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Abstract. It is clear that automatic compiler support for energy op-
timization can lead to better embedded system implementations with
reduced design time and cost. Efficient solutions to energy optimiza-
tion problems are particularly important for array-dominated applica-
tions that spend a significant portion of their energy budget in executing
memory-related operations. Recent interest in multi-bank memory ar-
chitectures and low-power operating modes motivates us to investigate
whether current locality-oriented loop-level transformations are suitable
from an energy perspective in a multi-bank architecture, and if not, how
these transformations can be tuned to take into account the banked na-
ture of the memory structure and the existence of low-power modes. In
this paper, we discuss the similarities and conflicts between two com-
plementary objectives, namely, optimizing cache locality and reducing
memory system energy, and try to see whether loop transformations de-
veloped for the former objective can also be used for the latter. To test
our approach, we have implemented bank-conscious versions of three
loop transformation techniques (loop fission/fusion, linear loop transfor-
mations, and loop tiling) using an experimental compiler infrastructure,
and measured the energy benefits using nine array-dominated codes. Our
results show that the modified (memory bank-aware) loop transforma-
tions result in large energy savings in both cacheless and cache-based
systems, and that the execution times of the resulting codes are com-
petitive with those obtained using pure locality-oriented techniques in a
cache-based system.

1 Introduction

In programming for many embedded devices, one important aspect is to min-
imize the energy consumption. As off-chip main memories incur a significant
energy and performance penalty when accessed, it is particularly important to
perform user and/or compiler level optimizations to reduce energy consumption
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and improve cache locality (if a cache exists in the system). While the impact
of loop-level compiler optimizations on performance is well understood (e.g.,
see [12] and the references therein), very few studies (e.g., [1]) have tried to ad-
dress the effect of these transformations on energy consumption. Investigating
the energy impact of loop optimizations is important, because this is the first
step towards developing energy-oriented compiler optimizations.

Improving memory energy consumption is particularly important in embed-
ded systems that execute image and video processing applications. These appli-
cations manipulate large arrays of signals using nested loops, and spend signifi-
cant portions of their execution time in executing memory-related operations [1].
Large off-chip memories that hold the arrays manipulated by these codes exhibit
high per access energy cost (due to long bitlines and wordlines). A recent trend
in memory architecture design is to organize the memory as an array of multiple
banks (e.g., [11]) instead of a more traditional monolithic single-bank architec-
ture. Each bank contains a portion of the address space and can be optimized
for energy using an appropriate mix of low-power operating modes. More specifi-
cally, a bank not used by the current computation can be placed into a low-power
operating mode. Also, using smaller banks help reduce per access energy cost.
Recent work has addressed how such low-power operating modes can be man-
aged at software [3,6] and hardware [3] levels. The impact of array placement
strategies and two loop optimizations (loop splitting and loop distribution) on
a banked off-chip memory architecture has been presented in [2].

The focus of this paper is on reducing the energy consumption of a multi-bank
memory system without sacrificing performance significantly. In particular, we
focus on array-dominated applications that can be found in domains such as em-
bedded image/video processing and scientific computing, and investigate several
loop transformation techniques to see whether they are successful in reducing
the memory system energy. We address the problem for both a cacheless system
and a system with cache memory. In a cacheless system (which is used com-
monly in real-time embedded applications), we study the energy impact of clas-
sical locality-oriented loop-level techniques and show that slight modifications
to them can bring large energy benefits. In a cache-based system, we attempt
to modify the data locality-oriented techniques to take into account the banked
nature of the off-chip memory. To test our approach, we have implemented bank-
conscious versions of three loop transformation techniques (loop fission/fusion,
linear loop transformations, and loop tiling) using the SUIF compiler infrastruc-
ture [5], and measured the energy benefits using nine array-dominated codes.
Our results show that the modified loop transformations result in large energy
savings, and that the execution times of the resulting codes are competitive with
those obtained using pure locality-oriented techniques.

The rest of this paper is organized as follows. Section 2 introduces the mem-
ory architecture assumed, and revises the fundamental concepts related to low-
power operating mode management. Section 3 discusses the relationship between
cache locality and memory energy consumption. Section 4 discusses the impact
of three different loop-level transformations (iteration space tiling, linear loop
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transformations, and loop fusion and fission) on memory energy, and explains
how these optimizations can be modified to take into account the banked na-
ture of the memory system. Section 5 presents experimental results showing the
energy benefits of loop transformations. Section 6 concludes the paper with a
summary.

