Model-Checking Infinite Systems
Generated by Ground Tree Rewriting

Christof Loding

RWTH Aachen, Lehrstuhl Informatik VII, 52056 Aachen, Germany

loeding@informatik.rwth-aachen.de

Abstract. We consider infinite graphs that are generated by ground
tree (or term) rewriting systems. The vertices of these graphs are trees.
Thus, with a finite tree automaton one can represent a regular set of
vertices. It is shown that for a regular set T of vertices the set of vertices
from where one can reach (respectively, infinitely often reach) the set
T is again regular. Furthermore it is shown that the problems, given
a tree t and a regular set T, whether all paths starting in ¢ eventually
(respectively, infinitely often) reach T', are undecidable. We then define a
logic which is in some sense a maximal fragment of temporal logic with a
decidable model-checking problem for the class of ground tree rewriting
graphs.

1 Introduction

Graphs play an important role in the behavioral description of programs or
processes. The use of theoretically unbounded data structures (such as stacks,
queues, etc.) in these programs requires the use of infinite (transition-)graphs. In
order to allow algorithmic applications like verification of infinite-state systems,
these systems have to be given effectively, i.e., by some finite object. In recent
years many classes of finitely representable infinite graphs have been studied. A
starting point for this research on infinite graphs was an analysis of the configu-
ration graphs of pushdown automata by Muller and Schupp in [13]. The vertices
of pushdown graphs are words (the control state followed by the stack content)
and the edges are defined via the transitions which are prefix rewriting rules on
these words. In [13] it is shown that pushdown graphs have a decidable monadic
second-order (MSO) theory. Later, more efficient algorithms have been devel-
oped for solving reachability problems, model-checking temporal logics [§], and
synthezising strategies for games [T0JT4] on pushdown graphs.

Using rewriting as the basic process for generation of infinite graphs, a variety
of possibilities arises to define classes of graphs different from pushdown graphs.
Let us briefly review some of the approaches. The result on the decidability of
the MSO theory generalizes from pushdown graphs to prefix recognizable graphs
[B], which are also generated by prefix rewriting on words; but the rewriting rules
refer to to regular languages instead of single words. Even more general classes
of graphs can be obtained when using finite word transducers to define the
edge relations of graphs. This leads to automatic graphs in case of synchronous

M. Nielsen and U. Engberg (Eds.): Fossacs 2002, LNCS 2303, pp. 280-294] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Model-Checking Infinite Systems Generated by Ground Tree Rewriting 281

transducers (see e.g. [1]) and to rational graphs [12] in case of asynchronous
transducers. The formalisms to generate automatic and rational graphs are very
strong and even simple reachability problems on these graphs are undecidable.
In [11] model-checking problems for process rewriting graphs are studied (in
process rewriting parallel composition of words is allowed in addition to the
usual sequential composition).

In the present paper we use another generalization of word rewriting, namely
tree rewriting, as already considered in [2]. In tree (or term) rewriting the ba-
sic objects in the rewriting systems are trees. For ground tree rewrite systems
(GTRS) confluence [6], the first-order theory [7], and several reachability prob-
lems [B] have been shown to be decidable. As the example of the infinite grid (see
Section Bl below) shows, the MSO theory of a GTRS graph can be undecidable.
Our goal is to develop an expressive fragment of temporal logic with a decidable
model-checking problem on GTRS graphs. Since reachability analysis of systems
constitutes an important part of verification, we analyze different reachability
problems. As a means of specification we will use finite tree automata to repre-
sent sets of vertices. Given such a regular set T represented by a tree automaton
we address the following problems for GTRS graphs.

(1) Compute the set of all vertices from where one can reach 7.

(2) Compute the set of all vertices from where one can infinitely often visit T'.

(3) Given a single tree t, do all paths starting in ¢ eventually (respectively,
infinitely often) visit 77

We give algorithms to solve the Problems (1) and (2). The first problem was
already solved in the context of term rewriting (see e.g. [4]), so the solution of
the second problem is the main contribution of the present paper. The problems
in (3) are shown to be undecidable and hence mark a boundary in the design of
a fragment of temporal logic with decidable model-checking problem for GTRS
graphs.

The paper is organized as follows. In Section Pl we introduce GTRS and tree
automata. In Section B we give an algorithm to solve the reachability problem (1),
in Section [we solve the recurrence problem (2), and in Section Bl we show the
undecidability of the problems of universal reachability and universal recurrence
from (3). Finally, in Section [6 we use the results of the former sections and
present a logic with a decidable model-checking problem for GTRS graphs.

I would like to thank Wolfgang Thomas and the anonymous referees for many
helpful comments.

