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consequence, the case p=4 with DES (important when RSA with a 
512-bit modulus is used €or signature) appears not to be secure 
enough. 
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INTRODUCTION 

The public-key algorithms, which appeared in 1976 [l], permit 
among other things the attachment of digital signatures to 
messages. These signatures are generally produced in two steps. 
Firstly, the message is condensed (or hashed) into a short 
value: the imprint. Secondly, the secret function of a 
public-key digital signature scheme (for example RSA [ Z ]  or its 
variants) is applied to the imprint. This method of producing 
Signatures is particularly convenient when the messages are 
long, because it would take too much time to apply the secret 
function to the entire message. 

The main problem is to design hash-functions which are both 
efficient to compute and cryptographically secure. The first 
point can be achieved by using (properly) a secret-key 
block-cipher algorithm f o r  which fast chips already exist (for 
example DES [ 3 ] ) .  The second point requires the hash-function 
to be collision-free, i.e. it must be computationally 
infeasible to find distinct messages which hash to the same 
value. For if such messages were found, then a fraudor could, 
in an undetected manner, replace a properly signed message with 
another bogus one which has the same imprint (and hence the 
same signature). 

Some general attacks on hash-functions have been described 
in the cryptanalytic literature [ 4 ] .  Some of them (Yuval's 
attack [ 5 ] ,  meet-in-the-middle attack [ 6 ] )  are closely related 
to the famous "birthday paradox" and its variants. This paradox 
can be stated as follows: let r be the number of the pupils in 
a classroom and let q(r) be the probability that at least two 
pupils of this classroom have the same birthday: what is the 

minimal value of r such that q(r) 2 - ? The answer is 23, much 

smaller than the value usually suggested by intuition (at least 
ours). 

1 
2 

A variant of the birthday paradox is as follows: let r be 
the number of the pupils in two different classrooms and let 
p(r) be the probability that at least two pupils belonging to 
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different classrooms have the same birthday; what is the 

minimal value of r such that p(r) 2 - ? The answer is now 17, 

but is somewhat more complicated to calculate, due to the fact 
that each classroom may itself contain some "twins". 

1 
2 

In [7], Rabin introduced an efficient hash-function based 
on DES. However it was later shown that this scheme was subject 
to a meet-in-the-middle attack. In order to thwart such an 
attack, Davies & Price have proposed an improvement to the 
Rabin scheme, which consists of repeating the message twice [ 8 ]  

-or, by extension, using two initializing values and passing 
the message twice- but the new schemes were broken by 
Coppersmith [ 61, using a "triple birthday attack". 

This paper aims at extending the Coppersmith attack to a 
general scheme using p initializing values and passing the 
message p times. It is organized in two main and almost 
independent parts: we first present a rigorous approach of the 
birthday paradox and its variant. We show in particular that, 
in both cases and under particular assumptions, the probability 
distribution of the number of "coincidences" converges towards 
a Poisson distribution, and we provide bounds for the error 
committed when using this limit to approximate a probability or 
a frequency distribution. 

Secondly, we use these approximations to prove by induction 
that the Coppersmith attack can be extended to break the 
general scheme and we provide the number of "constrained" 
message blocks and the running time as a function of the number 
of initializing values. 

AS a consequence, the 4-pass Davies-Price scheme with DES 
appears not to be secure enough (Coppersmith already claimed it 
f o r  the 3-pass scheme but without details). This result is 
particularly important when the imprint is obtained by 
concatenating the initializing values and the end-values. For, 
in that case, p=4 is the maximum number of possible passes if 
the modulus length of the signer is equal to 512 bits (a very 
usual length), 
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PART I: THE BIRTHDAY PARADOX 

This part provides a rigorous analysis of the birthday 
paradox and its variant, as stated in the introduction. After 
having defined some symbols and recalled some classical results 
(section l), we calculate (section 2 )  the exact probability to 
find i “coincidences“ in: 

a) a sample of size r drawn from a set of n elements with 
replacements (initial birthday problem): 

elements without replacements: and finally, 
b) in t w o  samples of sizes r and s drawn from a set of n 

C) in t w o  samples of sizes r and s drawn from a set of n 
elements with replacements (variant of birthday problem). 
(The calculation of the last probability is a combination of 
the two previous ones.) 