2 Memory Architecture

In this work, we focus on an RDRAM-like off-chip memory architecture [11]
where off-chip memory is partitioned into several banks, each of which can be
activated or deactivated independently from others. In this architecture, when
a bank is not actively used, it can be placed into a low-power operating mode.
While in a low-power mode, a bank typically consumes much less energy than
in active (normal operation) mode. However, when the bank is asked to service
a memory request, it will take some time for the bank to come alive. The time
it takes to switch to active mode (from a low-power mode) is called resynchro-
nization overhead (or reactivation cost). Typically, there is a trade-off between
energy saving and resynchronization overhead. That is, a more energy-saving
low-power operating mode has also a higher resynchronization overhead. Thus,
it is important to select the most appropriate low-power mode to switch to when
the bank becomes idle. Note that different banks can be in different low-power
modes at a given time.

In this study, we assume four different operating modes: an active mode (the
mode during which the memory read/write activity can occur) and three low-
power modes, namely, standby, napping, and power-down. Current DRAMs [11]
support up to six power modes with a few of them supporting only two modes.
We collapse the read, write, and active without read or write modes into a single
mode (called active mode) in our experimentation. However, one may choose to
vary the number of modes based on the target DRAM architecture. The energy
consumptions and resynchronization overheads for these operating modes are
given in Figure 1. The energy values shown in this figure have been obtained
from the measured current values associated with memory modules documented
in memory data sheets (for a 3.3 V, 2.5 nsec cycle time, 8 MB memory) [10]. The
resynchronization times (overheads) are also obtained from data sheets. Based
on trends gleaned from data sheets, the energy values are increased by 30% when
module size is doubled.

An important parameter that helps us choose the most suitable low-power
mode is bank inter-access time (BIT), i.e., the time between successive accesses
(requests) to a given bank. Obviously, the larger the BIT, the more aggressive
low-power mode can be exploited. Then, the problem of effective power mode
utilization can be defined as one of accurately estimating the BIT and using this
information to select the most suitable low-power mode. This estimation can be
done by software using the compiler [3,2] or OS support [6], by hardware using a
prediction mechanism attached to the memory controller [3], or by a combination
of both. While the compiler-based techniques have the advantage of predicting
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Energy Resynchronization
Consumption (nJ) Overhead (cycles)

Active 3.570 0
Standby 0.830 2
Napping 0.320 30

Power-Down 0.005 9,000

Fig. 1. Energy consumptions (per access) and resynchronization times for dif-
ferent operating modes. These are the values used in our experiments

BIT accurately for a specific class of applications, runtime and hardware based
techniques are able to capture runtime variations in access patterns (e.g., those
due to cache hits/misses) better.

In this paper, we employ a hardware-based BIT prediction mechanism whose
details are explained in [3]. The prediction mechanism is similar to the mecha-
nisms used in current memory controllers. Specifically, after 10 cycles of idleness,
the corresponding bank is put in standby mode. Subsequently, if the bank is not
referenced for another 100 cycles, it is transitioned into the napping mode. Fi-
nally, if the bank is not referenced for a further 1,000,000 cycles, it is put into
power-down mode. Whenever the bank is referenced, it is brought back into
the active mode incurring the corresponding resynchronization overhead (based
on what mode it was in). We focus on a single program environment, and do
not consider the existence of a virtual memory system. Exploring the (mem-
ory) energy impact of loop transformations in the presence of a virtual address
translation is part of our future planned research.

3 Cache Locality vs. Off-Chip Memory Energy

Many optimizing compilers from industry and academia use a suite of techniques
for enhancing data locality. Loop transformation techniques [12] are particularly
important as there is a well-defined data dependence and loop re-writing (code
re-structuring) theory behind them and several efficient implementations exist.
Almost all of compiler-based locality-enhancing techniques take some cache spe-
cific parameters (e.g., size and associativity) into account and introduce some
extra loop overhead and might cause some degradation in the instruction cache
performance (as they typically increase code size and reduce instruction reuse).
If there exists no cache in the memory hierarchy, it might not be advisable to
employ locality-oriented loop transformations as they do not bring any benefit;
instead, they increase loop execution overhead. However, if the memory system
is partitioned into banks, applying loop transformations still makes sense (i.e.,
even if there is no cache) as we can cluster loop iterations (through loop transfor-
mations) such that the memory accesses in a given time period are localized into
a small set of banks. This obviously allows the system to place more banks into
low-power operating modes. One of the questions that we try to address in this
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paper is to see whether the classical cache locality oriented techniques are also
suitable for optimizing off-chip memory energy in a cacheless multi-bank mem-
ory architecture; and if so, how they can be modified to extract the maximum
energy benefits from the memory system.