2 Ground Tree Rewriting Systems and Tree Automata

A ranked alphabet A is a family of sets (A;);cx), where [k] = {0,...,k}. For
simplicity we identify A with the set Uf:o A;. A ranked tree t over A is a mapping
t: Dy — A with Dy C [k —1]* such that D; # () is prefix closed, for each ui € D
we have uj € Dy for all j < 4, and if u0,...,u(i — 1) € Dy, ui ¢ Dy, then
t(u) € A;. Dy is called the domain of t. We will mainly be interested in finite

282 Christof Loding

trees, except for Section [4] where we also use infinite trees. The set of all finite
trees over A is called T4. By C we denote the prefix ordering on N*.

For u € N* we define uD; = {uv € N* |v € D;} and u™'D; = {v € N* |uv €
D.}. For u € D, the subtree t* of ¢ at u is the tree with domain Dy = u" 1D,
and t“(v) = t(uv). For trees t,t’ € T4 and u € D; we define t(u <« t’) to be
the tree s with domain Dy = uDy U (D \ uw(u=1D;)) and s(v) = t/(u~tv) for
v € uDy and s(v) = t(v) for v € Dy \ uw(u~tD;). This means we replace the
subtree ¢* in ¢ by t'.

To denote trees we will use the usual graphical notation (as e.g. in Figure [
and the term notation, where a(to, . ..,%;—1) denotes the tree with a at the root
and tg,...,t;_1 as subtrees.

A ground tree rewriting system (GTRS) is a tuple S = (A, X, P,t;), where
A = (Ay)iep is a ranked alphabet, X' is an alphabet, P is a finite set of rules
ty —7 to with tq,to € Ty, 0 € X, and t; € T4 is the initial tree. For two trees
t,t" € Ta we write t —§ t’ iff there exists a rule t; =7 ¢ in P and u € D, such
that t* = t; and ¢ = t(u « t3). We write t —g ¢’ iff there is a ¢ € X with
t =% t'. By —¢& we denote the transitive closure of —g and by —7% we denote
the transitive and reflexive closure of —g.

The tree language generated by S is T'(S) = {t € T4 | t; —% t}. The edge
labeled graph Gg = (Vs, Eg, X)) generated by S is defined by Vg = T'(S), and
(t,o,t') € Egiff t =% t'.

Ezample 1. The GTRS S = (A, Y, P,tr) given by X' = {0,1}, A = (A;)icz
with Ag = {a,b}, A1 = {c}, and Ay = {d}, P = {b =0 ¢(b),a —*! c(a)}, and
t; = d(a,b) generates the infinite grid as shown in Figure [O

As usual a path 7 through a graph G = (V, F) is a (possibly infinite) se-
quence of vertices such that two successive vertices on this path form an edge.
If we consider a path 7 through a graph Gg for a GTRS S, then the edges are
generated by rewriting rules. We will sometimes refer to these rewritings as the

IS8
Q — 0~ Q ~
-~ = o—a—ao~—

TR o —0—0

Fig.1. The infinite grid generated by a GTRS.

Model-Checking Infinite Systems Generated by Ground Tree Rewriting 283

rewritings on 7. Given a path 7 and ¢ € N we denote the ith element on 7 by
(i) and the suffix of 7 starting at 7(7) by 7.

If T C Tx, then t —¢ T means that there is a path through Gg starting

in ¢ that infinitely often Vlslts the set T and if 7 is a path through Gg, then

—% T means that 7 is a path starting in ¢ that inﬁnitely often visits 7.
F‘urthermore we use similar notations as, e.g., t =% Th —% 15 if there is a path
that starts in ¢ and first visits 77 and then T5.

For a set T C T4 of trees let sub(T) = {t' € T4 | 3t € Tandu €
D, with t* = t'} be the set of all subtrees of trees in T'. For later use we define
the sets P, = {t € Ty | ' € Taowitht - ¢ € P}, PR ={t € T4 | 3t €
Ty with t — t' € P}, and sub(P) = sub(Py,) U sub(Pg).

A nondeterministic tree automaton (NTA) is a tuple A = (Q, A, A, F), where
Q is a finite set of states, A = (4;);cx] is a ranked alphabet, F' C Q is a set

of final states and A C (Uf:0 Q' x A;) x Q is the transition relation. Given a
tree t € T4, a tree p € T is a run of A on t iff D, = Dy, and for each u € D;
with t(u) € A; we have (p(u0),...,p(u(i —1)),t(u) p(u)) € A. We extend A to
trees in the natural way: (t,q) € A iff p(¢) = ¢ for arun p of Aon t. A tree t
is accepted by A iff (¢,q) € A for some g € F and the language T(A) accepted
by Ais T(A) = {t € Ta | (t,q) € A(t) for some ¢ € F'}. A language of trees is
called regular iff it can be recognized by an NTA.

For t € T4, arun p of an NTA on ¢, and a vertex u € D; it is clear that the
subtree p* of p is a run of the NTA on t*.