The asymptotical behaviour of these probabilities is then 
r2 s2 examined (section 3 )  in a particular but important case: - - 2n’ 2n 

and - have finite limits when r,s and n -.) +a; for  each 
problem, the limit-distribution is shown to be a Poisson 
distribution, and this convergence is illustrated by some 
numerical results (section 4 ) .  Moreover, we provide very Small 
bounds for the difference between a probability (or a frequency 
distribution) and its limit. This permits us to give some 
precise results (section 5) which will be used in the 
cryptanalysis of part II. 

rs 
n 

1.1 SYMBOLS AND DEFINITIONS 

Let us define some symbols : 

- El is the symbol €or a sample of size r (drawn with or 
without replacements) 
- IEl denotes the number of elements of the set E 
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n! - (9 is the notation for the binomial coefficient: (n-k) ! k! 
- let Q(x,y) be a quantity depending on x and y. Let L be a set 
of limit conditions on x and y. We denote by L-lim Q(x,y) the 
limit of Q ( x , y )  when the conditions of L are satisfied 
- the probability of the occurrence of the natural integer k in 
a Poisson distribution with parameter X is equal to: 

Xk Fh(k) = e-’ - 
k! 

- the frequency distribution at OL of a Poisson distribution 
with parameter X is equal to: 

U 
A ”  

9ih(a) = C e-’ - 
k=O k! 

Let us recall that in the discrete case, anc when a1 the 
possible events are equally probable, the probability P(E) of 
an event E is given by the ratio of the number of favorable 
events N(E) to the number of possible events N : 

“El P(E) = - 
N 

When drawings are made with replacements from a population 
Of Size n, we define the number of coincidences as the 
difference between the number of drawings and the number of 
distinct elements that have been drawn. 

1 . 2  CALCULATION OF PROBABILITY 

The meet-in-the-middle attack is related to the following 
problem, a variant of the birthday problem: 

The drawing with replacements of r elements from a 
population of size n yields a first sample E,. The drawing with 
replacements of s elements from the same population of size n 
yields a second sample Es. What is the probability that exactly 
i elements belong to the two samples? 

The probability P(IE,n EsI=i) that there are i distinct 
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elements in the intersection of the two samples is denoted by 
P(n,r,s,i) and is equal to: 

r-i s-i 
P(n,r,s,i) = P(u u {IErl=r-k, IE,I=s-l, IErn E,I=i}) 

k=O 1=0 

r-i s-i 

k=O 1=0 
=c c p( I E r n  Ee I =i/ I Er I =r-k, I Es I =s-1) IP( I Er I =r-k, I E, I =s-l) 

r-i s-i 
- -c I?( lErn Es I=i/lEr I=r-k, IE, I=s-1)  P (  IEr I=r-k) IP( IES I=s -1)  
k=O 1=0 

(the last equality stands since the drawings are independent). 
Hence, 

r-i s-i 

k=O 1=0 
P(n,r,s,i) = c c Q(n,r,k) H(n,r-k,s-1,i) Q(n,s,l) 

where : 
- Q(n,r,k) = P(IErl=r-k) denotes the probability that k 
coincidences occur in the sample with replacements of r 
drawings from a population of size n, 
- H(n,r-k,s-1,i) = P (  IErn Es I=i / I E r  I=r-k Ti IE, I=s-l) is the 
probability that exactly i distinct elements have been drawn in 
the two (independent) samples (drawn with replacements, of 
respective sizes r and s )  with respectively r-k and s-1 
distinct elements: in other words, H(n,r-k,s-1,i) is the 
probability that the intersection of two independent samples 
drawn without replacement of respective sizes r -k  and s-1 is 
made up of exactly i distinct elements. 

1.2.1 EVALUATION OF PROBABILITY H 

We first evaluate H(n,r,s,i). The problem can be stated as 
follows: 

The drawing without replacement of r elements f r o m  a 
population of size n yields a first sample Er . The drawing 
without replacement of s elements from the same population of 
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size n yields a second sample Es. What is the probability that 
the intersection of the two samples is made up by exactly i 
elements? 

The first sample yields r distinct elements drawn from n 
elements. Thus, i elements are drawn from among the r elements 
of the first sample and s-i among the n-r elements that have 
not been drawn. The probability distribution is the 
hypergeometric distribution: 

1.2.2 EVALUATION OF PROBABILITY Q 

We now evaluate Q(n,r,c), related to the birthday problem. 
The drawing with replacements of r elements from a 

population of size n yields a sample Er . What is the 
probability Q(n,r,c) that c coincidences occur in the sample? 