The existence of a cache memory can, on the other hand, have an important
impact on the energy consumption of a banked memory architecture. The cache
memory can filter out many memory references and increase the bank inter-
access times. This has two major consequences. First, the off-chip memory is
accessed less frequently, and therefore consumes less energy. Second, more mem-
ory banks can be put in low-power modes and (in some cases) more aggressive
low-power modes can be utilized.

If the banked-memory system has a cache memory, selecting a suitable combi-
nation and versions of loop-level transformations to apply becomes a much more
challenging problem. This is because, two objectives, namely, optimizing cache
locality and minimizing off-chip memory energy can sometimes conflict with each
other (that is, they may demand different loop transformations and/or different
parameters–e.g., tile size and unrolling factor–for the same set of transforma-
tions). In this case, one approach would be to optimize cache locality only and
not to perform any banked-memory specific transformation. This strategy works
fine as long as the cache is able to capture the data access pattern successfully;
that is, the vast majority of data references are satisfied from the cache and do
not go to off-chip memory. However, if this is not the case, then we need to take
care of off-chip references as well. We address this problem by modifying the
cache locality optimization strategy to take into account the fact that, for the
best off-chip energy behavior, the data accesses should be clustered into a small
set of memory banks. More specifically, we modify each type of loop transfor-
mation so that it becomes bank-conscious (bank-aware) as explained in the next
section. One way of achieving this is to make sure that the transformed code
accesses fewer banks than the original (unoptimized) code (even if all accesses
miss the cache) and that the accesses are more clustered than the original code.
If this is not possible, then we try not to increase the number of banks that need
to be activated (as compared to the original code). In addition to evaluating the
impact of loop transformations on the energy behavior of a cacheless memory
architecture, this paper also experimentally evaluates two alternative schemes
for optimizing energy and locality for a banked memory architecture with cache.
The first scheme optimizes only for cache locality, and the second scheme tries to
strike a balance between enhancing cache locality and reducing off-chip memory
energy as explained above.

4 Energy Impact of Loop Transformations

In this section, we discuss how classical loop-based techniques developed for
optimizing cache locality affect off-chip memory energy consumption. The con-
clusions we make here will be supported by experimental evaluation given in
Section 5. As mentioned earlier in the paper, the optimizations considered in
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this work include loop fusion/fission, iteration space tiling (loop blocking), and
linear loop transformations.

4.1 Loop Fusion and Fission

Combining two loops into a single loop is called loop fusion. It is traditionally
used to bring array references to the same elements close together [12]. Consider
the following example written using a C-like notation, which consists of two
separate loops that access the same array a. It is easy to see that if the loop
limit is sufficiently large that the array does not fit in cache, this code will stream
the array a from memory through the cache twice (once for each loop).

for(i=0;i<L;i++)

a[i] = i*i + c;

for(i=0;i<L;i++)

k = k + a[i]*a[i];

If this fragment is transformed into the form below, on the other hand, the
array needs to be streamed through the cache only once since its contribution to
the second assignment can be calculated, while the cache line holding a[i] is still
cache resident from its use in the first assignment statement. This simple example
illustrates that loop fusion can improve cache locality by bringing accesses to the
same array closer.

for(i=0;i<L;i++)

{
a[i] = i*i + c;

k = k + a[i]*a[i];

}

Unfortunately, the impact of loop fusion on off-chip memory energy is not
as clear. If the loop nests to be fused contain extra arrays (i.e., arrays that are
not targeted by fusion), these arrays might lead to accesses to a large number
of memory banks (some of which would not be accessed if we have not fused
the loops). Therefore, in a multi-bank memory architecture, loop fusion should
be applied with care. One criterion in applying this optimization is to check
whether fusing loops would lead to activation of more banks than individual
nests demand.