The notion of a run can also be applied to infinite trees. This will be used in
Section]

In the next section we also consider a more general type of automata, namely
nondeterministic tree automata with e-transitions (e-NTA). An e-NTA is a tuple
A=(Q,A A F), where Q, A, and F are as in NTA and A C ((Uf:o Q' x A;))U
Q) xQ is the transition relation. The transitions of A from the set @ xQ are called
e-transitions because in a run these e-transitions do not depend on the input tree.
For an e-NTA A = (Q, A, A, F) one can easily define an equivalent e-free NTA

- =(Q,A,A,F) by (q1,-..,4,a,q) € A™ if there are po,...,p; € Q with
pj =4, (q1,---,qi,a,p0) € A, and (p;,pr41) € Afor alll € {0,...,5 — 1}. Then
we can define (t,q) € Aiff (t,q) € A™.

3 Reachability

In this section we give an algorithm to solve the following reachability problem:

(Reachability): Given a GTRS S = (A, X, P,t;) and a regular set of trees
T C Ta, compute the set of all trees in Ty from which one can reach a tree
of T" in the graph Gg associated to S.

This problem was already solved in [5] and an algorithm similar to the one
presented here can be found in [4] for more general rewrite systems. Thus, we

284 Christof Loding

only provide the algorithm for the sake of completeness and without correctness
proof.

The main idea of the algorithm is to simulate the rewriting rules within
the tree automaton A = (Q, A, A, F) that accepts the regular set T' = T'(A).
If the automaton contains for each rewriting rule t; — t2 a unique state g,
that identifies t1, i.e., (t,q:,) € A iff t = ¢, then such the rule t; — t3 can
be simulated by adding an e-transition (gt,,q) to A, where ¢ is a state with
(t2,q) € A. So the algorithm adds a new part to A such that subtrees from
P;, can be uniquely identified and then starts adding e-transitions as described
above.

First we define the new part that is added to A. Given a set P of rewriting
rules over a ranked alphabet A = (A;);eqy), let

— Q" ={q: |t €sub(Pp)}, and
- AP = {(qt17 e 7qtiaa7Qa(t1,...,t1) | a’(tla e 7tz) S SUb(PL)}~

If these new states and transitions are added to A, then the accepted language
does not change and for each ¢t € Pj, the state ¢; can only be reached via ¢.

Figure Blshows an algorithm solving the reachability problem. Note that the
algorithm always terminates since only finitely many transitions can be added
to the automaton Ajg.

INPUT: GTRS S = (A, X, P,tr), e-NTA A= (Q,A, A F)

Qo =QUQRT, Ag = AUAT Fo=F

Ao = (QQ,A, Ao,Fo)

1:=0

while Jt1 — t2 € P,q € Qo with (t2,q) € A; and (t1,q) ¢ A; do
=1+ 1
Ai=Ai1U{(q,,9)}
Ai = (Qo, A, A, Fo)

end

m:=1

OUTPUT: e-NTA A,

Fig. 2. Algorithm to solve the reachability problem.

For a proof of the following theorem see e.g. [4] (or [§] for the special case of
pushdown systems).

Theorem 1. Given a GTRS S = (A, X, P,t;) and an e-NTA A, the algorithm
from Figure @ computes an e-NTA with |Q] + |sub(Py)| states accepting the set
{tETA|t—>§T}.

4 Recurrence

After having solved the reachability problem from the former section the next
step is to deal with repeated reachability or recurrence.

Model-Checking Infinite Systems Generated by Ground Tree Rewriting 285

(Recurrence): Given a GTRS S = (4, Y, P,t;) and a regular set of trees
T C T4, compute the set {t € Ty |t =% T}.

For this section we fix a GTRS S = (A4, X, P,t;) and an NTA A= (Q, A, A, F).
By A, we denote the automaton A, = (Q, 4, A, {q}).
There are two main steps in the construction of an NTA for the set {t € T4 |

t -2 T(A)}.

Step 1. We reduce the recurrence problem for T'(.A) to the reachability problem
for a set R(A) (defined below) by showing {t € Ta | t =% T(A)} = {t €
Ty |t —% R(A)}. The set R(A) is regular and can be constructed if we can
decide for all trees t € Pr, and all states ¢ € @ whether t —¢ T'(Ay).

Step 2. We give a procedure for deciding for t € P, and g € Q if t =% T'(Ay).

Step 1. Informally speaking, the set R(A) (for a fixed GTRS S) contains all
the trees t such that there is a state ¢ € @ and vertex u € D, with t* € Pr,
t* —% T(A,), and if we assume that there is a run of A on ¢ that labels u
with ¢, then there is an accepting run of A on t. The last condition ensures that
t(u « t') € T(A) for each t' € T(A,). Since the second requirement says that
from t* we can infinitely often reach a tree from T'(A,), it is clear that from ¢
we can infinitely often reach T'(A). On the other hand, if we are given a tree ¢
with ¢ —¢ T(A), then we can also reach R(A) from ¢. Before we prove this in
Lemma [l we give a formal definition of R(A).