The probability Q(n,r,c) is equal to the ratio of the 
number of favorable events to the number of possible events. If 
rln and c<r-n then Q(n,r,c) = 0. If rln, or if r2n and c2r-n, 
then : 
- the number of samples with replacements of size r drawn from 
a set of size n is equal to nr, 
- the r-c distinct elements drawn from among the n elements can 

be chosen in (mc) ways, 
- the c coincidences are drawn from among the r-c elements. We 
choose from among the r drawings of the sample a1 ones which 
correspond to the element n"1, then z2 ones from among the 
remaining r-al which correspond to the element n"2, etc. up to 
the r-c distinct elements of the sample. There are 
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(r-c)-vector of the set %={(a,, ..., a,-,), with c+l L a j 2  1 for 
all j, having a sum equal to r}. The product of these binomial 

coefficients can be simplified as: r! 
a, !. . .a,-= ! 

The number of favorable events is obtained by taking the 
sum over the set %. Therefore the probability is: 

Remarks : 

a) By direct computation, the probability that r distinct 
elements are drawn is also equal to the ratio of the 
n(n-1). ..(n-r+l) favorable events to the nr possible events. 

Hence: Q(n,r,O) = . For the "birthday paradox", this 

formula yields the number r: for n=365, r=23 is the lowest 
integer such that: Q(365,r,0) < 0 . 5 .  

n! 
(n-r)! nr 

b) Using, as in [91,  the Poincari! formula, one obtains a 
formula which is easier to program. Let A, denote the event 
"the element k is not drawn". Then the event "r-c elements in 
the sample Er" can be written as: 

n 
{IE, I = r-c} = 

Ci, , - . . ,in F9'r-c 

where F'=-, is the set, having (rye) elements, of partitions of 
{I, ..., n} in sets of r-c, and n-r+c elements. Using the 
relation P(MB) = P ( A / B )  P(B), it follows: 
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The second term is easy to compute; for the first one we 
can use the Poincare formula, since: (P(ACn B C )  = 1 - P ( A  U B). 

Since the probability does not depend on the partition of 
{1, ..., n), it follows that: 

This formula differs from the one of [9] because the 
definitions of the coincidences are not the same. 

1.3 ASYMPTOTICAL BEHAVIOUR 

We now study the asymptotical behaviour of P(n,r,s,i) when 
r2 S Z  rs - -t A ,  - - P, - - v ,  r,s,n + +-. We show that Q(n,r,c) 2n 2n n 
converges towards a Poisson distribution with parameter A .  

Combining this result with the well-known convergence of the 
hypergeometric distribution of parameters n,r,s towards a 
Poisson distribution with parameter A ,  we finally prove that 
P(n,r,s,i) converges also towards this distribution. In other 
words, the number of elements belonging to both Er and E, is 

only slightly dependent on the fact that the samples have been 
drawn with or without replacements. This is due to the fact 
that we expect a very small number (about A )  of coincidences 
inside each sample. 

Before starting, we recall that f o r  any natural integer I 
and when N,K -.+ +OO : 

K2 KZ -- -- 
K3 N! N !  N K - I e  2N 
N2 (N-K) ! ( N - K + I  ) ! 

If - ---+ 0 then - - NKe 2N and 
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More precisely, one can 

KZ K K3 

e 2N 2N 3N2 2 
- -  + - - -  

N 

K 1  prove that, for - < - *  
N 2 ’  

1.3.1 THE CONVERGENCE OF H 

rs 
If {n + u ,  r,s,n -+ +m), it is well known [9] that the 

limit distribution of H(n,r,s,.) is a Poisson distribution: 

rs 
n Wi fixed, if - -+ “ for r,s,n + +m, then H(n,r,s,i) -+ F’,(i) 

In particular, H(n,r,s,O) + e - ” .  

Remark : 

In order to obtain bounds on the error for the probability 
P(n,r,s,i) with respect to the Poisson distribution with 

parameter u = - , we first need to compute bounds relatively to 
H(n,r,s,i). Using the inequality (l), we obtain: 

rs 
n 

Therefore the error on the frequency distribution function 
5, related to H, with respect to the frequency distribution 
function F., related to the Poisson distribution with parameter 

rs 
v = -  is: n 

Iff(a) - F,(a)l I - (r+s 1 a2 + 3(r+s) - a + 

sr2+rs2 
n2 rs n 

Example: If n= Z 6 4 ,  r=s= 2 3 6 ,  then l f f (256)  - F, , , (256)1  5 
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1.3.2 THE CONVERGENCE OF Q 

We study here the asymptotical behaviour of Q(n,r,c) if 
r2 /2n --. X ~ when r, n - +=. 

The most important part of Q(n,r,c) comes from event "there 
are only pairs of coincidences". We wish to evaluate the 
contribution of every configuration of coincidences. Remember 
that: 

We are going to divide ft into some interesting subsets.In 
an event a of 3, only at most c components are not equal to 1 
(if there are exactly c such components, then a j =  2 for every 
index and the others are equal to 1). 

