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Abstract. We introduce a theory of weak bisimilarity for the π-calculus
with linear type structure [35] in which we abstract away not only τ -
actions but also non-τ actions which do not affect well-typed environ-
ments. This gives an equivalence far larger than the standard bisimilarity
while retaining semantic soundness. The congruency of the bisimilar-
ity relies on a liveness property at linear channels ensured by typing.
The theory is consistently extendible to settings which involve nonter-
mination, nondeterminism and state. As an application we develop a
behavioural theory of secrecy for the π-calculus which ensures secure in-
formation flow for a strictly greater set of processes than the type-based
approach in [20, 23].

1 Introduction

Linearity is a fundamental concept in semantics with many applications to both
sequential and concurrent computation. This paper studies how a linear type
structure, close to those of Linear Logic [12] and game semantics [4, 22, 24], can
be used to give a powerful extension of a basic process equivalence, bisimilarity.
We use a linear π-calculus, introduced in [35], which, among others, satisfies a
basic liveness property in linear interaction: actions on linear channels always
eventually fire. A central idea of our construction is that observables, an un-
derpinning of any behavioural semantics, can be given a radical change in the
presence of this liveness and other properties ensured by linear typing: a class
of visible interactions with the environment which a typed process is actually
engaged in, can be completely abstracted (neglected) away in terms of their
semantic effects.

Let us briefly explain the key technical ideas, using a process encoding of a
λ-calculus. We first recall that the linear π-calculus in [35] can fully abstractly
embed λ()×+, the simply typed λ-calculus with unit, products and sums. The
encoding [[M : α]]u for a λ-term M : α in [35] is a typed version of Milner’s
encoding [26]. We also recall that in λ()×+, the following equation is semantically
sound: Γ � M1 = M2 : unit for any Γ � M1,2 : unit. In particular, any term
of this type is always equated with its unique constant, which we write �. As an
example we have the following equation.
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If we apply the encoding in [35] to this, we obtain the following two processes:

[[(y�)]]u
def=!u(c).y(e)e.c [[�]]u

def=!u(c).c.

Here x(y) is an input of y via x, x(y) is an (asynchronous) output of a fresh name
y via x, and ! indicates replication. Thus, the process [[(y�)]]u, when invoked at u
with a continuation c, first asks at y and, after receiving an answer at e, returns
to c; while [[�]]u immediately answers at the continuation after the invocation.
Because of the obvious difference in these actions, we know [[(y�)]]u �≈ [[�]]u where
≈ is the standard weak bisimilarity. However, since the encoding is fully abstract,
the contextual equivalence ∼=π in [35] for the linear π-calculus does equate them.
Intuitively, this is because the linear type structure allows us to abstract away
the additional non-τ -actions in the following way:

1. The action y(e) is typed as an output to replication: thus it just replicates
a process in the environment without affecting it.

2. The action e is typed as a linear input: hence it necessarily receives its dual
output, neither receiving nor emitting non-trivial information.

For these reasons, the additional actions in [[(y�)]]u never affect the environment
in a way well-typed observers could detect, and are automatically executable,
so they behave “as if they were τ -actions”, allowing them to be neglected. This
suggests the following principle of behavioural semantics in linear processes.

Categorise some of the typed actions as “non-affecting”, and abstract
away non-affecting actions as if they were τ -actions.

The type structure plays a crucial role in this principle.
Following [6, 11, 15, 18, 33], the linear π-calculus in [35] includes branching

and selection, which correspond to sums in the λ-calculus and additives in
Linear Logic [12]. A branching is an input with I-indexed branches of form
x[&i∈I(�yi).Pi], while a selection is an output of form xini(�z)Q. These constructs
have the following dynamics: x[&i(�yi).Pi]|xinj(�yj)Q −→ (ν �yj)(Pj |Q). Now
consider another equation in λ()×+, which uses sums this time. Let bool

def=
unit+unit below.

y : bool � case y of {ini() : in1(�)}i∈{1,2} = in1(�) : bool

These terms are translated as follows:

[[case y of {ini() : in1(�)}i∈{1,2}]]u def= !u(c).y(e)e[&1,2.cin1]

[[in1(�)]]u
def= !u(c).cin1.

Both processes are equated by ∼=π. Intuitively this is because an input at e in the
first process surely arrives (due to liveness at the linear channel e), and regardless
of a selected branch, it leads to cin1. We can thus augment the previous principle
as follows.

We may abstract away linear branching inputs as far as they lead to the
same action in all possible branches.

The precise formulation of this idea is given in Section 2.
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Applications. The bisimilarity based on these ideas, which we hereafter call
linear bisimilarity, can justify the equations mentioned above, as well as many
equations used for definability arguments to prove full abstraction of λ()×+ in
[35]. As another application, Section 5 discusses a behavioural theory of secure
information flow for the π-calculus, which uses a secrecy-sensitive bisimilarity
built on the top of linear bisimilarity. The theory ensures secrecy through se-
mantic means for a strictly larger set of processes than the syntactic theory in
[23], which itself is powerful enough to embed representative secrecy calculi such
as [3, 32]. As a simple example, the theory can justify the safety of the following
λ-term via encoding (� and ⊥ are high and low secrecy levels, respectively).

case y� of {ini() : in1(�)}i∈{1,2} : bool⊥

which is untypable in standard secrecy typing systems, cf. [3, 32].
One of the technical contributions of the present work is a proof technique

for establishing congruency of linear bisimilarity which, among others, uses live-
ness at linear channels. The proof method is applicable when we extend linear
bisimilarity to other type structures involving nontermination [6], nondetermin-
ism [20] and state [23], as well as to their secrecy enhancement. Such extensions
are briefly discussed at the end of in Section 5.