Given t € Ty, u € Dy, and g € @, we say that t(u <« ¢) is in T(A) if there
is a tree t; € T4 such that there is an accepting run p of A on t(u < t1) with
p(u) = ¢. For this definition we assume that all states of A are reachable, i.e.,
for each q € @ there is a t € Ty with (¢,q) € A. We define the set

th e Pp,t*" —=¢ T(A,),
R(A){teTAHueDt,qu: andt(u<—q)sej(“(jl; }

Lemma 1. Lett € Ty. Thent —¢ T(A) iff t =& R(A).

Proof. “=": Assume that t =% T'(A) andlet 7 =ty —gt1 —gts —=gt3 —g -
be a path starting at ¢ = ¢, that infinitely often visits T'(A). For i € Nlet u; € Dy,
and t; € T4 such that t;11 = t;(u; < t;) (i.e. the rewriting rules are applied to
the ¢;'"). There is a j € N such that no w; is a proper prefix of u; for all ¢ > j, and
there is an infinite number of ¢ > j such that u; is a prefix of u;. In particular,
this means u; € Dy, for all ¢ > j. Let t; = t;‘j. We know that ¢t;, € Pp. Since 7
infinitely often visits T'(A), there must be ¢ € @ that is infinitely often at w; in
accepting runs on trees from T'(A) on 7. We get ¢, —% T(A,) since u; is not a
proper prefix of u; for ¢ > j and because there are infinitely many substitutions
“below” u; (u; is a prefix of u, for infinitely many ¢ > j).

Let k£ > j be such that there is an accepting run of A on t; that labels u;
with ¢. Define t' = t(u; « t1) and u = u;. Then (¢')" = t1. From the accepting
run on t; that labels u with g we get t'(u «— ¢) € T(A). Thus, ¢’ € R(A).

286 Christof Loding

For all 4 > j we have that u; is not a proper prefix of u;. Therefore we get
t; —% t and as a consequence t —% t'.

“<”: Let t' € R(A) such that ¢t —% t'. It is sufficient to show that t' —¢ T'(A).
Let ¢ € Q and u € Dy be such that(t')* € Pr, and (t')* —¢ T(Aq). Let tg = (¢')*

and let tg —g t1 —g to —g t3 —g --- be a path starting at to that infinitely
often visits T'(Ay). Then t —g t(u «— t1) —g t(u — t2) =g t(u — t3) —g--- is
a path starting in ¢ that infinitely often visits T'(A). O

Since the set Py, is finite, it is not difficult to verify that the defining properties
of trees in R(.A) can be checked by a finite tree automaton. But to construct such
an automaton we have to decide for each t € Pp, and ¢ € @ whether ¢t —¢ T'(A,).
This is the second step mentioned above and will be done in the remainder of
this section.

Step 2. There are two possibilities on how to visit the set T'(A) infinitely often
along a path 7.

(a) There is a single tree ¢ € T'(A) that is visited infinitely often along .
(b) There are infinitely many different trees from T'(A) on 7.

To distinguish the two cases we analyze how the trees evolve along a path 7
by defining the limit of 7. This is the tree consisting of all the vertices of trees
on 7 that are eventually not involved in the rewriting steps any more (i.e. the
vertices that are fixed from a certain point onwards). In case (a) this limit will
be a finite tree. If the limit of 7 is infinite, then we have to deal with case (b).
In both cases we can find a normal form for paths infinitely often visiting T'(A).
That is, if there is a path n’ : ¢ =% T(A) for ¢ € P, then there is also a path =
in normal form with 7 : ¢ —§ T'(A). Then we describe a procedure to decide for
t € P, and g € Q if there exists a path 7 in normal form with 7 : ¢t —¢ T(A,).

The normal form for case (a) is based on the same ideas as in Step 1 from
above and is stated without proof in Lemma 2l The normal form for case (b)
(Lemma B) is more complicated and will be described in more detail after the
formal definition of the limit of a path.

A branch 3 of a tree ¢ is a maximal prefix closed subset of D; such that for
each u € 8 there is at most one ¢ € N with ui € § (in other words: a maximal
subset of D, that is linearly ordered by C). Given a branch g of a tree ¢ and a
vertex v € Dy we define 8(v) to be the maximal prefix v of v with u € .

Let 7 be an infinite path through Gg. We say that u € N* is stable on 7
if u € Dy for each i € N and none of the vertices used in the rewritings on
7 is a prefix of w. This simply means that u is never involved in any of the
substitutions on the path 7w (note that w is a prefix of itself). The limit lim(m)
of 7 is a (possibly infinite) tree with domain

Diip(ry = {u € N* [3j € N : u stable on 7rj}.

If a vertex u is eventually stable on 7 then it eventually has a fixed label a. We
take this label to be the label of u in lim(r), i.e., lim(7)(u) = a.

