described method to correct digits if they satisfy at 
most h relations, these formulas enable us to compute the total number 
of digits of z changed by 

Moreover the number of erroneously changed digits is 
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and the number of correctly changed digits is 

Thus the increase of correct digits is the difference of the values in 
(11) and ( l o ) ,  and the relative increase is 

Next we determine the value h = kax such that I(p,m,h) is maximum 
for given p and m. To this purpose we generate a table as illustrated in 
the following example: 

Example 3: As in example 1 let N = 5000, p = 0.75, t = 2 and k = 100. 
Then m = 1 2  and we obtain the table 

h = # of relations new prob. U(Pimrh) I(Prm,h) 
satisfied P* (P rmr h 1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
1 2  

0 .0065  
0 . 0 1 7 8  
0 . 0 4 8 0  
0 . 1 2 2 8  
0 . 2 8 0 0  
0 . 5 1 9 2  
0 . 7 5 0 0  
0 . 8 9 2 9  
0 . 9 5 8 6  
0 . 9 8 4 7  
0 . 9 9 4 4  
0 . 9 9 8 0  
0 . 9 9 9 3  

0 .000894  
0.007405 
0 . 0 2 9 5 7 1  
0 .077685  
0 .156817  
0 . 2 7 0 5 9 1  
0 .423749  
0 .607539  
0 .785859  
0 .914446  
0 .978110  
0 .997334  
1 .000000  

O.OG0882 
0 . 0 0 7 1 6 1  
0 . 0 2 7 2 0 1  
0 .063500 
0 . 0 9 8 3 2 5  
0 . 0 9 3 9 4 9  
0 . 0 1 7 3 7 0  

- 0 . 1 2 7 0 3 6  
- 0 . 2 9 0 5 8 7  
- 0 . 4 1 5 2 3 7  
- 0 . 4 7 8 1 9 1  
- 0 . 4 9 7 3 3 7  
-0 .500000 

Thus we see that I(p,m,h) is maximum for hmax = 4 relations. Under these 
conditions 1 2 5 0  digits are expected to be wrong. Carrying out the cor- 
rection with respect to 4 relations, 0 . 1 5 6 8 . 5 0 0 0  = 7 9 3  digits are com- 
plemented. According to the fourth column, the number of wrong digits 
decreases by 0 . 0 9 8 3 . 5 0 0 0  = 4 9 2  from 1 2 5 0  to 7 5 8  digits. 

For our (alternative) refined method as described above , taking p* 
into account, we need a appropriate probability threshold. A n  optimum 
correction effect is obtained with the choice 
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After the first round the expected number Nw of digits with p* below 

Pthr is 

Basically, the whole attack will swap between two phases: 

I. 

11. A correction phase complementing those digits with p* below Pthr and 
resetting the probability of each digit to the original value p. 

A computation phase assigning the new probability p* to every digit 
of 2. 

Phase I can be iterated. To this purpose, formula (2) for s(p,t) has to 
be generalized to the situation where each of the t digits may have dif- 
ferent probabilities pl, pzf ... pt: 

This generalization carries over to all other formulas, in particular to 
formula ( 2 )  for pi. 

It is natural to iterate phase I until there are enough digits with 
p* below Pthr. However, after a few iterations a strong polarization can 
be observed between digits having probability p* either very close to 0 

or very close to I. Apart from a few digits, this polarization tends to 
become stable, which means that we needn't iterate phase I any longer. 
This gives us another criterion to terminate phase I after a limited 
number a of iterations. (In many cases a = 5 is a suitable choice.) 
Based on these ideas we are now prepared to formulate algorithm B. 

Algorithm B 

Step 1: Determine m according to formula (1). 

Step 2 :  Find the value of h = hma, such that I(p,m,h) is maximum. If 
Imax = I(p,mrhmax) 5 0 there will be no correction effect in 
phase I which means that the attack fails. If I,,, > 0 compute 
Pthr and Nthr according to (13) and (14), else terminate. 
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Step 3:  Initialize the iteration counter i = 0 

Step 4 :  For every digit of f compute the new probability p* (cf . (2) 
and (15)) with respect to the individual number of relations 
satisfied (phase I). Determine the number Nw of digits with 
P* ' Pthr. 

Step 5: If Nw < Nthr or i < a increment i and go to step 4 

Step 6 :  Complement those digits of f with p* < Pthr and reset the pro- 
bability of each digit to the original value p (phase 11). 

Step 7 :  If there are digits of 2 not satisfying the basic feedback rel- 
ation go to step 3 .  

Step 8 :  Terminate with = 5 .  

Under conditions for which algorithm B succeeds, its computational 
complexity is of order O(k), i.e. linear in the length k of the LFSR. To 
obtain such conditions a function F(p,t,N/k) is introduced in [l] to 
measure the correction effect (F(p,t,N/k) = I(p,m,hmax)*(N/k), for 
details we refer to [l]). If F(p,t,N/k) S 0 algorithm B definitely 
fails. 