Related Work. Since the introduction of Linear Logic [12], linearity has been
studied in various semantic and syntactic contexts. In the setting of the π-
calculus, linearity and its relationship to contextual equivalences [21, 27] are
studied in [25, 30, 34]. In each case, it is shown that linearity induces a strictly
larger contextual equivalence than the standard bisimilarities. [30] as well as [5]
study typed bisimilarities in which two processes whose actions are equivalent
up to forwarding of names are equated. [19] studies an untyped bisimulation in
which visible actions can be ignored due to asynchronous observables. [13] studies
a process equivalence in which certain actions are ignored due to capabilities as-
signed to channels via subtyping. While sharing the common orientation towards
a larger equality by a refined treatment of observables, the nature of abstraction
offered by the present theory differs from these works in two aspects. First, the
introduced behavioural equivalence allows us to treat visible interactions which
do take place between the process and the environment as if they were internal
(silent) actions. Since the use of liveness in linear actions is essential for this ab-
straction (as shown by the examples above), it would be difficult to apply these
existing techniques to obtain the same effect. The second significance of using
linear type structures for a behavioural equivalence is that it enables precise
embedding of semantics of language constructs including functional [6, 35] and
imperative ones [23], which is important for applications. This direction may not
have been pursued in the foregoing studies. Combination of existing techniques
and the present one would be an interesting subject for further study.

In the analysis of secure information flow, equality over programs often plays
a central role, cf. [2, 3, 10, 14, 31]. Among them, [9, 10] present a bisimulation for
cryptographic protocols where high-level actions are abstracted away, preceding
the behavioural theory of secrecy in Section 5. The main difference from our
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approach is that [9, 10] are based on CCS without using type structure, which
would limit expressiveness of the resulting theory. [1] establishes a secrecy the-
orem for the spi-calculus based on may-equivalence, using type information to
control the interface of the attacker. Our approach differs in that it first uses
linearity to limit environments, then applies it to information flow analysis by a
simple elaboration of channels with security levels. [14] uses a secrecy-sensitive
may-equivalence for noninterference in the π-calculus. The use of linear type
structure in the present work is the main difference. Finally, the first two present
authors proposed, in [20] (with Vasconcelos) and in [23], type systems for the
π-calculus which ensures secrecy. The present paper gives a semantic theory of
secrecy, extending and complementing the syntactic approach in [20, 23].

Outline of the paper. Section 2 briefly reviews the linear π-calculus in [35].
Section 3 introduces linear bisimilarity, whose proof of congruency is given in
Section 4. Section 5 discusses an application of the linear bisimilarity to secure
information flow analysis. For details of the results and motivation of the syntax
and types used in the paper, the reader may refer to [6, 35]. The omitted proofs
and definitions of this paper can be found in [36].

Acknowledgements. The authors thank Martin Abadi and anonymous referees
for their useful comments and suggestions on an early version of this paper.

2 Preliminaries

2.1 Processes and Channel Types

The set of processes is given by the following grammar [6, 35]. Below and hence-
forth x, y, . . . range over a countable set of names.

P ::= x(�y).P | x(�y)P | x[&i∈I(�yi).Pi] | xini(�y)P | P |Q | (ν x)P | 0 | !P.

x(�y).P (resp. x(�y)P ) is a unary input (resp. unary output), while x[&i∈I(�yi).Pi]
(resp. xini(�y)P ) is a branching (resp. selection). Bound name passing has essen-
tially equivalent expressive power as free name passing [17, 29], and is convenient
for obtaining precise correspondence with functional type structures [6, 35]. P |Q
is a parallel composition, (ν x)P is a restriction, and !P is a replication. In !P
we assume P is either a unary or branching input. The reduction relation −→
is generated from the following rules, closed under output prefix, restriction and
parallel composition modulo ≡ [36]. We also set →→ def= −→∗ ∪ ≡.

x(�y).P |x(�y)Q −→ (ν �y)(P |Q)
!x(�y).P |x(�y)Q −→ !x(�y).P |(ν �y)(P |Q)

x[&i(�yi).Pi]|xinj(�yj)Q −→ (ν �yj)(Pj |Q)
!x[&i(�yi).Pi]|xinj(�yj)Q −→ !x[&i(�yi).Pi]|(ν �yj)(Pj |Q)

Action modes, ranged over by p, . . ., are from the sets {↓, !} (written pI, . . .),
and {↑, ?} (written pO, . . .). ↓ (resp. ↑) represents linear input (resp. output).
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! means a unique server associated with input replication. Dually ? represents
client requests to !. We also use the mode ∗ to indicate uncomposability. The
dual p of p is given by ↓ =↑, ! = ? and p = p. Then channel types are given by
the following grammar. For simplicity we assume indices i range over {1, 2}.

τ ::= τI | τO | ∗ τI ::= (�τ)pi | [&i�τi]pi τO ::= (�τ)po | [⊕i�τi]po

Above, �τ denotes a vector of channel types. A branching type is sometimes writ-
ten [τ1&τ2]p and similarly for selection. We define τ , the dual of τ , by dualising
the action modes and exchanging ⊕ and & in τ . md(τ) is ∗ if τ = ∗, otherwise
the outermost action mode of τ .

On types � is the least commutative partial operation such that

(1) τ � τ = ∗ (md(τ) =↓) (2) τ � τ = τ and τ � τ = τ (md(τ) = ?).

Intuitively, (1) says once we compose input-output linear channels it becomes
uncomposable (for example, x.0 |x has mode ∗ at x, which is uncomposable with
any process which has x). (2) says that a server should be unique, to which an
arbitrary number of clients can request interactions (for example, !x.0 | !x.0 is
never typed because of ()! �� ()! , while x |x is typable by ()? at x, and !x.0 |x |x
is so by ()! at x). If τ � τ ′ is defined we say they compose.