Loop fission (also known as loop distribution [12]) is the reverse of loop
fusion, and places the statements in a given loop into separate loops, each with
its own iteration space. One can expect this transformation to be useful from a
memory energy viewpoint, in particular, in cases where it separates the references
to different arrays, thereby minimizing the number of banks that need to be
activated for a given loop.

It is important to note the conflicting objectives of optimizing cache locality
and optimizing memory energy when these transformations are employed. In
general, when one wants to optimize data cache locality, loop fusion is preferable
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whereas loop distribution is generally used to enhance iteration-level parallelism
by placing the sinks and sources of data dependences into separate loops. As far
as memory energy optimization is concerned, however, loop fission is, in general,
preferable as it has the capability of isolating accesses to small set of banks. For
example, suppose that a loop nest accesses two different arrays a and b. Further
assume that each array is accessed in a separate statement (in the loop body)
and resides in a separate memory bank. If we do not perform loop fission, each
iteration of the loop will access both the banks and the BIT (for each bank) will
be very small to take any advantage of. If, on the other hand, the loop fission
is applied (provided that it is legal), each loop accesses a single bank. Since in
this case the BIT for each bank is large, this may present more opportunities for
placing banks into low-power modes.

Based on the discussion above, we propose the following strategy for applying
loop fusion and fission in a banked-memory environment. If there is no cache in
the memory hierarchy, then we do not apply loop fusion; we apply loop fission in
such a way that the arrays that share the same set of banks reside within the same
loop after fission. If there exists a cache, we do not modify our loop fissioning
strategy except that we do not separate statements that contain references to the
same array (in an attempt to preserve cache locality). Delaluz et al. [2] present a
loop distribution strategy for optimizing off-chip memory energy. As compared
to that algorithm, the approach presented here is not based on trying a subset
of all possible fissioning alternatives (that is, it finds the solution in one shot),
it is integrated with loop fusion, tiling, and loop permutation, and it tries to
optimize cache locality and off-chip memory energy consumption in concert.

Note that our fusioning/fissioning strategy tries to strike a balance between
two objectives. When applying loop fusion in a cache-based environment, on
the other hand, we take cache considerations into account but never fuse two
loops if doing so increases the number of banks accessed in a single iteration.
For example, suppose that there are three one-dimensional fussable loops in the
code, each with one statement within it: k1 += a[i]+b[i] in the first loop; k2
+= a[i+1]*b[i-1] in the second loop; and k3 += c[i]-b[i] in the third loop.
Also, assume that each array is stored in a separate bank. In this case, while a
pure cache locality-oriented approach would fuse all three loops (in conjunction
with array padding), our bank-conscious approach would fuse only the first two
loops. Note that as in the case of loop fission, this loop fusion scheme also
tries to find a balance between conflicting objectives. To sum up, in a cache-
based environment, we use cache constraints to restrict loop fission and banked-
memory constraints (e.g., minimizing the number of active banks) to restrict
loop fusion.

4.2 Loop Tiling

A widely-used technique for improving cache locality is loop tiling [12]. Here,
data structures that are too big to fit in the cache are broken up into smaller
pieces that will fit in the cache. Consider the following matrix-multiply example.
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If the arrays accessed in this nest do not fit in the cache, the cache performance
might be poor.

for(i=0;i<L;i++)

for(j=0;j<L;j++)

for(k=0;k<L;k++)

c[i][j] = c[i][j] + a[i][k]*b[k][j];

If, however, this nest is tiled (blocked) as shown below (assuming that T
divides L evenly, where T denotes the tile size), a square-block of array c is
computed by taking the product of a row-block of a with a column-block of b.
Note that this product consists of a series of sub-matrix multiplies. If these three
blocks, one from each matrix, all fit in cache simultaneously, their elements only
need to be read in from memory once for each sub-matrix multiply. Thus, the
array a will now only need to be touched once for each column-block of c, and
b will only need to be touched once for each row-block of a. As a result, the
memory traffic will be reduced by the size of the blocks.

for(ii=0;ii<L;ii=ii+T)

for(jj=0;jj<L;jj=jj+T)

for(i=ii;i<ii+T;i++)

for(j=jj;j<jj+T;j++)

for(k=0;k<L;k++)

c[i][j] = c[i][j] + a[i][k]*b[k][j];

While this transformation enhances temporal locality across multiple loop
levels, it also modifies the array access pattern dramatically. For instance, after
the transformation, at a given time, a column-block of array b is active. It
should be observed that depending on the tile size parameter, a majority of these
elements are not consecutive in memory (assuming a row-major memory layout).
Consequently, all the banks that hold these elements need to be active during
a given short period of time. This is, of course, assuming that the references to
these elements will go to off-chip memory and that the array is large enough.
If there is a cache memory that captures these references successfully, then the
impact of tiling on memory energy is expected to be positive (as it increases the
bank inter-access times).