Let o! be an (r-c)-vector of 3 with k components which are 
not equal to 1. A s  the product a,  ! . . .a,- ! is invariant by 

permutation, then the ratio r!/al will appear 

times in the sum. So 

k 
where 5$ = { ( al , . . . ,ak )E  { 2, . . . , c+l Jk ;c a. =c+k, and a ,  5. . .<a, 1 - 

J j =1 

r! 
(r-c-k) ! 

For c fixed, and k<c, - r c l k ,  when r + +8. Hence: 

n! 2= c - - 
nr ( n-r-c) ! 2c c! 

with 
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( Y c =  2-', 
only element of Tic ).  

for the c-vector defined by orj = 2, j = l , .  . . ,c is the 

Finally, using obvious notation: 

n! r2 
Q(n,r,c) - - (1 + Z)  nr (n-r+c)t . 2c c! 

Hence the convergence: 

I 
r2 
2n 

Wc fixed, if - -+ X for r ,  n -+ +w, then Q(n,r,c) + F,(c) 

The limit is a Poisson distribution with parameter 

r, n++w 2n' 
r2 

X = lim - 

Remarks : 

a) The probability of event "at least a coincidence is not 
a pair" can be dominated by the probability of event "an 

element is drawn at least three times", that is . so: 

Y r3 - 5 -  
c=l nr(n-r-c)! (r-2c)! 2'c! 6nZ 

n! r! 

b) Using the inequality (l), we obtain the inequality on 
Q(n,r,c) related to the Poisson distribution Fk with parameter 
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W e  can e v a l u a t e  t h e  p r e c i s i o n  of approximation of f requency  

d i s t r i b u t i o n  F of t h e  Q d i s t r i b u t i o n  by t h e  frequency 

d i s t r i b u t i o n  FA of t h e  Poisson d i s t r i b u t i o n  wi th  parameter  

3r r3 a + -  
5 
r n 

IF(&) - F , , ( ~ r ) l  I - a 2 +  - 
3n2 

Example: I f  n = Z 6 ' ,  r = Z36, then lF(256) - F128(Z56)l I Ti' 

1.3.3 THE CONVERGENCE O F  P ( n , r , s , i )  

-+ F, r - +-, r2 S2 

2n L e t  L be t h e  s e t  of  condi t ions  cz;;  -+ A ,  - 
s -. +m, n -. +a>. We s t u d y  t h e  L - l i m i t  of :  

r-i s-i 

k=O 120 
P ( n , r , s , i )  = c c Q ( n , r , k )  H ( n , r - k , s - l , i )  Q ( n , s , l )  

1) Using (1) we o b t a i n  t h e  fol lowing bounds f o r  H ( n , r - k , s - 1 , i ) :  

H ( n , r , s , i )  'pi ( n , r , s , i , k , l )  I H(n,r-k,s-1,  i ) ,  
k+ 1 -~ 

with p i ( n , r , s , i , k , l )  = * ( r , i , k ; s , i , l )  q ( n , r , k ; n , s , l )  e n-r -s  

1 1 2  - - - -  k k2 - - - -  
where * ( r , i , k ; s , j , l )  = e r-i (1 - $)k e '-j (1 - $', 
and : 

H ( n , r - k , s - l , i )  I H ( n , r , s , i )  v = ( n , r , s , i , k , l ) ,  

( k + l  ) 2  r+s - + 2 ( k + l ) -  
with p s ( n , r , s , i , k , l )  = T ( n , r , i , k )  ?!(n,s , i , l )  en-r-s n 

k k + - + -  k2 - 
where ? ( n , r , i , k )  = er-i r-i n-r. 
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For k and 1 f i x e d ,  we have: 

L - l i m  'pi ( n , r , s , i , k , l )  = L - l i m  9, ( n , r , s , i , k , l )  = 1. 

2 )  S ince  t h e  terms of t h e  sum a r e  p o s i t i v e ,  for a and P f i x e d :  

P ( n , r , s , i )  2 c c Q ( n , r , k )  H ( n , r - k , s - 1 , i )  Q ( n , s , l )  
k=O 1=0 

a P 

k=O 1=0 
1 H ( n , r , s , i )  v i ( n , r , s , i , a , P )  1 Q ( n , r , k )  Q ( n , s , l )  

Taking t h e  L - l i m i t :  

L - l i r n  P ( n , r , s , i )  2 L - l i r n  H ( n , r , s , i )  F A ( = )  F + ( P )  

3) The double sum i s  broken i n t o  four  p a r t s ,  and we o v e r  

e s t i m a t e  H ( n , r - k , s - 1 , i )  by 1 (it  i s  a p r o b a b i l i t y )  for kzz or 
12P, and by a f u n c t i o n  of H ( n , r , s , i )  for t h e  l a s t  double  sum. 