Following [6, 22, 35], we assume the following sequentiality constraint (IO-
alternation and a unique answer ↑ in each server type !), which comes from
game semantics [4, 22, 24]. We state the constraint only for unary types: for
branching/selection types, we require the same constraint for each summand.

• In (�τ)↓, md(τi) = ? for each 1 ≤ i ≤ n. Dually for (�τ)↑.
• In (�τ)! , md(τi) ∈ ? for each 1 ≤ i ≤ n except at most one j for which

md(τj) =↑. Dually for (�τ)? .

2.2 Typing and Typed Processes

An action type is a finite acyclic directed graph whose nodes have the form x : τ
such that no names occur twice and each edge is of form x : τ → x′ : τ ′ with
either md(τ) =↓ and md(τ ′) =↑, or md(τ) = ! and md(τ ′) = ?. We write A(x)
for the channel type assigned to x occurring in A. The partial operator A�B is
defined iff channel types with common names compose and the adjoined graph
does not have a cycle. This avoids divergence. For example, x : τ1 → y : τ2
and y : τ2 → x : τ1 are not composable, hence a process such as !x.y | !y.x is
untypable.1 fn(A) and md(A) denote the sets of free names and modes in A,
respectively. A � B indicates A�B is defined.

Sequents of the linear typing system have the form � P � A.2 The rules are
given in Appendix A. If � P � A is derivable, we say P is typable with A. We
sometimes write PA instead of � P �A. Typable processes are often called linear
processes.
1 See Section 2 in [35] or Appendix B in [36] for detailed examples and definitions.
2 In [35], the main sequent has the shape Γ � P �A. This is equivalent to the present
one by adjoining Γ to the right-hand side.
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Example 1. (linear processes)

1. � x � x : ()↑ and � x.0|x � x : ∗. The former can also be typed with x : ()? .
2. �!u(c).c � u : (()↑)! and �!u(c).x(e)e.c � u : (()↑)!→x : (()↓)? .
3. Let B = [ε⊕ε]↑ (where ε is the empty vector). Then �!u(c).x(e)e[.cin1&.cin2]�

u : (B)! → x : (B)? . Other terms typable with this type include !u(c).cin1
and !u(c).x(e)e[.cin1&.cin1] as well as their symmetric variants.

The following properties of typed terms are from [35]. (2) is a consequence of
strong normalisability of linear processes and will play an important role later.

Proposition 1. 1. (subject reduction) If � P � A and P →→ Q then � Q � A.
2. (liveness) Let � P �A⊗x : τ with md(τ) =↑ and md(A) ⊆ {!, ∗} (⊗ is disjoint

graph union). Then P →→ P ′ such that P ′ ≡ x(�y)R or P ′ ≡ xinj(�y)R.

2.3 Contextual Congruence and Bisimilarity

A relation R over typed processes is typed when PA1
1 RPA2

2 implies A1 = A2.
We write P1RA P2 when PA

1 and PA
2 are related by a typed relation R. A

typed congruence is a typed relation which is an equivalence, closed under all
typed contexts. The contextual congruence ∼=π is the maximum typed congruence
satisfying the following condition (B appeared in Example 1).

If P ⇓ix and P ∼=x:Bπ Q, then Q ⇓ix (i = 1, 2)

where P ⇓ix means P →→ xini(�y)P ′. ∼=π is maximally consistent in the sense that
any addition of equations leads to inconsistency. A more restricted and tractable
equality is obtained by labelled transition. Let l, l′, . . . be given by:

l ::= τ | x(�y) | x(�y) | xini(�y) | xini(�y)

If l �= τ , we write sbj(l) for the initial free name of l. Using these labels, the
typed transition PA l−→ QB is defined as in Appendix B. The weak bisimilarity
induced by the transition is denoted ≈.

As indicated in the introduction, ∼=π is strictly greater than ≈. One of the
aims of the present work is to fill the gap between ≈ and ∼=π, at least partially,
without losing the ease of reasoning of ≈.

3 Linear Bisimilarity

3.1 Categorising Actions

We begin our path towards the definition of linear bisimilarity with classifying
types according to the following criteria: whether actions typed with these types
affect the environment non-trivially; and whether the typed actions are guaran-
teed to take place. One of the significant aspects of our linear type structure is
that types are informative enough to allow this classification.
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Definition 1. (affecting and enabled types)

1. τ is affecting iff there exist � P1,2 � x : τ and a typed context C[ · ] such that
� C[Pi] � u : B, C[P1] ⇓1u and C[P2] ⇓2u.

2. τ is enabling iff � P � x : τ implies P →→ P ′ l−→ such that sbj(l) = x. τ is
enabled if τ is enabling.

Example 2. (affecting and enabled types)

1. B, (B)! and ((B)!)↑ are affecting but ((B)!)? and (((B)!)?)↓ are not. It is
notable that no τ such that md(τ) ∈ {?, ↓} is affecting.

2. Any τ such that md(τ) ∈ {↓, ↑, !} is enabling, while any τ such that md(τ) =
? is not. Hence all and only enabled types are τ such that md(τ) = {↓, ↑, ?}.

As suggested in the above example, we have an easy rule to determine whether
a type is affecting or not, based on the shape of types.

Proposition 2. Define Aff as the smallest set of types generated by:

– [⊕1,2�τi]↑ ∈ Aff.
– (τ1..τn)↑ ∈ Aff and (τ1..τn)! ∈ Aff when τi ∈ Aff for some i (1 ≤ i ≤ n).
– [&1,2τi1..τini ]

! ∈ Aff when τij ∈ Aff for some i and j (i ∈ {1, 2}, 1 ≤ j ≤ ni).