Our bank-aware tiling strategy works as follows. It first determines the loops
that carry some form of data reuse as tiling a loop which does not carry any reuse
does not improve cache performance but increases loop overhead. We achieve
this using the reuse-oriented tiling strategy. Then, among these loops (with data
reuse), it selects a subset such that the resulting access pattern does not gen-
erate a data tile (i.e., data footprint) on the array space which is orthogonal to
the storage direction of the array. This is because, under the assumption that
elements of a given array are stored consecutively in memory (from the first
element to the last element), a data tile orthogonal to the storage direction (of
the array) leads to a maximum number of bank activation. For example, in a
two-dimensional row-major array case, the bank-aware tiling strategy never se-
lects an iteration space tile shape if it leads to a column-block data tile on the
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array space. If possible, it works with only row-block and square tiles. Note that,
in the ideal case, one would want to work with only row-block data tiles; but,
in many cases, due to data dependences and array access patterns, it may not
be possible to obtain only row-block tiles. But, our experience and experiments
show that many nested loops can be tiled using only row-block and square tiles.
To achieve this, when necessary, linear loop optimizations such as loop permu-
tation can be used prior to tiling. To sum up, our strategy first determines the
loops with reuse, filters out the ones with orthogonal footprints (with respect to
the storage order), and tile the resulting nest. Our current implementation also
tries all permutations of outer nests1 to obtain row-block and square tiles (i.e.,
eliminate column-block tiles).

4.3 Linear Loop Transformation

Linear loop transformations that aim at improving cache locality generally try
to achieve either of two objectives for each array reference: optimizing temporal
locality in the innermost loop or optimizing spatial locality in the innermost
loop [7]. Optimizing temporal locality in the innermost loops allows the back-
end compiler to place the reference in question into a register (provided that
no alias exists). Note that this eliminates accesses to the cache and memory,
thereby increasing the memory idle time and creating more opportunities for
the employment of low-power operating modes. Optimizing spatial locality (unit
stride accesses) is also beneficial from an energy perspective as it allows all
the accesses to a given bank to be completed before moving to another bank
(provided that the array elements are stored sequentially).

We note that there are cases where linear transformations might be desirable
from one objective’s angle and not desirable from the other’s angle. Consider
the following nested loop which accesses a two-dimensional row-major array:

for(i=0;i<L;i++)

for(j=0;j<L;j++)

a[j][i] = a[j][i]*a[j][i] - 1;

Since the column-wise access pattern exhibited by the inner loop here is
not suitable from a cache locality perspective, a solution is to interchange the
order of the loops. Such an optimization makes the accesses in the inner loop
consecutive in memory, and consequently improves data locality. Assuming that
array a spans multiple banks, the loop interchange here is beneficial from an
energy perspective as well (with or without cache). This is because, after the
interchange, the array is accessed sequentially; that is, array accesses to a bank
are completed before moving to the next bank. However, if we assume that the
entire array fits into a single bank, then an energy-oriented optimization strategy
would not need to perform any transformation as no transformation would have
an effect on the inter-access time of the bank (BIT) in question. However, if there
1 The innermost loop is determined by linear loop transformations; changing the po-
sition of this loop during tiling may not be very beneficial.
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is a cache in the system, from a cache locality point of view, it is still desirable
to apply loop interchange.