Therefore ,  P ( n , r , s , i )  is bounded by: 
a P  

k=O 1=0 
H ( n , r , s , i )  (P, ( n , r , s , i , a , P )  Q ( n , r , k )  Q ( n , s , l )  

By t a k i n g  t h e  L - l i m i t ,  we g e t :  
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are 

v =  

4 )  If Q and f3 tend to + m, the frequency distributions tend to 
1 and the probabilities of drawings with or without replacement 

identical: 

I:-lim P(n,r,s,i) = L-lim H(n,r,s,i) 

rs 
n If we add to I: the condition - - v of I .3.1, we get: 

r2 S2 rs 
2n 2n n 

v for r,s,n + fa tli fixed, if - -+ A,  - -+ w ,  --+ 

P(n,r,s,i) -+ 9,(i) I then: I 
I I 

The limit is a Poisson distribution of parameter 

1 im - . In particular for r=s=k\r;;, we get a Poisson rs 
r,s,n++ao 

distribution with parameter k2. 

Remark: 

Using the bounds on H, together with the previous 
inequalities, we obtain that the lower bound f o r  P(n,r,s,i) is: 

and the upper bound is: 

where here Fr is the frequency distribution of the Q(n,r,.) 
distribution, and for arbitrary o! and P .  
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C 

c = o  
c = l  
c = 2  
c = 3  
c = 4  
c = 5  

1.4. NUMERICAL RESULTS 

Q( 100,10,c) Q(256,16,c) Q(625,25,c) To, (C) 

0.628 0.619 0.611 0.607 
0.310 0.308 0.307 0.303 
0.056 0.064 0.068 0.076 
0.004 0.007 0.009 0.013 
0.000 0.000 0.000 0.002 
0.000 0.000 0.000 0.000 

Some values of Q(n,r,c) and P(n,r,s,i) have been computed using 
the formulas of 91.2 (the formula used for Q was taken from 
remark b of 91.2.2). The numerical results illustrate the 
convergences when r = s = fi . The corresponding values of the 
Poisson distribution with parameter 0.5 and 1 are given for 
comparison. 

P(625,25,25,i) 

0.365 
0.379 
0.182 
0 . 0 5 3  
0.010 
0.001 
0.000 
0.000 

F1 (i) 

0.368 
0.368 
0.184 
0.061 
0.015 
0.003 
0.001 
0.000 

i = l  
i = 2  
i = 3  
i = 4  
i = 5  
i = 6  
i = 7  

P( 100,10,10, i) 

0.366 
0.405 
0.179 
0.041 
0.005 
0.000 
0.000 
0.000 

P(256,16,16,i) 

0.367 
0.391 
0.182 
0.049 
0.008 
0.001 
0.000 
0.000 
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1.5 SOME USEFUL RESULTS FOR PART It 

In the next part, some cryptanalytic attacks are exposed, 
based on the paradoxes we just have studied in previous 
sections. The probability of success of these attacks is 
calculated according to the numerical results we provide in 
this section. 

We define the number nx of twins between the samples 

Er =(xl,. . . ,xr ) and E, =(y, , . . . . ,ys ) as the number of pairs (i,j ) 
such that xi = yj . Since nc 2 I E r n  E, I ,  we have: 

P(nc 2 i) 2 [P( l E r n  Es12i) 
In the particular case i=l, the two probabilities are equal. 

SO, the meet-in-the-middle attack exposed in section II.1 
has a probability of success S equal to ff( l E r n  E, 121) with 

r = s a 3 '  and n=264 (hence u =  - =1) and : rs 
n 

S = 1 - P(n,r,s,O) = 1 - 9,(0) + E = 1 - e-l+ E 2 0.632 

(because the bounds provided in sections 1.2 and 1.3 allow us 
to show that I &  1110- ) . 

If we now want the probability of success S to be 1 1-10-4, 
by changing only r and s (but preserving r=s both powers of 2) ,  

we can choose r=s=234 because u=16 and: 
S = 1 - F I 6 ( O )  + E '  = 1 - .-I6+ E '  2 1-10-4 

(because I €  ' lS10-5 ) .  