Then τ is affecting iff τ ∈ Aff.

Using the classification of types given above, we can classify actions of well-typed
processes. First, an action annotated with an action type, say lA, is called a typed
action if the shape of l conforms to A. For example, if l = xin1 then lA is a
typed action iff A(x) = B. τA is a typed action for an arbitrary A. If l �= τ and
lA is typed, the type of lA is A(sbj(l)). Then we say:

Definition 2. (affecting and enabled typed actions) lA is affecting if l �= τ and
the type of lA is affecting; lA is non-affecting if it is not affecting. Further lA is
enabled if l = τ or the type of lA is enabled.

Table 1 illustrates the classification of actions, writing τ , ↓(), ↑(), ↓&, ↑⊕, ! and
? for (respectively) the τ -action, unary linear input, unary linear output, linear
branching, linear selection, replicated unary/branching input, and its dual.3

Table 1. Classification of Actions

τ ↓() ↑() ↓& ↑⊕ ! ?

affecting no no yes no yes yes no

enabled yes yes yes yes yes no yes

We can now introduce invisibility under the linear type structure which dictates
the “τ -like” nature of certain non-τ -actions in the typed setting. Below and
henceforth ∆,Γ, . . . range over finite sets of names. fn(l) is the set of free names
in l while bn(l) is the set of free names in l.
3 We classify unary linear outputs ↑ () as affecting in Table 1 even though they are
sometimes not, as is seen from Proposition 2. A simplest example is ()↑.
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Definition 3. 1. (invisible actions) A typed action lA is ∆-invisible (∆-i.)
when either fn(l) ∩∆ = ∅ or, if not, lA is an output which is non-affecting.4
If lA is ∆-invisible and is enabled, then lA is ∆-strongly invisible (∆-s.i.).

2. (abstracted transitions) PA l̂−→∆ QB when either: (1) PA l−→ QB or (2)
B = A, Q = P and lA is ∆-invisible. PA =⇒∆ QB denotes PA l1...ln−→ QB

(n ≥ 0) where each li is strongly ∆-invisible; then PA l=⇒∆ QB denotes

PA =⇒∆
l−→∆=⇒∆ QB ; finally PA l̂=⇒∆ QB denotes either PA l=⇒∆ QB

or PA =⇒∆ QB where l is invisible and fn(B) ∩ bn(l) = ∅. if PA =⇒∆ QB

is induced by PA l1...ln−→ QB , we say the latter underlies the former.

Note the standard abstracted transitions are a special case of those defined above.

3.2 Semi-typed Relation and Branching Closure

The invisibility of non-τ -actions necessitates one fundamental change in the no-
tion of bisimulation. As an illustration we go back to the initial example in the
introduction. The two typed processes concerned were !x(c).cA and !x(c).y(e)e.cA

with A = x : (()↑)! → y : (()↓)? . After the common initial action, the typing
becomes A⊗ c : ()↑. But if y(e)e.cA has an output action (which should and
can be abstracted away), then e becomes free in the residual and appears in its
type environment. This state should be related to the other process which still
has type A⊗ c : ()↑. Consequently, a bisimulation needs to relate processes with
distinct action types.

Definition 4. A relation R on typed processes is semi-typed when PARQB

implies that the projections of A and B on fn(A) ∩ fn(B) coincide. We write
PAR∆QB if R is semi-typed and fn(A) ∩ fn(B) = ∆, in which case we say PA

and QB are related by R at ∆. The maximum typed subrelation of a semi-typed
R is called its centre.

Using semi-typed relation, a natural way to define a bisimulation would be as
follows: a semi-typed R such that, whenever PA1

1 RPA2
2 with ∆ = fn(A1) ∩

fn(A2), we have the following and its symmetric case:

whenever PA1
1

l−→ QB1
1 , there is PA2

2
l̂=⇒∆ QB2

2 such that QB1
1 RQB2

2 .

However the following shows that congruency is lost if we allow branching.

Example 3. xinx:B1 and yiny:B2 are bisimilar at ∅ in the above definition. Simi-
larly x[&1,2zini] and y[&1,2zini] are bisimilar at z. However when we compose
them in pairs, (xin1|x[&1,2zini]) and (yin2|y[&1,2zini]) are not bisimilar: in
fact these terms can be regarded as, up to redundant reduction, zin1 and zin2,
which would not be equated under any reasonable semantic criteria.
4 We can consistently abstract away linear input at ∆. For simplicity and because this
may not significantly change the resulting equality, we use the present definition.
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The problem in this example is in the second equation: intuitively, x[&1,2zini]
and y[&1,2zini] cannot be equated because, at disparate interfaces (here x and
y), we should expect anything can happen: thus it is possible, at x, the first
process receives the left selection, while, at y, the second process receives the
right selection (which is precisely what happens in the composition). This in-
dicates that we should say “for every possible branching at disparate channels,
the behaviours of two processes at common channels coincide.” This idea is for-
malised in the following definition. Below t, ti, . . . range over sequences of typed
transitions. A branching variant of, say, xin1(�y) is xin2(�z) (conforming to the
given typing), taken up to α-equality.

Definition 5. (branching closure) A set {PA ti−→ QBi
i }i∈I of sequences of typed

transitions is ∆-branching closed (∆-b.c.) iff: whenever ti = sls′ ∈ S with l being
a linear branching input such that fn(l) ∩ fn(∆) = ∅, there is tj = sl′s′′ (j ∈ I)
for each branching variant l′ of l.