From the discussion above, we can conclude that linear loop transformations
might be beneficial even if there is no cache in the banked-memory system. Our
bank-conscious linear loop transformation strategy works as follows. If there is no
cache in the system, the compiler tries to optimize spatial and temporal locality
aggressively. Specifically, it uses the loop transformation framework presented
in [7]. However, it does not apply a transformation if the transformation will not
reduce the number of active banks (at a time) or cluster array accesses (e.g., when
the array fits in a single bank). If there is a cache in the system, it tries to optimize
locality taking cache characteristics into account, and uses the fact that memory
is banked only when it needs to distinguish between references with no cache
locality. For example, suppose that a nested loop that manipulates three arrays
(a, b, and c) can be optimized for locality in two alternate ways (using linear loop
transformations). In the first alternative, arrays a and b have unit stride accesses,
whereas array c has no cache locality. In the second alternative, arrays a and c
have unit stride accesses but array b has no cache locality. Then, our strategy
calculates how many different banks are accessed due to array c in the first
alternative and due to array b in the second alternative. It selects the alternative
with the minimum number of banks accessed. We have also experimented with
an alternate strategy in which (when multiple optimization alternatives exist)
the alternative that leads to the activation of the minimum number of banks
(when all array accesses–optimized or unoptimized–are considered) is selected.
Our experimental results indicate that for the codes in our experimental suite
these two strategies generate very similar results. This is because, in general, the
number of banks accessed is determined by the unoptimized array references.

4.4 Discussion

So far we have considered our optimizations in isolation. When we consider the
interaction between these optimizations, the problem becomes much harder. In
particular, it should be noted that the two objective functions, namely, improv-
ing data locality and reducing off-chip memory energy might demand different
combinations of transformations. Consider the following nested loop which ac-
cesses four different arrays:

for(i=1;i<L;i++)

for(j=1;j<L;j++)

{
a[i][j] = b[i][j] + 1;

c[i][j] = d[i][j] - 1;

}

Let us assume that arrays a and b are stored in one bank, whereas c and d
reside in another bank. A data locality optimization scheme would normally not
perform any transformation on this loop, as all the references exhibit high spatial
locality and the loop body is not large enough to justify loop distribution (due to
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instruction cache locality concerns). A memory energy optimization strategy, on
the other hand, will apply loop distribution to isolate the accesses to individual
banks so as to maximize the idle periods for each bank. Now, let us assume that
all the subscript expressions in the last example above are [j][i] instead of
[i][j] (under the same array placement scheme). In this case, a locality-oriented
optimization strategy would apply loop interchange (i.e., changing the order of i
and j loops) to obtain unit stride accesses in the inner loop position. A strategy
that targets off-chip memory energy would, however, still use loop distribution. If
the underlying architecture contains both a banked memory system and a cache,
then it would be best to apply both loop interchange and loop distribution.

We can conclude from this example that the selection of loop transforma-
tions to apply depends strongly on the data locality characteristics of the code
as well as the array allocation in off-chip memory (i.e., array-to-bank mappings).
An important issue then is to combine our loop-based transformations in such
a fashion that both the off-chip energy and the cache locality are optimized.
However, combining loop-level transformations has not been easy in the past
even if one focuses only on specific types of transformations and performance
issues [12]. Our heuristic strategy to this problem is as follows. We first ap-
ply loop fission to isolate as many nested loops as possible. This will enable
the compiler to turn off as many memory banks as possible. After that, we ap-
ply bank-conscious version of loop fusion to take advantage of cache memory
(if there is one in the system). Then, we consider each of the resulting nests
one-by-one, and optimize it using bank-conscious versions of loop permutation
(linear transformation) and tiling. Figure 4 shows the overall optimization algo-
rithm. Note that this algorithm calls the algorithms Bank-Conscious-Fusion(.)
and Bank-Conscious-Fission(.) in Figures 2 and 3, respectively. Note also that
the algorithm in Figure 2 is a greedy heuristic based on the depth of compati-
bility, similar to the performance-oriented fusioning strategy presented in [8]. It
builds a DAG from candidate loops, where edges are dependences between the
loops and the weight of each edge is the potential gain due to loop fusion. The
nests are partitioned into sets of compatibility at the deepest loop levels possi-
ble. Note that the approach first fuses nests with the deepest compatibility and
locality. Then, the DAG is updated and the fusion is applied at the next level
until all compatible sets are considered. The algorithm in Figure 3, on the other
hand, considers each nest one-by-one, and applies loop distribution while being
careful in not distoring data locality. In both the algorithms, for a given loop l,
Arrays(l) gives the set of arrays accessed by it and Banks(Arrays(l)) gives the
set of bankes touched. After applying loop fission and fusion, within the outer
for-loop (in Figure 4), each of the nests is optimized using loop permutation and
tiling for off-chip memory energy and data locality.