Model-Checking Infinite Systems Generated by Ground Tree Rewriting 287

The path 7 is called stable iff for all u ¢ Dy () there is a j € N such that
U ¢ Dﬂ-(l) for all 4 > j

If lim(7) is finite for a path 7 : t — T'(A), then it is not difficult to see that
it is possible to visit T'(A) infinitely often in the following way. From ¢ one can
reach a tree ¢ which has a subtree ¢’ = (¢”)* € Pr. From t' we can reach a
tree r and from r one can reach ¢’ again such that t"(u «— r) € T(A). This is
formalized in the next lemma. The proof is similar to the construction in the
proof of Lemma [l

Lemma 2. If there ezists a path 7 : t —¢ T(A) with lim(7) finite, then there
are t' € Py, t" € Ta, u € Dy, and q € Q such that t —% ¢, (") =1,
t' =5 T(Ay) =5 t, and " (u — q) € T(A).]

The normal form for paths 7/ with lim(7’) infinite is obtained by removing
unnecessary rewritings. By unnecessary we mean that these rewritings are not
essential for visiting T'(A) infinitely often. This results in a new path 7 that is
stable such that lim(7) only has one infinite branch. Furthermore we can ensure
that there are infinitely many trees on m that are accepted by A such that the
accepting runs agree on growing initial segments of the infinite branch of lim (7).

Lemma 3. If there exists a path ©' : t —¢ T'(A) with lim(n’) infinite, then there
is a path 7 : t —¢ T(A) with

(i) m is stable,
(i) lim(7) has exactly one infinite branch 3, and
(iii) there is a run pum of A on lim(w) with the following property. For each
u € f3 there are infinitely many i € N such that there is an accepting run
pi of A on (i) that agrees with prim on {v | B(v) C u}.

Proof. For simplicity we will only speak of runs instead of runs of A.

Let 3 be an infinite branch of lim (7). We first define a mapping pg on 3 that
will be extended to the run pjin,. In the definition of pg we make use of Konig’s
Lemma to be able to satisfy property (iii).

For u € B let B, = {v € B8 | v C u} be the initial segment of 5 up to u and
Vi={p: 0By — Q|3 : 7'(i) is accepted by a run that agrees with p on G,}
(3¥ means “there are infinitely many”). Define a graph G = (V, E) with V =
(Uuep Vi) U {0}. The edge relation E is defined as follows.

— (p,p) € E if there are u,u’ € [with v/ = wi for some ¢ € N such that
p:Bu—Q,p By — Q,and p,p’ agree on (3.
— (B,p) e Eifp: 6. — Q.

Then G is an infinite tree (in the graph theoretic sense) of finite degree. There-
fore, by Ko6nig’s Lemma, there is an infinite path in G. On this path growing
initial segments of 3 are labelled consistently. This gives us our mapping pg.
Now we will modify the path 7’ to obtain the path 7. For each u € 3 let
iy, € N be minimal such that the successor s(u) of u on f3 is stable on (') and
7'(4y) is accepted by a run p, that agrees with pg on (). To obtain m remove

288 Christof Loding

for each u € S all substitutions on (7/)% at a vertex v with 3(v) = u. Then
7 is still an infinite path and 7 is stable. Furthermore lim(7) only contains the
infinite branch 3. It remains to define pjy, and verify (iii). For each u € Dijy(r)
let piim(u) = pgu)(u). Then one can verify that pyy, is indeed a run of A on
lim(7). Since 7 is obtained from 7’ by removing rewritings we get a natural
mapping ¢ : N — N associating 7’(i) with 7(¢(7)). This mapping is inductively
defined as ¢(0) = 0 and

o(7) if the rewriting generating the edge from /() to
pli+1)= 7'(i + 1) was removed from =,
(i) 4+ 1 otherwise.

By the definition of 7 the tree m(p(i,)) is accepted for each u € § by a run that
agrees with pjim on {v | B(v) C u}. i

Lemmas [2] and [3] provide us with normal forms for paths infinitely often visiting
T(A) (or any other regular set of trees). To decide for t € Py, and ¢ €) whether
t —¢ T(A,;) we construct a finite graph G with vertex set sub(P) x Q x @
and edges labelled with 0 or 1 such that there is a path m in normal form
with 7 : ¢ =% T(A,) iff there is a path through G with infinitely many edges
labelled 1. We will motivate the construction of G by the normal form obtained
in Lemma [3] but it is not difficult to see that we can also use G to find paths
with finite limit.

In the first component of the vertices of G the rewriting steps at vertices on
the infinite branch 8 (according to Lemma B) will be simulated (usually more
than one at a time). The second component will keep track of the state labelling
pim of 8. As we have seen in Lemma [3] there are accepting runs for trees on
the infinite path 7 that agree with py, on growing initial segments of lim(7).
But it is not guaranteed that these runs completely agree with pjy. So, in the
third component of the vertices we will simulate the actual accepting runs on
trees that are on m. The property that we will find runs that agree with py, on
growing initial segments allow us to reset the third component to the second one
whenever we find an accepting run.