Accordingly we say {PA l̂=⇒∆ QBi
i }i∈I is ∆-branching closed if there exists a

∆-branching closed set {PA ti−→ QBi
i }i∈I where PA ti−→ QBi

i underlies PA l̂=⇒∆

QBi
i for each i. Similarly for other forms of abstracted transitions.

3.3 Linear Bisimulation

We can now introduce a bisimilarity on linear processes.

Definition 6. (linear bisimulation) A semi-typed R is a linear bisimulation
when PA1

1 RPA2
2 with ∆ = fn(A1) ∩ fn(A2) implies the following and its sym-

metric case: whenever PA1
1

l−→ QB1
1 , there is a ∆-closed {PA2

2
l̂=⇒∆ QB2i

2i }i∈I
such that QB1

1 RQB2i
2i for all i ∈ I. The maximum linear bisimulation exists,

denoted ≈L.

Simple examples of (non-)bisimilarity follow. Below and henceforth we omit ob-
vious type annotations, assuming all processes are well-typed. We often annotate
≈L as ≈x,yL (which follows Definition 4) to make intersecting channels explicit.

Example 4. 1. x.0 ≈∅L 0 and !x.0 ≈∅L 0 and x|x ≈xL x ≈xL 0.
2. x.yin1 ≈yL yin1. Intuitively this is because an output at x will surely arrive
in which case the former process has the same observable as the latter.

3. Because of the lack of branching closure, we have x[&1,2zini] �≈zL y[&1,2zini].
On the other hand, we have x[&1,2zin1] ≈zL y[&1,2zin1] ≈zL zin1.

We prove the following result in the next section.

Theorem 1. The centre of ≈L is a congruence.

Since an action of B-type is always visible, we immediately obtain:

Corollary 1. The centre of ≈L is a subrelation of ∼=π.
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We give simple applications of the linear bisimilarity. Below in (1) ?A in the
condition indicates md(A) = ?. (1) says processes which are entirely typed with
?-types (which in particular includes 0) are mutually equated with each other
even if they may be engaged in arbitrarily long interactions with the environ-
ments. (2) says there is essentially a unique inhabitant in the translation of the
unit type of λ()×+. (3) uses Theorem 1 and (2), combined with Theorem 5.9
(full abstraction) in [35], to derive the equality in λ()×+.

Proposition 3. 1. (innocuous actions [20]) If � P1,2 � ?A then P1 ≈fn(A)
L P2.

2. (unit inhabitation, 1) � P � A with A = x : (()↑)!→A0 implies P ≈xL !x(c).c.
3. (unit inhabitation, 2) If Γ � M : unit in λ()×+ then Γ � M ∼= � : unit

where ∼= is the standard contextual equivalence in λ()×+.

4 Congruency of Linear Bisimilarity

The purpose of this section is to briefly illustrate a proof method for congruency
of ≈L. A central difficulty of the proof lies in the existence of strong invisibility
when we prove a closure of parallel compositions. This is overcome by the analysis
of the operational structures ensured by linear typing, which involve liveness.

Suppose we wish to prove the relationR def= {(P1|Q1, P2|Q2) | P1 ≈ P2, Q1 ≈
Q2} to be a bisimulation in order to show that ≈ is closed under |. Assume
P1 |Q1

l−→ P ′1 |Q1; then by assumption, there exists P2
l̂=⇒ P ′2 ≈ P ′1, hence in

the standard proof, we easily have: P2 |Q2
l̂=⇒ P ′2 |Q2, and P ′1 |Q1 R P ′2 |Q2.

However, due to strong invisibility, the same reasoning does not work for ≈L even
in the above trivial case. Recall the example in the Introduction, P1

def=!u(x).xin1
and P2

def=!u(x).y(e)e.xin1. Then we know P1 ≈L P2 because y(e) and e are both

invisible, so we have P1
u(x)−→uy P ′1

def= xin1 | P1 and P2
u(x)
=⇒uy P ′2

def= xin1 | P2

with P ′1 and P ′2 bisimilar. Suppose we compose them with Q
def=!y(e).Q0 for some

Q0 such that P1 |Q and P2 |Q are typable. Then we have P1 |Q u(x)−→uy P ′1 |Q,
while we cannot have P2 | Q u(x)

=⇒uy P ′2 | Q, because the only possible transition
is P2 | Q u(x)−→ τ−→ (ν e)(e.xin1 | Q0) | P2 | Q. In order to achieve P ′2

def= xin1 | P2
from this process, e.xin1 needs an acknowledgement e from Q0. At this point,
however, we can use a liveness property which extends Proposition 1 (2): if Q0
has a linear output type at e, then there always exist a finite sequence of strong
invisible transitions to emit e such that Q0

e=⇒uy Q′0 and Q ≈L Q′0 |Q.
In the following we define such a chain, called call-sequence. Let us assume

P
l1·l2=⇒ Q. We write: l1 �b l2 (l1 binds l2) when the subject of l2 is bound by l1

(e.g. x(y) �b y) and l1 �p l2 (l1 prefixes l2) when the action l2 is input-prefixed

by l1 (e.g. x(y) �p z in x(y).z). Define�=�b ∪ �p. We write τ � l2 if P
l2=⇒ Q

and P has subterms Q1 and Q2 such that Q1
l=⇒ Q′1 and Q2

l·l2=⇒ Q′2 with l � l2;
similarly we define l1 � τ ; we extend this to a chain l1 � τ ∗ � l2 and denote it
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l1 �
+ l2 ([6, Appendix F] gives a detailed definition using occurrences of terms).

Then a call-sequence (c.s.) to l under A is a sequence of actions which has the
following shape.