The attack provided in section It.3 also needs an integer x 
and two other integers r and s ,  equal, powers of two, as small 
as possible and such that x4 2 r and P(nc 2 x) 2 1 - . The 
minimal choice €or r (and s )  is 237 and we can take x=609  (the 
smallest integer whose 4-th power is greater than 237) since: 

f'(nc 2 6 0 9 )  1 [P( lE,n Es 11609) = 1-F,,24(608)+E". 
Now, an easy lemma shows that lnFv (i) I [i-u+i( lnu -1ni) 1, SO 

that F l O z 4  ( 6 0 8 )  I and I &  " I can be shown to be smaller 
than . Hence, we can conclude that: P(nc 2 6 0 9 )  2 1 - 
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PART 11: THE BIRTHDAY ATTACK 

This part provides a generalization of Coppersmith’s attack 
to a general scheme using p initializing values and passing the 
message p times. We first present the Rabin scheme and its 
evolutions (section l), then present our main result (section 
2) and its proof (section 3). 

II.1 THE RABIN SCHEME AND ITS EVOLUTIONS 

For continuity, we use (almost) the same notations (and 
sometimes the same expressions!) as Coppersmith did in 161. In 
particular, E K ( X )  denotes throughout the paper the DES 

encipherment of the cleartext x under the key K and D , ( Y )  

denotes the decipherment of the ciphertext Y under the key K. 

In the Rabin scheme, the message JI is divided into n 56-bit 
blocks Mj , used as keys fo r  the iterated encipherment of some 
initial value H, . The final encipherment, along with the 
initial value, forms the hash value: 

H, = random 

H. = E M . (Hj - 1 
3 J 

RSA-Sign( H, , Hn ) ! l l j l n  

This scheme is subject to a so-called “meet-in-the-middle 
attack”, whose invention is attributed to Merkle by Winternitz 
and which works as shown below. F o r  convenience, if M is a 
message made up of message blocks MI, ...., M,, we will use the 
following notation: 
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The meet-in-the-middle attack allows the opponent, given a 
message Jl and its hash value (Ho,Hn) , to construct a bogus 
message N' without affecting the hash value. The opponent can 
then replace Jl with Jl' without being detected, since the 
signatures of both messages are identical. 

In order to achieve this, the opponent generates 232 
messages A, and M, of arbitrary length (the shorter they are, 
the faster the attack is). He may for example create a few ( 3 2 )  

variations of a unique message and combine these variations 
together. F o r  each message A, (respectively A r ) ,  he computes: 
H, = EN, (Ho ) (respectively Hr = DJ.~, ( Hn ) ) ,  sorts and Stores 
these values. 

If E is supposed to have good "random" properties, then the 
set of all the H, and the set of a l l  the H, can be considered 

as two "random" and "independent" samples of Z3 drawings with 
replacements from a population of size 2 " .  Therefore, as shown 

I in Part I, the probability is greater than - (about 1-e-') that 

a coincidence exists (i.e. : 31,r such that H, = Hr 1. This 
coincidence will appear while sorting the values. 

2 

Let now Jl be the concatenation of A, and Jlr for these 
particular values of 1 and r. Then: 

We say that H, and Hn have been "linked up" or "joined up" 
by A. In this way, the opponent succeeds in constructing a 
bogus message Jl'. 

This attack is plausible because the total number of 
Operations is not too large, considering today's technology: 
for example, if the attacker chooses single-block messages 4, 
and Hr (in order to speed up the computation), he will have to 
perform 2.232 = 233 = 1O1O encipherments. To that must be added 
the time taken to sort values H, and H,, which can be evaluated 
to about 238 = 3.1011 operations. No doubt the high-speed and 
large-memory computers available today can achieve this (and 
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< 

even more). 

/ 

H, = random 

H, = E,. ( H j v l  1 

H n + j  = EMj(Hn+j-1) 

J 

RSA-Sign( H, , H, ) 

\ 

< 

l l j l n  

l l j l n  

/ 

H, ,HA = random 

H. = E H ( H j - l )  
J 

H i  - - ( H J - l )  
J 

RSA-Sign( H, , Hn ,HA , H i  ) 
\ 

A variant of this scheme consists of choosing two 
initializing values and also passing the message twice: 

Of course, the Davies-Price scheme is easier to break than 
the last one (it suffices for the enemy to choose H i  = Hn 1. At 
Crypto'85 [6], Coppersmith showed that a "triple birthday 
attack" permits the attacker to construct bogus messages in 
both above schemes, with not much larger computational 
requirements than fo r  the Rabin scheme. He also claimed that 
the Davies-Price scheme remained insecure with three passes 
instead of two, but without providing details. 

