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ABSTRACT 

The security of several signature schemes and cryptosystems, essentially 
proposed by Oliamoto, is based on the difficulty of solving polynomial 
equations or inequations modulo n. The encryption and the decryption 
of these schemes are very simple when the factorisation of the modulus, 
a large composite number, is known. 

We show here that we can, for any odd n, solve, in polynomial proba- 
bilistic time, quadratic equations modulo n, even if the factorisation of n 
is hidden, provided we are given a sufficiently good approximation of the 
solutions. We thus deduce how to break Okamoto’s second degree cryp- 
tosystem and we extend, in this way, Brickell’s and Shamir’s previous 
attacks. 

Our main tool is lattices that we use after a linearisation of the problem, 
and the success of our method depends on the geometrical regularity of 
a particular kind of lattices. 

Our paper is organized a s  follows: 

First we recall the problems already posed, their partial solutions and 
describe how OUT results solve extensions of these problems. We then 
introduce our main tool, lattices and show how their geometrical pro- 
perties fit in our subject. Finally, we deduce our results. These methods 
can be generalized to higher dimensions. 
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I. INTRODUCTION 

In this section, after some definitions, we describe the problems posed 
by the security of Okamoto schemes, and the partial solutions given by 
Brickell and Shamir. Then, we state our main results and show how they 
extend the previous ones. 

1.1. Definitions and notations 

For an odd integer n, Z(n)  denotes the ring of the integers modulo n 
which is identified with [0, n - 11. 

We will use approximations of a number z0 in Z(n).  So, we adopt the 
following definitions and notations: 

IuI denotes, for u E Z(n) ,  the minimum of ZL and n - u, 

I(a,xo) denotes the set of 2 E Z(n)  such that 2 = 20 +u, Iu[ I na, 
J ( a , z o )  denotes the set of 2 E Z ( n )  such that 

The subsets I ( a ,  z o )  -resp J ( a ,  ~0)- and I(b, yo) are said compatibk if 
there exists x in I ( a ,  Q) -resp J ( u ,  ~ 0 ) -  and y in I(b,  yo) such that y z 
x2 [n]. 

1.2. Okamoto’s cryptographic proposals and questions 

In this section, the modulus n is particular: n = p 2 q  where p and Q are 
distinct primes ( p  < q).  An element $0 of Z(n)  is called easy when it is 
smaller than (1/2)- modulo pq. 

The following cryptographic schemes are based on the difficulty of ex- 
tracting square roots modulo n, when the factors of n are unknown: 

Cryptosystems 

In [6], Okamoto proposed a first public key cryptosystem: 

The public key is the pair ( n , x o ) ,  where zo is an easy element of Z(n) .  
From a message u, which is small compared to n, the cipher text y is 
built as follows: 

y = (20 + uy [n] 
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As quoted in [7], Shamir [8] has two attacks to break this system: the first 
one works for any pair (n,zo) while the second one uses the particular 
form of the public key. 

Okamoto [7] then proposed a new cryptosystem: 50 is the known quotient 
modulo n of two secret easy numbers of Z(n).  A message (211, u2), where 
the u;’s are s m a l l  compared to n, gives a cipher text y such that 

y = ( U I X O  +u2)2 [.I. 
Okamoto stated as an  open question the breaking of this second system. 

We show here that we can break this new cryptosystem without using 
the particular form of the public key (n ,  Q). 

Signature Scheme 

In [5] ,  Okamoto and Shiraishi proposed a signature scheme: 

Given a ‘one-way’ function h, a signature x is considered as valid for a 
message u if 

h(u) 5 (x2 mod YZ) 5 h(u) + O ( ~ Z ’ / ~ )  with 1x1 not ‘too small’. 

Brickell [2] broke this scheme, without using the particular form of n. 

Now, we state and solve problems which are natural extensions of all the 
questions that we described above. 

1.3. Two Problems 

Problem 1. 

Given a square yo and a subset I (a , so )  (resp J ( a , z o ) )  which is known 
to contain a square root x of yo, find x. 

Problem 2. 

Given I(b, yo) a subset of Z(n) ,  find s such that z2 belongs to I ( b ,  yo). 

Solving the first problem with the intervals I breaks the first version of 
Okamoto’s cryptosystem, while the second version of Okamoto’s cryp- 
tosystem is attacked by solving this problem with the subsets J .  The 
second problem is linked with improvements of Brickell’s results. 
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1.4. Our main results: Three theorems 

We state here OUT main results which solve generalisations of each of the 
problems. On the one hand, Theorem 1 and Theorem Ibis, which are 
uniqueness results, allow us to break the second version of Okamoto’s 
cryptosystems, but also to make precise some points of Shamir’s attack 
on the first version. On the other hand, Theorem 2, which is an existence 
result, improves Brickell’s previous attack of the signature scheme. 

THEOREM 1. 

For a n y n , ~  > 0,a and b reals in [0,1] satisfying 

2a + b = 1 - 3~ and b 2 a, 

there exists an exceptional subset T ( E )  of Z(n)  such that the following is 
true: 

i) Card T ( E )  5 nl-‘ 

ii) For anyzo, not in T(E)  and any yo in Z(n):  intervals J ( a ,  zo) and 
I(b, yo) have a t  most two compatible pairs, say (2, y) and (n - x, y). 