(l0 �
+) l1 �b l2 �

+ l3 �b l4 �
+ · · · �+ l2n−1 �b l2n �p l

where md(lA2k−1) = ? and md(lA2k) =↓.
Lemma 1. 1. (shortest c.s.) Suppose � P �A and P

l=⇒Γ with l output. Then
there is a shortest c.s. l1 � · · · � ln to l under A such that P

l1···ln−→ l−→ .
2. (extended liveness) If � P � A ⊗ e : τ with md(τ) =↑, then P =⇒A⊗e:τ

l−→
with sbj(l) = e.

Note (2) does not restrict the shape of A, cf. Proposition 1 (2). Together with
(1), we know there is always a shortest strongly invisible call sequence to each
linear output.

We now turn to the congruency of ≈L. First, reflexivity and symmetry of ≈L

are immediate by definition; it also satisfies transitivity on the centre (PA1
1 ≈ΓL

PA2
2 and PA2

2 ≈∆L PA3
3 with fn(A1) ∩ fn(A3) = Γ ∩ ∆ imply PA1

1 ≈Γ∩∆L PA3
3 ).

Hence ≈L is an equivalence. For compatibility, we use the following characterisa-
tion of ≈L, which reduces the conditions needed for a bisimulation closure. The
form of the resulting relation is similar to the branching bisimulation studied in
(untyped) confluent processes [28].

Lemma 2. (context lemma) Suppose R is semi-typed such that PA1
1 RPA2

2 with
∆ = fn(A1) ∩ fn(A2) implies the following and its symmetric case:

– whenever PA1
1

l−→QB1
1 where l is ∆-invisible and fn(l)∩∆=∅ then QB1

1 RPA2
2 .

– whenever PA1
1

l−→ QB1
1 with l input such that sbj(l) ∈ ∆, then there is

PA2
2

l−→∆ QB2
2 such that QB1

1 RQB2
2 .

– whenever PA1
1

l−→ QB1
1 with l ∆-visible linear output such that sbj(l) ∈ ∆,

then there is a ∆-closed call sequence to l {PA2
2 =⇒∆

l−→ QB2i
2i }i∈I such that

QB1
1 RQB2i

2i for all i ∈ I.
– whenever PA1

1
l−→ QB1

1 with md(lA1) = ? and sbj(l) ∈ ∆, there is a ∆-
closed call sequence to l, {PA2

2 =⇒∆ QB2i
2i }i∈I , such that either QB1

1 RQB2i
2i

or QB2i
2i

l−→ Q′2i
B′2i such that QB1

1 RQ′2i
B′2i .

Then the maximum such relation, denoted by
•≈L, coincides with ≈L.

Using the characterisation, the closure under prefixes and restriction is easy.
For parallel composition, using extended liveness repeatedly, we can prove if
whenever P

l−→∆ P ′ and P |Q is typable, there exists a ∆-b.c. {P |Q =⇒∆
l−→∆

(ν �vi)(P ′′i |Q′′i )}i∈I such that P ′′i ≈ P ′ and Q′′i ≈ Q. Using this and Lemma 2, we
can prove the closure under the parallel composition on the centre (PA

1 ≈L PA
2

and QB
1 ≈L QB

2 with A � B imply P1|QA�B
1 ≈L P2|QA�B

2 ). Thus the centre
of ≈L is a congruence. Finally ≡⊂≈L is proved easily by using weakening and
strengthening of base A of ≈AL . Since the observability predicate given in § 2.3
is easily satisfied by ≈L, we conclude that ≈L⊆∼=π.
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5 Applications to Secrecy

In linear bisimulations, we abstract away non-affecting typed actions as if they
were τ -actions. If we assign a secrecy level to each channel and stipulate a level
of observation, then we can further abstract away those actions which should
not be visible from the stipulated level. For example, from a low-level viewpoint,
actions at high-level channels should be invisible. The technical development of
this secrecy enhancement closely follows that of the linear bisimilarity, and offers
a powerful tool for reasoning about secrecy in processes.

Assume given a complete lattice of secrecy levels (s, s′, . . .) with the ordering
". � (the most secret) and ⊥ (the most public) denote the top and bottom of
the lattice, respectively. Channel types are annotated with these levels:

τ ::= τI | τO | ∗s τI ::= (�τ)pi
s | [&i∈I�τi]pi

s τO ::= (�τ)po
s | [⊕i∈I�τi]po

s

The same sequential constraints (cf. §2.1) apply to channel types. In τ , we require
each dualised occurrence to own identical secrecy levels. Action types are given
precisely as before, using secrecy annotated types. Then we set:

1. lA is s-affecting if it is affecting in the preceding sense and, if l is a linear
selection, then sec(A(x)) " s (sec(τ) is the outermost secrecy level of τ).

2. lA is s-∆-invisible when either fn(l)∩∆ = ∅ or, if not, lA is an output which is
not s-affecting. If lA is s-∆-invisible and, moreover, is enabled, then lA is s-∆
strongly invisible. The abstracted transitions PA =⇒∆,s QB , PA l=⇒∆,s QB

and PA l̂=⇒∆,s QB are defined accordingly.

In (1), we only count linear selections among secrecy-sensitive observable actions
since in the linear type structure no other typed actions directly emit information
(note, in Proposition 2, a type is affecting only when it is or contains linear
selection). We can now introduce a secrecy-sensitive bisimilarity.

Definition 7. (s-bisimulation) A semi-typed relationR is a s-bisimulation when
PA1
1 RPA2

2 with ∆ = fn(A1) ∩ fn(A2) implies the following and its symmetric

case: whenever PA1
1

l−→ QB1
1 , there is a ∆-closed {PA2

2
l̂=⇒∆,s QB2i

2i } such that
QB1
1 RQB2i

2i . The maximum s-bisimulation exists for each s, which we write ≈s.
By definition, PA ≈L QB implies PA ≈s QB for any s. Further PA ≈� QB

implies PA ≈L QB . A simple example of s-bisimilarity:

Example 5. (s-bisimilarity) � xin1 � x : B� �≈�� xin2 � x : B� but we have
� xin1 � x : B� ≈⊥� xin2 � x : B�.