In the next section, by generalizing Coppersmith's attack, 
we show rigorously that the Davies-Price scheme and its 
extension are insecure even if the message is passed four 
times, provided the enemy can accept a number of encipherments 
in the magnitude range of 2 4 6  and messages of length 14 Kbytes. 
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II.2 THE GENERALIZED SCHEME 

We now consider the following general scheme, with p 
initializing values: 

Hi ,Hi, . . . , Ht; random 
Hf = EM. (Hi-,) 

RSA-Sign( Ht ,HA, . . . , Ht; , 
J 

For p=l, it becomes the Rabin scheme: for p=2, it becomes 
the Davies-Price scheme ( o r ,  rather, its strong variant). The 
question is: does Coppersmith's attack extend to p greater than 
2? The answer is yes. More precisely, we claim the following 
result: 

A message of 2.10p-1 blocks joining the Ht and the HA for 
each  i in  [l,p] can be found using less t h a n  233 .lop 
encipherments with probability very close t o  1. 

Before providing the proof in the following section, we 
first give a few comments about this result: 

a) The above values result from a trade-off between four 
different parameters: the degree of significance placed on the 
message obtained, the length of this message, the number of 
encipherments and the probability of success. Of course, it is 
possible to improve some of them but at the detriment of the 
others. For example, the enemy can get a "more meaningful" 
message, which will necessarily becomes longer. Or he can get a 
shorter message but the number of encipherrnents will increase 
etc. 

b) The number of blocks indicated is only, other things 
being equal, a minimum: these are "constrained blocks" 
generated by the attack, on which the attacker has no (or very 
little) control. But he can design his attack in such a way 
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that the final message will also contain an arbitrary number of 
othgr blocks completely selected by him. The proportion of 
bogus blocks can, in that way, be made as small as wanted 
(hence less visible!). 

c) Though it is highly unlikely, it could theoretically 
occur that the attack as described below might not succeed. In 
practice, it suffices to (slightly) increase the number of 
trials at the step where the attack fails in order to render it 
effective. 

d) Of course, the time of sorting must be added to the time 
of enciphering in order to get the total computation time. But 
a close look at the proof shows that the time of sorting grows 
much slower than the number of encipherments (the ratio of the 
geometric progression is only 3 ) .  

e) if E is replaced with a block-cipher algorithm whose 
block-length is L, the number of encipherments becomes 
L -+ 1 

22 . l o p  . 

n.3 THE CRYPTANALYSIS 

We come now to the proof of our result. In fact, we will prove 
the more precise following theorem: 

Theorem: Let p be an integer 2 1, let ( A 1 ,  .. . , A p )  be distinct 
64-bit values and let (B1, ..., B p )  be distinct 64-bit values. 

1) A message M of up blocks can be found using tp encipherments 
(or less) with probability Q,, which is such that : 

EM ( A i  ) = Bi l l i l p  

where : 
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up = 2.1op-1 

f o r  p = 1 

2 3 6  (3p-2+ 4.10~-2 

3 p  
Q, 2 1 - -  

2.104 

2 )  

encipherments (or less) with probability Qp such that : 

609 distinct messages M of up blocks can be found using ti 

where : 

3 p  
Q i Z l - -  

2.104 

Comments : 

a) The result claimed in the previous section is clearly a 
consequence of the part 1 of this theorem (that t, is less than 

233.10p is very easy and figures in the proof). 

b) The apparition of the integer 609 (somewhat mysterious!) 
has been explained in section 1.5. 

c) The proof below implicitly assumes (as always in 
birthday attack literature) that good encipherment algorithms 
have good random properties. In particular, f o r  any given 
distinct inputs X and Y, the values taken by E , ( X )  and E , ( Y ) ,  

when K runs through the key space, should be independent 
events. 
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d) if E is replaced with a block-cipher algorithm whose 
block-length is L, the proof remains almost unchanged and the 
part 1 of the theorem is still valid after having replaced 235 

L L -+3 -+ 4 
with 22 , and 236 with 22 in t, . 

Proof: by induction on p .  

The meet-in-the-middle-attack, exposed in section E.1, permits 
the enemy to find (as already shown in section 1 .5 ) :  

1) at least one two-block junction between A, and B, (i.e. a 

message Jl such that E&(A,)  = B 1 )  using 2.234 encipherments with 

probability Q12 l-10-4. 

2) at least 609 two-block junctions between A, and B, using 

2.237 encipherments with probability Q; 2 l-10-4. 

so : 
u1 = 2 
t, = 235 t; = 238 

Q, 2 1-10-4 Q; I 1-10-4 

assumed to be true at rank p 

Let ( A 1 , . . . . , A p + , )  be p+l distinct values. 
Let (B, , . . . . , B p  + , ) be p+l distinct values. 