Moreover, there exists a probabilistic polynomial algorithm A which pro- 
vides one of the following three answem: 

‘exceptional case’ if xo is in T(E)  
‘no compatible couple’ 

(5, y) and ( n  - z, y) are the two compatible pairs. 

THEOREM 1 BIS. 
For any n, E > 0, a and b reals in [0,1] satisfymg 

a + b = 1 - 2~ and b 2 2a, 

there exists an exceptional subset T’(E) of Z ( n )  such that the following 
is true: 

i) Card T‘(E) 5 nl-€ 

ii) For any XO, not in T’(E) and any yo in Z(n) ,  intervals I ( a ,  20) and 
I (b ,  yo), have at most one compatible pair. 

Moreover, there exists a probabilistic polynomial algorithm B which pro- 
vides one of the following three answers: 
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‘exceptional case’ if ro is in T’(E) 
‘no compatible couple’ 
(2, y) is the only compatible pair. 

THEOREM 2. 

For any n ,  E > 0, a and b reals in [0, I] satisfying 

a + b = 1 + 2~ and b 2 2a, 

there exists an  exceptional subset T’(E) of Z(n) ,  such that the following 
is true: 

i) Card T’(E) 5 nl-‘ 
ii) For any ZO, not in T ” ( E )  and for any yo in Z(n) ,  intervals I (a , zo )  

and I(b, yo) are  compatible. 

Moreover, there exists a probabilistic polynomial algorithm C which pro- 
vides one of the following answers: 

‘exceptional case’ if zo is in T” ( E )  

a compatible pair (z, y) otherwise. 

We give now the proofs of our results, mainly for Theorem 1, in the case 
of subsets J ,  and see how our methods work for the intervals I ,  in the 
proof of theorems lbis and 2. The main tool is lattices for which there 
are two basic facts: 

a) There is a high proportion of lattices with given determinant ha- 
ving their smallest vector not too small. 

b) Given a lattice and a point m in the space, one can find -using 
an algorithm based on LLL reduction algorithm [4]- one point t which 
belongs to the Iattice and which is close to rn. 

11. THE BREAKING OF OKAMOTO’S CRYPTOSYSTEM: 
proof of Theorem 1 

Given n, XO, yo, a, b, we must find u1 and u2 that satisfy 

I -  u l /  < na/2 , luzl 5 na/2 , lul 5 nb 

and that are solutions of the equation 

( ~ 1 x 0  + u2)’ = yo + v  fn] 
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11.1. How lattices are involved 

We must solve 

(2) 2 2  ulzo + 2 x 0 ~ 1 ~ 2  + ZG: - TI = yo En] 

Replacing us, 7 . 4 1 ~ 2 ,  
lattice: 

- u$ by independent variables, we consider a first 

L(z0) := {w = (wo,wl, w2) E z3 ; ziwo + 2x0wl - w2 = o [n] } 

L(z0) is spanned by the three column vectors of the matrix: 

:) which has determinant n. ( x: 2x0 n 

Since lull, Iuzl, 1.1 are small, we have to look for w in L(x0) with the 
following approximations: 

two1 5 na, lwil 5 na, 1 ~ 2  -yo[  I 2nb (a I b)  

These approximations are not of the same order, and since we will work 
with the norm sup, it is natural to consider a second lattice M(z0) .  

If l o ,  k l ,  k2 are three positive rationals, whose product is equal to 1, we 
define 

M(zo)  := {t  E Q3 ; t ;  = kiwi, 0 5 i 5 2 and w E L(z0) }. 

M(z0)  has then for matrix 

which has still determinant n. 
( ?  k l  0 

kzx: 2k2xo k2n 

With a suitable choice of (ko, kl, k ~ ) ,  we get the same approximation 
order on each component. So, we have to find a point t in M ( s 0 )  which 
is close to  the point m = (O,O,  k2yo) for the norm sup. 

Now, we are lead to some important questions: 

1) How to get, in a given lattice M of Q3 a point t close to a given 

2) How to be sure that such a point will be unique ? 

point m ? 

We answer now these two questions. 
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11.2. The ClosePoint Algorithm 

We get a reduced basis Q = (QO, q, ( ~ 2 )  o f  M by using the LLL algorithm 
[4]. We express m in the basis a: rn = r n o c ~ o  + mlal + m 2 ~ 2  (rn; E Q )  
and finally take t = t o a o  + t l q  + t 2 a 2  where t; is the closest integer to 
ti. This algorithm gives the point t nearest to m within a factor K which 
is analysed in [l]. If n is sufficiently large compared to 1/~ ,  this factor 
will be of order n'I3. 

11.3. The uniqueness problem 

Here come up some geometrical facts about lattices M which have their 
shortest vector A1 ( M )  not too small, namely 

If we define p1 = p o / K ,  we then have the following facts for any euclidean 
ball B(m, T ) :  

i) If T < po/2,  then B(m,r)  contains at  most one point of M. 
ii) Moreover, if T < pl, the ClosePoint algorithm outputs 'empty' if no 

point of &I is in B(m, T ) ,  and t if t is the only point of n/r in B(m, T ) .  