A basic observation on ≈s is that it alone does not form a coherent notion of
process equivalence.

Fact 1. Suppose � P � A is derived as Section 2 using secrecy annotated types.
Then the centre of ≈s is not closed under parallel composition.
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Proof. Take xinx:τ1i (i = 1, 2) with τ1 = B�. Then xin1 ≈⊥ xin2. However
if we compose these processes with x[.uin1&.uin2]x:τ2→u:τ3 where τ2 = τ1 and
τ3 = B⊥, then (ν x)(P1|Q)u:τ3 �≈⊥ (ν x)(P2|Q)u:τ3 .
The example in the proof above suggests that, for regaining compositionality in
≈s, we need to restrict the set of processes to those which do not transfer infor-
mation at some high-level to lower levels. In other words, we require information
flow in processes to be secure [8]. Below we say lA is receiving at s if lA is a
linear branching and moreover sec(A(sbj(l))) = s.

Definition 8. (behavioural secrecy) A set of typed processes S is a secrecy
witness if the following holds: whenever PA ∈ S and PA l−→ QB , we have (1)
QB ∈ S and (2) if lA is receiving at s then PA ≈s′ QB for each s′ such that
s �" s′. PA is behaviourally secure iff PA is in some secrecy witness.

Only linear branching counts as “receiving”, which is an exact dual of ≈s (where
we consider abstraction by secrecy levels only for linear selection). Intuitively, a
process is behaviourally secure iff, whenever it receives non-trivial information
at some level, it behaves, to a lower-level observer, as if the action had not taken
place. Some examples of (non-)secure processes follow.

Example 6. 0∅ is secure. If PA is secure and (ν x)PA/x is well-typed, the
latter is secure. If P �y:�τ⊗?A is secure and !x(�y).P x:(�τ)!→A is well-typed, the latter
is secure. Finally, given A

def= x : B�→y : B⊥, x[.yin1&.yin2]A is not secure but
x[.yin1&.yin1]A is secure (the latter is because x[.yin1&.yin1]A ≈y⊥ yin

A/x
1 ).

The following is proved precisely as Theorem 1 except that the use of s-invisibility
is compensated by behavioural secrecy.

Proposition 4. The centre of ≈s over behaviourally secure processes is com-
patible with all operators except linear branching.

Without using a syntactic type discipline for secrecy, Proposition 4 offers a frame-
work for fully compositional reasoning for secure processes (we can further close
≈s under linear branching using the following condition: x[&i(�yi).Pi] is secure
with x given level s if Pi ≈s′ Pj for any s′ such that s �" s′).

To investigate the relationship with the present theory of secrecy and the
type-based approach in [23], we introduce tamp(A) (the lowest possible effect
level of A), a type discipline for secrecy �sec P � A (which we read: P is securely
typed by A) and ∼=s (a secrecy-sensitive contextual congruence), all from [23].

Definition 9. (tamper level and secure typing [23]) The tamper level of τ , de-
noted tamp(τ), is defined as follows. (1) tamp(τ) = � if τ is not affecting;
(2) tamp((�τ)↑s) = $itamp(τi), tamp([⊕i�τi]↑s) def= s, tamp((�τ)!s)

def= $itamp(τi),
tamp([&i�τi]!s)

def= $ijtamp(τij). Then tamp(A) def= ${tamp(A(x)) | x ∈ fn(A)}.
Sequents of the security typing have the form �sec P � A, whose rules are left to
Appendix A. If �sec P � A, we say P is securely typable with A.
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Note that tamp(τ) = � whenever τ is not affecting.

Definition 10. (secrecy-sensitive contextual equality) For each s, s-contextual
congruence ∼=s is defined as the maximum typed congruence satisfying the fol-
lowing condition: if P ⇓ix and P ∼=x:Bs′π Q with s′ " s, then Q ⇓ix (i=1,2).
Proposition 5. 1. If �sec P1,2 � A and tamp(A) �" s then PA

1 ≈s PA
2 .

2. If �sec P � A, then P is behaviourally secure.
3. ≈s is congruent over securely typed processes, i.e. it is an equivalence closed

under typed contexts given by the secure typing �sec in Definition 9.

Note that, in (2), the other direction does not hold (for the proof, we can use the
last process in Example 6). This proposition allows us to consistently integrate
the secrecy typing of [20, 23] with the present behavioural theory, for the purpose
of secrecy analysis in processes and, via embeddings, in programs. For example,
given a λ()×+-term MN , we can check the secrecy of [[M ]]m by typing, [[N ]]n by
behavioural secrecy, and finally verify their combination using typing. Another
consequence of Proposition 5 is a simple proof of the following noninterference
result, first given in [23].

Corollary 2. (noninterference) Let �sec P1,2 � A and tamp(A) �" s. Then we
have � P1 ∼=s P2 � A.

We conclude our technical development with a simple example of reasoning about
secrecy, guaranteeing the λ-term mentioned in the introduction is indeed secure.

Example 7. (secrecy via encoding) LetM def= case y� of {ini() : in1(�)}i∈{1,2}.
We show [[M : bool�]]u

def=!u(c).y(e)e[.cin1&.cin1] � u : (B⊥)!→ y : (B�)? is se-
cure. By Proposition 4, it suffices to show e[.cin1&.cin1] � e : B�→ c : B⊥ is
secure. But this has already been shown in Example 6, hence done.