We now have to make Ai and Bi meet, for  each i in [l,p+l] 
with the same message $ + l .  This can be done in three steps: 

Step 1: Choose arbitrarily Z,, ...., Z p  p distinct values. Then 
find a set & of 609 up -block messages Nj which link up the Zi 
to themselves for each i: 
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EJYI~ (Z, ) = Zi for all i and all j. 

From the induction hypothesis, the set E can be found using 
ti encipherments with probability Qi (note that this step, 
called "precomputation" by Coppersmith, needs only to be done 
once and can be used for any Ai and B, ) . 

Step 2: Find a u,-block message J.1, such that A, and Zi meet f o r  
each ) . This message can be found Using 
t,encipherments with probability Q,. 

i and let C, = E% ( A p +  

Find also a up-block message A, such that Z, and 3i meet 
for each i and let C, = D A , ( B p + , ) .  

Step 3.1: (It remains now to link up C and D while "preSerVing" 
each Z, ) 

Perform a meet-in-the-middle attack between C and D using 
only elements of €. More precisely: 
let .MI = ( M l , $ , A 3  ,A, 1 E E4 and 

let M, = (M5,.M6,.M7,.M8) E E 4  and 
H, = E J . ~ ~  (C, ) 

Hr = DNr (Cf ). 

A s  there are ( 6 0 9 ) 4 >  234 elements in E 4 ,  we can obtain two 
random and independent samples of 234 H, and 2 3 4  Hr . We will 
therefore find a coincidence between the two samples with a 
probability of Q , .  

In other words, we can find one junction J.1 between C, and 
C, preserving each Z, ,  constituted of 8up blocks and using 
4 . 2 .  23 up encipherments . 

Thus, the message J tp+l  which is equal to the concatenation 
of A,, A and JI, links up A, to Bi fo r  each i in [l,p+l]. 

The total number of blocks of J$,+l is: 
- - up + 8uP+ up = 10 up up + 1 

t, + 1 = ti + 2tp + 237up 
The number of encipherments is: 
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The probability of success is : 

Q,,, = Q i  Qi 8, 

S t e p  3.2: In step 3.1, we do not need ali the elements of E4 to 
find a coincidence, since 234 (at each side) will probably 
suffice. If we now use all the (609)4 2 237 elements of e 4 ,  we 
will find (at least) 609 junctions with probability Q;. 

The number of encipherments is: 
t i c 1  = t;, + zt, + 240up 

The probability of success is: 

Q,,, = Qi Qi Q; 

It remains now to solve the recurrence relations in 
up, t,, ti, Q, and Qi - 

The sequence (up) is geometric and we have immediately : 

u p =  U , . ~ O P - ~  = Z.lOP-l for any p 2 1 

Let (ap ) be the sequence equal to ti + 2tp - We have: 
ap+1- - t,+1 + 2tPtl= 3aP+ 240up+ 23aUp= 3ap+ 23810, 

F o r  p = 0 this equation becomes: 
236 

el = 3a, + 238, so we put: a, = - 
3 

So for p 2 2 : 

= 236 3 p - 2 +  4 . 1 o p - 2  1+- 
t,= P - 1  + 2 3 7up-l [ [ :” [1-[&3)p-1])) 
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Now let q = 1 - We have: 

Q, 2 q * Q2 2 q4 * Q3 2 q 1 3 . . .  

3” -1 - 
3 p  10-4 2 1 - -. 2 > I - -  3P-1 

2 2.104 
More generally : Qp 2 q 

Note that Q, 2 0.995 for  p = 4. 

CONCLUSION 

This paper generalizes the birthday attack presented by 
Coppersmith at Crypto’85. 

In the first part, we analyse the mathematical aspects of 
the birthday problem, fo r  which exact and asymptotical results 
(with bounds) are provided. In particular, under some natural 
hypothesis, the underlying distributions are proved to converge 
towards Poisson distributions. 

In the second part, the Coppersmith attack is generalized 
to schemes which cycle through the message blocks p times 
(instead of twice). A lower bound for the probability of 
success of the attack is given. F o r  example, if DES is used and 
if p = 4 ,  a bogus message of 14 Kbytes can be forged with (almost 
Surely) less than 2 4 7  encipherments. A s  a consequence, the 
4-pass Davies-Price scheme appears not to be secure enough. 

This last result is of importance when the signature is 
obtained by signing the initializing values and the end-values. 
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For, in that case, p=4 is the maximum number of possible passes 
if the modulus length of the signer is equal to 512 bits (a 
very usual length). 
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