Traversing one edge in G corresponds to going one vertex along the branch
0. If we are at vertex u on (8 and wui is the successor of u on (3, then going from
(t,q,p) to (t',q',p") in G means that t is the tree at u before the first substitution
takes place at u and t’ is the tree at ui after the last substitution at u. Thus,
one edge of G corresponds to the sequence of substitutions starting at the first
substitution at a certain vertex on 8 and ending after the last substitution at this
vertex. The edge of G is labelled with 1 if during this sequence of substitutions a
tree from T'(A,) occurs. This is checked using the states in the second and third
component of the vertices of G.

Formally we define G = (V, E), where V = sub(P) x Q x @ and E contains
the following edges.

(1) (t,q,p) S, (t',q',p") € E if there exist t1,...,6 € TA, @1+, q,D1,5---, D1 €
Q, i€ {l,...,1} such that

Model-Checking Infinite Systems Generated by Ground Tree Rewriting 289

a(ty,...,t;) € sub(P) and t —% a(ty,...,t),
- t/:tiaq/:qiap/:pia
- (q1,---,@,0,9), (p1,---,p1,a,p) € A, and
— tj =5 T(Ay,) —%5 T(A,,) for all j € {1,...,1} with j #i.
(2) (t,q,p) LR (t',¢',p') € E if there exist t1,...,t, € Ta, q1,---,q,D1,---,D1 €
Q, i€ {l,...,1} such that
— a(t1,...,t;) € sub(P) and t —§ T(Ap) —§ a(ty, ..., 1),
—t'=ti, ¢ =q, ' =p;,
— (g1, @,0,9), (p1,---,p1,a,q) € A, and
—t; =5 T(Ap,) =5 T(Ay,) for all j € {1,...,1} with j # 1.

The only differences between (1) and (2) are that in (2) we require a(t1,...,%)
to be reachable from ¢ via a tree from T'(A,) and that we reset the simulation
of a run in the third component.

Lemma 4. Lett € Pr, and q € Q.

(i) There is a path ™ in Gg with 7 : t —¢ T(A,) and lim(7) infinite iff there
is an infinite path in G with infinitely many edges labelled 1 starting from
(t.q,q).

(i1) There is a path m in Gg with w:t —¢ T(A,) and lim(w) finite iff there is
a path in G from (t,q,q) to (t',q',q') such that t' —% T(Ay) =& t.

Proof. The proof for (ii) is rather simple with the use of Lemma 21 The idea for
the proof of (i) is as follows.

“<”: By induction on n one can show that if there is a path from (¢,q,p)
to (t,¢,p’) in G starting with n 0-edges and ending with one 1-edge, then
there is a tree t” and u € Dy such that ¢t —% T(A,) —% ¢, (") = t/, and
t"(u —¢") € T(A,). So, from an infinite path in G starting in (¢, ¢, ¢) and having
infinitely many 1-edges one can construct a path in Gg that infinitely often visits
T(Ay).

“=": For this direction the normal form of Lemma Blis used. The first component
in the vertices of GG is used to simulate the rewritings on the branch § at the
point where the vertices on 3 become stable. The second component guesses the
labelling of 3 by piim and the third component is used to simulate the labelling of
B3 by accepting runs on trees that are on 7. Property (iii) from Lemma [3] ensures
that there are accepting runs that agree with pj,, on growing initial segments
of lim(7). O

The graph G can be constructed effectively since the only nontrivial condi-
tions in the construction of the edges are instances of the reachability problem.
Furthermore condition (i) of the previous lemma is decidable by standard algo-
rithms on finite graphs. Condition (ii) of the previous lemma is decidable because

the condition t' —% T(A,) —4& ¢’ can also be formulated as an instance of the
reachability problem. Therefore we get the following lemma.

Lemma 5. Fort € P, and q € Q it is decidable whether t —% T(Ay).

290 Christof Loding

Summarizing the results from this section we get the following theorem.

Theorem 2. Given a GTRS S = (A, X, P,t;) and an NTA A= (Q,A, A F),
one can construct an e-NTA with O(|Q| + |sub(Pr)|) states accepting the set
{teTa|t—4T(A}.

Proof. An automaton for R(A) on an input ¢ € T4 has to guess a subtree t* € Pp,
and ¢ € Q with t* —¢ T(A,) and then verify that ¢t(u < ¢) is in T(A). This
can be done by an automaton with O(|Q| + |sub(Py)|) states (and by Lemma
we can also construct this automaton). Then we apply Theorem [and obtain
an automaton for {t € Ty |t —=¢ T(A)} with O(|Q]| + |sub(Pr)|) states. O

5 Universal Reachability and Universal Recurrence

In the previous sections we asked for the existence of a path with a certain
property. In this section we address the dual problems.

(Universal Reachability): Given a GTRS S = (A, X, P,t;) and a regular set
of trees T' C T4, does every maximal path in Gg starting in ¢ty visit 17
(Universal Recurrence): Given a GTRS S = (A, X, P, t7) and a regular set
of trees T' C T4, does every infinite path in Gg starting in ¢; visit 7" infinitely

often?