Extensions to Other Type Structures. We have presented a theory of be-
havioural secrecy focussing on the pure linear π-calculus. First, the same results
can be obtained for the free name passing linear calculus via a fully abstract
encoding [17]. The framework is also systematically extendible to other type
structures which integrate linearity with affinity (nontermination) [6], stateful-
ness (references) [23] and nondeterminism [20]. In each case, the only necessary
extensions are (1) the incorporation of a new s-affecting action into s-bisimilarity
and its dual receiving action into behavioural secrecy, and (2) when affinity is
in the type structure, we change Definition 1 as follows: B becomes ()↑A (↑A
indicates possibly diverging, or affine, output), and the condition “C[P1] ⇓1u and
C[P2] ⇓2u” becomes “C[Pi] ⇓x and C[Pj ] ⇑x with i �= j” (here ⇓x iff P −→∗ x|P ′
for some P ′, and ⇑x iff not ⇓x). Except for these two changes, Definitions 1–8
can be used as they are. Because we have the same liveness property for call se-
quences (Lemma 1 (2)) in each extension, the same proof methods can be used
to obtain the corresponding results such as Theorem 1 and Proposition 4. To-
gether with full abstraction, the framework offers a uniform basis for behavioural
analysis of secrecy in programming languages.
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A Typing Rules

In the following rules, A〈�y : �τ〉 indicates each yi : τi occurs in A. ⊗ is disjoint
union. x : τ → A adds new edges from x : τ to the non-suppressed nodes in A.
A-x indicates x �∈ fn(A). pA indicates p ∈ md(A). We also assume ↑A in (In↓)
and (Bra↓) is either a singleton or empty (“unique-answer-per-thread”).

(Zero)

−
� 0 �

(Par)

� Pi � Ai (i =1, 2)

A1 � A2

�P1|P2 � A1
A2

(Res)

� P � A〈x : τ 〉
md(τ ) ∈ {∗, !}
� (ν x)P � A/x

(Weak-∗,?)

� P � A-x

md(τ ) ∈ {∗, ?}
� P � A⊗ x : τ

(In↓)

� P � �y : �τ ⊗ ↑A-x⊗?B-x

� x(�y).P � (x : (�τ)↓→A)⊗B

(In!)

� P � �y : �τ⊗?A-x

�!x(�y).P � x : (�τ)!→A

(Out) (p ∈ {↑, ?})
� P � C〈�y : �τ〉
C/�y =A�x : (�τ)p

� x(�y)P � A
 x : (�τ)p

(Bra↓)

� Pi � �yi : �τi⊗ ↑A-x⊗?B-x

�x[&i(�yi).Pi] � (x : [&i�τi]↓→A)⊗B

(Bra!)

� Pi � �yi : �τi⊗?A-x

�!x[&(�yi).Pi] � x : [&i�τi]!→A

(Sel) (p ∈ {↑, ?})
� P � C〈�y : �τj〉
C/�y =A�x : [⊕i�τi]p

� xinj(�y)P � A
 x : [⊕i�τi]p
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In Section 5, we consider a secrecy enhancement of typed terms. This is done
in two stages. First we simply annotate channels with secrecy levels, leaving the
rules themselves precisely as above except types are now annotated by secrecy
levels (which the rules simply ignore). Second we consider securely typed pro-
cesses, which are the set of sequents of form �sec P � A which are derived from
the above rules except the rule (Bra↓) is replaced by the following one, using
the channel types annotated by secrecy levels and using the sequent �sec P � A
instead of � P � A.

(Bra↓)
�sec Pi � �yi : �τi⊗ ↑A-x⊗?B-x s � tamp(A)

�sec x[&i(�yi).Pi] � (x : [&i�τi]↓s→A)⊗B

B Transition Rules

We assume all l.h.s. processes are well-typed. A allows l unless: (1) A(sbj(l)) = ∗
or (2) l is output and md(A(sbj(l))) = !, cf. [6]. n(l) is the set of names in l.

x[&i�yi.Pi]A
xini(�yi)−→ P

�yi:�τi⊗A/x
i (x : [&�τi]↓ ∈ A)

!x[&i�yi.Pi]A
xini(�yi)−→ !x[&i�yi.Pi]|P �yi:�τi⊗A

i (x : [&�τi]! ∈ A)
xini(�y)P A xini(�y)−→ P �y:�τi⊗A/x (x : [⊕i�τi]↑ ∈ A)
xini(�y)P A xini(�y)−→ P �y:�τi⊗A (x : [⊕i�τi]? ∈ A)

P ′1 ≡α P1 P
A1
1

l−→ PA2
2 P2 ≡α P ′2

P ′1
A1 l−→ P ′2

A2

PA1
1

l−→ PA2
2 x �∈ n(l)

(ν x)P A1/x
1

l−→ (ν x)P A2/x
2

PA1
1

l−→ PA2
2 A1 
B allows l

P1|QA1�B l−→ P2|QA2�B

PA1
1

l−→ PA2
2 QB1

1
l−→ QB2

2

P1|QA1�B1
1

τ−→ (ν bn(l))(P2|Q2)A2�B2/bn(l)

PA1
1

l−→ PA2
2 n(l) ∩ {�y} = ∅

xini(�y)P
A1/�y�x:[⊕i�τi]p

1
l−→ xini(�y)P

A2/�y�x:[⊕i�τi]pi
2

PA1
1

xini(�z)−→ PA2
2

xini(�y)P
A1/�y�x:[⊕i�τi]p

1
τ−→ (ν �y)P2{�y/�z}A2/�z

We omit rules for unary actions and symmetric case of |. The rules are well-typed
in the sense that if PA1

1 is well-typed and PA1
1

l−→ PA2
2 then PA2

2 is well-typed.
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