So, in a such a lattice, we can get our uniqueness result. 

11.4. The analysis of the lattices M(z0) 

Are there many lattices M(z0)  which have their shortest vector not too 
long ? We have the following answer ([3], [9]) 

For any n, E > 0,  for any triple k = (ko, kl, k2) of product 1, there exists 
an exceptional subset T(E) o f  Z (n )  such that the following is true: 

i) Card T ( E )  5 nl-' 
ii) For anyzo, not in T ( E ) ,  the shortest vector Xl(i%f(zo)) of  the lattice 

M(z0) satisfies 
p l ( M ( z o ) ) ~ ~ m  2 n(1-2c)'3 ( 3 )  

We deduce that we can apply the facts described in 2.3 to most of lattices 
iLf(z0) provided we choose 

po = 72(1-2')/3 and also p1 = n1/3--c. 

We know also that we can decide whether we are in T ( E ) .  
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11.5. The end of the proof 

If (z,y) is a compatible pair in J ( a , z o )  x I ( b , y o ) ,  we want to find it. 
This pair (2, y) gives a point w = (uf ,  u1u2, yo + v - u;) of L(zo), then a 
point t = (kouf ,  k12llu2, k2(yO + v - u;)) of M(z0) .  

We now choose the triple k so that all the approximations be bounded 
by : if we let ko = Icl = rncl , we require 

2a + b = 1 - 3~ and c = ( b -  a ) / 3  (4) 

Let m = ( O , O , k ~ y o ) ;  then t is in the ball B(m,p1). The ClosePoint 
algorithm hds  a point t’ in B(m,pl).  As this ball contains only one 
point belonging to M(zo) ,  we must then have t = t‘. From t’, it is then 
easy to get u1 by ordinary square root extraction, and then 212 and v; we 
then verify if 211, u2, v satisfy (1). This ends the proof of Theorem 1. 

We remark that the optimal choice for the pair (a ,  b) is 

u = b = 1/3 - E .  

11.6. Back to the breaking of Okamoto’s cryptosystem 

Okamoto’s second cryptosystem hypotheses are a particular case of ours. 
He takes a = 2 / 9 , v  = 0; we remark that our results indeed allow to 
decrypt the message y, because most of the 50’s used -here, the quotients 
of two easy numbers- are outside the exceptional set. Furthermore, our 
algorithm works even if 

i) the 1/3 of the least sigmficant bits of y are lost 

ii) the pair (n,zo) has no particular form. 

111. PROOFS OF THEOREM lBIS AND THEOREM 2 

Given n ,  20, yo, a, b, we must find u, u,  that satisfy 

and that are solutions of the equation 
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As before, replacing u by 200 and v - u2 by wl, we then have the lattice 
L(z0) which has for matrix: 

with determinant n. We also use a second lattice M(zo) ,  with a suitable 
choice of (ko, kl) and the point rn is now (0, kl(yo - zi)). 

111.1. Outline of the proof of Theorem Ibis; precisions a b o u t  
Shamir’s attack 

The proof of Theorem lbis is similar to the proof of Theorem 1: The 
condition (3) of lattice regularity is just replaced by 

This result allows to make precise some points of Shamir’s first attack: 
The underlying framework of this attack is the one of Theorem Ibis. 

Why is it so often successful? We remark that the exceptional set T ( E )  
associated to the value of E defined by the equality 

does not contain any easy point zo provided that n‘ > 2. Shamir’s attack 
almost always succeeds ! 

This attack also works even if the 2/3 least significant bits of the message 
are lost or erroneous 

111.2. P r o o f  of  Theorem 2; an improvement of Brickell’s result 

There are two facts for this proof 

easy to get u and v satisfying ( 5 ) ;  we have 

there are no compatibility conditions as in Theorem 1. 

2) We have one more property of lattices M(z0) satisfying (3bis), 
which has to do with existence and not with uniqueness: 

If p-2 = nl/’+‘, the ball B(m, p2)  contains at least one point of the lattice. 

1) Once we get w = (wo, wl) of L(zo)  close to the point rn, it is very 

u = w o , ~ ~ v = w ~ + u ,  2 
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Taking ko = rnCl and kl = l /ko ,  one then must have: 

1 
2 

u + c = b - c =  - f E ,  

so we then take c = ( b  - u ) / 2 .  The proof ends then as in Theorem 1. 

Theorem 2 gives a n  improvement of Brickell’s breaking of the signature 
scheme: If one looks for an z such that x2 is in I(b, yo), one finds x in 
almost any prescribed I (u ,  zo) as soon as a > 1/3. 

111.3. Extensions to higher degrees 

Most of our uniqueness results can be generalized : a s  is shown in [9], 
we can recover, in polynomial probabilistic time, roots of polynomial 
equations of higher degree provided that we are given a suf3ciently good 
approximation of these roots. 
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