We will show the undecidability of these two problems using the same ideas as
in [9] where the undecidability of a similar property for Basic Parallel Processes
is shown. The general idea is to use reductions from undecidable problems for
Turing machines (TM) by defining for a given TM M a GTRS Sj; that can
simulate computations of M. A TM configuration ai - - - apgb; - - - by, where the
word aq ---arb; - - by is on the tape and the TM is in state ¢ with the reading
head on b;, will be represented by a tree with two branches with X, aq,...,ax
on the left branch and X,bq,...,b;,q on the right branch. The X symbols are
used to model the infinite blank parts of the tape to the left and to the right.
For example the first tree in Figure [3 represents the configuration ga. For a
configuration k of M we will denote the corresponding tree as t(k).

With this coding of configurations it is not possible to exactly simulate the
transitions of M by Sj;. The GTRS S}, can simulate the correct behavior of M
as well as incorrect behavior (i.e., in Sj; one can reach ¢(x') from ¢(x) although
M cannot reach k' when started in). But Sjs will be constructed in such a way
that for every path w through Gg,, that leads from ¢(x) to ¢(x’) there is a tree
from a regular set T.,, on 7 iff M cannot reach s’ when started «. This property
is obtained by adding auxiliary symbols to the tree alphabet and simulating a
transition of M in more than one rewriting step with intermediate trees that do
not code configurations.

Let M = (Q,B, I qo,qs,0) be a deterministic TM with state set @, input
alphabet B, tape alphabet I', starting state qg, stop state ¢s, and transition
function 6 : Q@ x I' = Q x I x {L, R}. Furthermore let @ N I" = (), and U be the
blank symbol. If x and «’ are configurations of M, then we write as usual k -y &’

Model-Checking Infinite Systems Generated by Ground Tree Rewriting 291

if &’ is the successor configuration of k, and k 4, & if k" is a configuration that
is reachable from k. The initial configuration of M on the empty tape is denoted
by ke.

The GTRS Sy = (A, X, P,ty) is defined as follows. The tree alphabet is
A = Ay U A U Ay with Ay = {.}7 Ay = QUFU{X}, and Ag = A1 U
{addy, adds, adds, remy, rems, err}. We do not need the transition labels X', thus
we assume that X' contains one symbol and omit this symbol in the rest of the
proof.

The initial tree is t; = t(k.) = /4 >|(

90
The set P contains the following rewriting rules.

X
b |
| b
a P . X |
1. For §(¢,a) = (p,b,L),ce ' | — | andifa=1U, then| — 1|9
q c q
aJd1 T
add1
X
p \
a | . X p
2. For §(q,a) = (p,b,R): | — b andifa=L, then | — l\)
! remsy ! |
remi
a X
| b |
3. Forallae T'U{X}, beTl: a— lr,bﬂ |, X — ITI
addy ! remi

4. addy — adds, addy — adds, remy — rems.

q a
b a
5. Forallae 'U{X}, bel,qe@: I:) -, Z‘) —>l|],
q

addg aJdg
i |
6. Forallae TU{X}, beTl, qeQ: l|7 —a l|7

rems rems

7. Foralae 'U{X}, be ', p,q e Q: q— I‘), (\1 —q.

err

Figure Blshows the correct simulation of the transition §(q,a) = (p, b, L) (the
TM is in the configuration ga). The symbols a and ¢ are replaced by b and p. Since
the TM moves the head to the left, it has to guess which symbol is on the left
hand side of the head. Here it is the blank symbol. The symbol add; indicates
that the blank symbol should be added to the right branch of the tree. Now
the left branch has to confirm with rem;. Then the two branches alternatingly
increase their add and rem symbols until they reach adds and rems. Now the
blank symbol can be removed from the left branch and then it is added to the
right branch.

292 Christof Loding

L] L] L] L] L] L] L] L]
/oA /o /N /o /N /N /o /N
X X X X X X X X X X X X X X X X

| | I [[I | |
a b] U b]] b b
| - =1 =1 I =11 —=1"1= | - \
q P remiy p remy p remsz p remsaz p P (]
| \ | | \ | \
[N} (] [N} [N} u [N} P
| \ | | \ |
(ldd1 add1 addz addg add3 add3

Fig. 3. Example for the simulation of a TM-transition by a GTRS.

The set T,,, contains all trees that result from a violation of the protocol and
all the trees that encode a stop configuration of the TM. From the description
below it is easy to see that T, can be defined by an NTA. A tree t is in T4, iff

1. t contains the err symbol,

t contains more than one add or more than one rem symbol,
t contains a rem; symbol and no add; or add;;1 symbol,

t contains an adds symbol and no rem symbol, or

Al

a
t contains subtrees of the form | and | with a #0.
rem; add;

By a tedious distinction of cases one can check the following lemma.

Lemma 6. (i) For each configuration k of M: t(k.) =% t(k).
(i) For all configurations k, k' of M there is a path from t(k) to t(x') in Gg,,
not visiting Teyy iff & 3y K.