5 Experimental Evaluation

Our loop nest optimizer attempts to improve cache locality and off-chip mem-
ory energy consumption by performing high-level transformations on loops. The
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Bank-Conscious-Fusion(N)
INPUT: N = N1, N2, · · · , Ns, nests that are fusion candidates
ALGORITHM:
buildM = {M1, · · · , Mt} where:
Mi = {mi}, a set of compatible nests with depth(Mi+1) ≤ depth(Mi);
build DAG H with dependence edges and weights;
for each Mi = {m1, · · · , mp} do
for k1 = m1 to mp do
for k2 = m2 to k1 do
if (no cache memory) then continue;
else
if ((there exists locality between k1 and k2)
and (Banks(Arrays(k1)) == Banks(Arrays(k2)))
and (it is legal to fuse k1 and k2)) then
fuse k1 and k2 and update H;

endif
endfor

endfor
endfor

Fig. 2. Bank-conscious loop fusion algorithm

Bank-Conscious-Fission(N)
INPUT: N = N1, N2, · · · , Ns, nests that are fission candidates
ALGORITHM:

for each Ni = {n1, · · · , nk}, where njs are individual loops in Ni do
let p1, · · · , pl be the statements in Ni;
for each nj ∈ Ni, j = 1, k
if (no cache memory) then
distribute nj over nj+1, · · · , nk, p1, · · · , pl

such that:
if (Banks(Arrays(pk)) == Banks(Arrays(pj))) then
pk and pj stay in the same loop after distribution;

endif
else
apply classical (performance-oriented) loop distribution algorithm
such that:
if (Banks(Arrays(pk)) == Banks(Arrays(pj))) then
pk and pj stay in the same loop after distribution;

endif
endif

endfor
endfor

Fig. 3. Bank-conscious loop fission (loop distribution) algorithm

current implementation uses only three optimizations (loop permutation, loop
fusion/fission, and iteration space tiling) discussed earlier in the paper. The
important characteristics of the benchmark codes that we used to measure
the energy benefits of loop optimizations are given in Figure 5. fourier and
flt are Fourier transform and digital filtering routines, respectively. adi and
cholesky are ADI and cholesky decomposition codes; hydro2d and nasa7 are
array-dominated codes from the Spec Benchmark Suite; and tis and tsf are
from the Perfect Club Benchmarks. Finally, nwchem is a kernel routine from a
large real-life application that performs computational chemistry-specific calcu-
lations.
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Bank-Conscious-Optimization(N)
INPUT: N = N1, N2, · · · , Ns, nests in the procedure
ALGORITHM:
Bank-Conscious-Fission(N );
Bank-Conscious-Fusion(N );
for each Ni = {n1, · · · , nk}, where njs are individual loops in Ni do
best-cost = ∞;
best-permutation = none;
determine permutations of n1, · · · , nk with the best locality;
let P1, · · · , Pf be such permutations;
for each Pi, i = 1, f do
current-cost = find the number of banks accessed by the arrays
with no locality;

if (current-cost < best-cost) then
best-cost = current-cost;
best-permutation = Pi;

endif
endfor

determine the set Si, the loops with reuse in Pi;
if (there is a cache in the system) then
tile each loop sj ∈ Si if its data footprint is not orthogonal
to storage direction;

endif
endfor

Fig. 4. Bank-conscious energy optimization algorithm

The third column in Figure 5 gives the total dataset size manipulated by
the corresponding code. BaseE- and BaseE+ correspond to base energy values
(without any loop optimizations) for a cacheless system and for a system with a
32KB two-way set-associative cache (with a block size of 32 bytes), respectively.
Note that these base energy values have been obtained using the original codes
and exploiting low-power operating modes to save energy (as explained in the
second section). In other words, our base version already takes advantage of the
low-power operating modes. Also, these energy numbers include the energy con-
sumed in off-chip memory (due to data accesses only) and the energy consumed
in the data cache (when it exists). BaseT- and BaseT+ are the corresponding
base execution times. The last three columns indicate whether a given benchmark
is amenable to a specific optimization. All energy numbers given in Section 5.1
(resp. Section 5.2) are percentage improvements over the corresponding entry in
the BaseE- (resp. BaseE+) column. All the energy numbers given in Figure 5
are in microjoules and have been obtained using a default memory bank con-
figuration which contains eight 8MB banks (denoted 8×8MB). All performance
numbers are in seconds.