We conlude with a simulation of algorithm B. 

Example 4 :  We consider the following situation; N = 20,000, k = 200, 
t = 4 and p = 0.60. Then N/k = 100 and F(p,t,N/k) turns out to be 0.615. 
The parameters of the algorithm B can be computed as Pthr = 0.481, Nthr 
= 1154. Thus 1154 digits are expected to be changed in the first itera- 
tion resulting in a decrease of wrong digits by 0 . 6 1 5 - 2 0 0  = 123. The 
following table shows the intermediate results after each step. The 
terms round and iteration refer to the outer loop and the inner loop, 
respectively. The entry in the third column always indicates the 
decrease of wrong digits if phase I1 had been applied. 
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# of digits 
with 

p* < Pthr 

# of wrong 
digits with 
p < Pthr 

decrease # of wrong 
of wrong digits after 
digits phase I1 

round 1 
iteration 1 
phase I1 

round 2 
iteration 1 
iteration 2 
phase I1 

iteration 1 
iteration 2 
iteration 3 
phase I1 

iteration 1 
iteration 2 
iteration 3 
phase 11 

iteration 1 
iteration 2 
iteration 3 
phase I1 

iteration 1 
iteration 2 
iteration 3 
phase 11 

iteration 1 
iteration 2 
iteration 3 
phase 11 

iteration 1 
iteration 2 
iteration 3 
phase 11 

round 3 

round 4 

round 5 

round 6 

round 7 

round 8 

round 9 
iteration 1 
iteration 2 
iteration 3 
iteration 4 
iteration 5 
phase I1 

1 7 8 4  
0 

9 9 8  
0 

212  7 9 9 8  
0 7 7 8 6  

2 6 4  
1 3 5 4  

0 

1 5 1  
8 3 8  

0 

38 7 7 8 6  
3 2 2  7 7 8 6  

0 7 4 6 4  

1 3 3  
8 8 0  

27 7 4 6 4  
3 2 2  7 4 6 4  
7 1 0  7 4 6 4  

0 6 7 5 4  

8 0  
6 0 1  

1 5 3 7  
0 

2 3 6 4  
0 

6 2  
6 2 3  

1 6 9 3  
0 

44  
474  

1 2 4 4  
0 

26 6 7 5 4  
325  6 7 5 4  
795  6 7 5 4  

0 5 9 5 9  

2 6  
5 1 5  

1 4 9 9  
0 

26 5 9 5 9  
3 7 1  5 9 5 9  
947 5 9 5 9  

0 5 0 1 2  

2 6  
4 4 3  

1 2 2 3  
0 

3 6  
6 1 7  

1 5 9 4  
0 

28 
5 5 0  

1 3 8 3  
0 

20 5 0 1 2  
483  5 0 1 2  

1 1 7 2  5 0 1 2  
0 3 8 4 0  

5 2  
6 7 5  

1 5 7 8  
0 

5 0  
6 1 9  

1 4 2 5  
0 

48 3 8 4 0  
563  3 8 4 0  

1 2 7 2  3 8 4 0  
0 2 5 6 8  

7 1  2 5 6 8  
558  2 5 6 8  

1 1 4 5  2 5 6 8  
0 1 4 2 3  

7 3  
6 5 0  

1 3 1 7  
0 

7 2  
604 

1 2 3 1  
0 

6 6  
5 0 9  
9 2 1  

1 0 0 2  
1 0 3 9  

0 

6 6  
498  
905  
984  

1 0 2 2  
0 

66 1 4 2 3  
487 1 4 2 3  
889 1 4 2 3  
966 1 4 2 3  

1 0 0 5  1 4 2 3  
0 4 1 8  



314 

round 10 
iteration 1 
iteration 2 
iteration 3 
iteration 4 
iteration 5 
phase I1 

round 11 
iteration 1 
iteration 2 
iteration 3 
iteration 4 
phase 11 

# of digits 
with 

p* ' Pthr 

32 
183 
289 
306 
314 

0 

4 
62 
96 
106 
0 

# of wrong 
digits with 
p ' Pthr 

32 
183 
287 
305 
313 

0 

4 
62 
96 

106 
0 

decrease 
of wrong 
digits 

32 
183 
285 
304 
312 

0 

4 
62 
96 
106 
0 

# of wrong 
digits after 
phase I1 

418 
418 
418 
418 
418 
106 

106 
106 
106 
106 

0 

Rounds 1 to 8 are terminated by Nw Z Nthr, and rounds 9 to 10 by the 
criterion i = a (a = 5). Observe that iteration 4 and 5 in rounds 9 and 
10 have only small correction effect. This justifies the termination Of 
a round after a certain number of iterations. It also shows that a = 3 
would have been a suitable choice as well. Finally round 11 is 
terminated since the corrected sequence after iteration 4 satisfies the 
basic feedback relation. Thus we have reconstructed the original LFSR- 
sequence after 35 iterations in total. 
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