5.1 Cacheless System

Figure 6 gives the percentage energy improvements for a cacheless system for
four different versions. c-opt1, c-opt2, and c-opt3 denote the optimized versions
assuming an imaginary cache architecture of 8KB, 16KB, and 32KB, respectively
(All caches are two-way set-associative with a block size of 32 bytes). The objec-
tive in measuring the energy behavior of these versions is to see whether we can
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Benchmark Number Input Base Energy Base Performance Optimization Applicability
Name of Lines Size BaseE- BaseE+ BaseT- BaseT+ fusion+fission tiling linear

adi 56 78MB 28.9 19.3 5.76 3.92
√ √

cholesky 34 61MB 88.2 61.1 9.68 7.10
√ √

hydro2d 52 44MB 104.0 76.3 10.02 6.59
√ √

flt 85 51MB 723.3 328.1 16.81 11.57
√ √

fourier 167 57MB 634.0 411.7 11.96 8.90
√ √

nasa7 1,105 54MB 1,418.6 783.2 29.77 18.52
√ √ √

nwchem 370 44MB 780.5 408.9 13.95 8.16
√ √ √

tis 485 56MB 899.8 511.0 18.72 12.04
√ √ √

tsf 1,986 60MB 1,066.2 620.4 24.83 16.71
√ √ √

Fig. 5. Benchmark codes and their important characteristics

Fig. 6. Energy improvements in a cacheless system

use a cache locality-oriented scheme without modification for optimizing memory
energy of a banked system without cache. The b-opt version, on the other hand,
denotes a version that uses loop transformations solely for optimizing memory
energy (i.e., the bank-aware version). We observe two important trends from
these results. First, as the assumed cache size is increased, the energy benefits
also increase. This is because with larger caches, the locality-oriented strategy
becomes less aggressive, and performs fewer cache-specific optimizations. This,
in turn, causes less side effects on the memory energy consumption. Second, in a
cacheless system, customizing loop optimizations taking into account the banked
nature of the memory makes sense as it improves energy 18.72% on average (as
compared to 13.20% for c-opt2). We need to mention that increasing the as-
sumed cache size further did not bring any additional improvement over c-opt3
(except for tis, where an assumed data cache size of 64KB reduced the memory
energy by 2.8% over the c-opt3 version). Our experiments with different bank
configurations also showed similar trends.
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Fig. 7. Energy improvements for a memory system with cache

5.2 Memory System with Cache

Figure 7 presents the percentage energy improvements for three different ver-
sions for a banked memory system with a 32KB two-way set-associative cache
memory. c-opt is the version that optimizes only for cache memory and b-opt
optimizes only for memory energy. The b+c-opt version, on the other hand,
tries to strike a balance between the two objectives (optimizing cache locality
and reducing off-chip memory energy). We can observe from this figure that, in
general, c-opt generates better results than b-opt. That is, if there is a cache
in the banked-memory system, it is not a good idea to use optimizations that
target only memory energy. Using pure locality-based optimizations results in
better energy savings for most of the time. However, we also observe that the
b+c-opt version generates the best result across all applications (averaging a
22.84% overall energy improvement). Although not presented here due to lack
of space, we observed similar trends in experiments performed using different
cache sizes and associativities.

5.3 Performance Gains

Figure 8 gives the performance benefits (over the values given under the column
BaseT+ in Figure 5) of three different versions (b-opt, c-opt, and b+c-opt) for
a banked memory system with a 32KB two-way set-associative cache memory.
We observe that the b+c-opt version generates comparable results to the c-opt
version (pure locality-oriented approach). The difference between them is only
1.80%. Therefore, we can conclude that the combined optimization strategy is
almost as good as the pure cache locality-oriented approach in improving the
performance, but it leads to significantly more (memory system) energy savings
than a pure locality-oriented approach.
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Fig. 8. Percentage performance gains in a cache based system

6 Conclusions

In this paper, we investigate the influence of three different types of loop trans-
formation techniques on memory system energy assuming a multi-bank memory
architecture. A multi-bank memory system allows unused banks to be transi-
tioned to low-power operating modes. In a multi-bank memory system without
cache, we have found that slightly modified versions of classical locality-oriented
loop transformation techniques generate large energy savings. In a cache-based
multi-bank system, our results show that the modified (bank-aware) loop trans-
formations result in large energy savings, and that the execution times of the
resulting codes are competitive with those obtained using pure locality-oriented
techniques.
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