Theorem 3. The problem (Universal Reachability) is undecidable.

Proof. Let Ty, be the set of all trees encoding a stop or deadlocking configura-
tion. Then, by Lemma [0 (ii), it is clear that a TM M does not stop on the empty
tape iff there is a path through Gg,, starting in ¢; that never visits T U Tytop-

O

Theorem 4. The problem (Universal Recurrence) is undecidable.

Proof. We use a reduction from a problem similar to the halting problem which
can easily be shown to be undecidable:

Given a Turing machine M, does there exist a configuration x of M such
that M does not stop when started in 7

Suppose that such a configuration of M exists. then t(k.) —% t(k) by
Lemma [] (i), and by Lemma [0 (ii) there is an infinite path starting in ¢(x)
not visiting Te,y-

If there is an infinite path 7 that visits T4, only finitely often, then one can
pick a tree of the form (k) on 7 such that there is no tree from T¢,, on the suffix
of 7 starting in (k) (it is not difficult to see that such a tree exists). Then the
suffix of 7 starting in ¢(k) corresponds to an infinite computation of M starting
in k, again by Lemma [(ii). O

Model-Checking Infinite Systems Generated by Ground Tree Rewriting 293

6 A Logic for Model-Checking over GTRS Graphs

For a fixed ranked alphabet A and an alphabet X' formulas of our logic are
defined by the grammar (in CTL-like syntax)

¢:=T|L|T|~¢|oVe|(o)¢|EFp|EGF¢

where 0 € X and T C Ty regular. Given a GTRS S = (A4, X, P,t;) define the
semantics ||¢||s (or simply ||¢||) of a formula ¢ as follows.

— Tl =Ta, |1 =0, T[] =T, [|=¢[l = Ta \ ¢l [l61 V d2ll = lI$2]l U [I2]],
= o) oll ={t € Ta [t =5 [|9]l},
|EFQ|| = {t € Ta [t =% [[¢[|}, and

— |EGFo|| ={t € Ta|t =% o]}

Then S is a model of ¢, denoted by S |= ¢, iff t; € ||@||. With the results from
the previous sections we get the following theorem.

Theorem 5. For a GTRS S = (A, X, P,t;) and a formula ¢ one can decide
whether S |= ¢.

Proof. We can construct automata for || T, [|L|l, |T]l, [[=¢ll, [|[¢1V ¢|| with stan-
dard tree automaton constructions. Given an automaton for ||¢||, the automata
for |EF¢| and ||[EGF¢| can be constructed according to Theorems [[] and B
An automaton for || (o) ¢|| has to guess a subtree and a rewriting rule such that
rewriting this subtree with this rule yields a tree from ||¢||. We do not give the
details of this straightforward construction here. Thus, to decide if S = ¢ we
construct the automaton for ||¢| and then check if ¢; € ||¢||. O

The fragment of temporal logic presented here is maximal in the sense that
including the operators EG or EFG leads to an undecidable model-checking
problem as shown by the results from the previous section. Furthermore, until-
operators (as known from temporal logic) also lead to undecidability, because
in the GTRS constructed in the proof of Theorem Blthe fact that the TM stops
on the empty tape can easily expressed by the until formula E(—Tey)UTstop
because the existence of a path starting in the initial tree and remaining in the
complement of T¢,, until it eventually reaches Ty, is equivalent to the existence
of a halting computation of the TM on the empty tape.

Conclusion

In the present paper we have analyzed various decision problems for infinite
graphs generated by ground tree rewriting. The problems of reachability and
recurrence as stated in Sections Bl and H were solved whereas the problems of
universal reachability and universal recurrence from Section B were shown to be
undecidable. These considerations lead to a rather expressive and in some sense
maximal fragment of temporal logic with a decidable model-checking problem
for GTRS graphs.

294 Christof Loding

A drawback of the decision algorithm is that the size of the constructed
automaton is non-elementary in the number of nested negations in the formula
since complementing NTA gives an exponential blow-up. Note that we cannot
simply push the negations inwards to the atomic formulas because this would
lead to universal path quantifiers (A instead of E) which are difficult to handle
with nondeterministic tree automata. The use of alternating tree automata may
help to obtain a better complexity.

References

1. Achim Blumensath and Erich Gradel. Automatic structures. In Proceedings of
LICS 00, pages 51-62. IEEE Computer Society Press, 2000.

2. Walter S. Brainerd. Tree generating regular systems. Information and Control,
14:217-231, 1969.

3. Didier Caucal. On infinite transition graphs having a decidable monadic theory.
In Proceedings ICALP ’96, volume 1099 of LNCS. Springer-Verlag, 1996.

4. J.L. Coquidé, M. Dauchet, R. Gilleron, and S. Vagvolgyi. Bottom-up tree push-
down automata: Classification and connection with rewrite systems. Theoretical
Computer Science, 127(1):69-98, 1994.

5. J.L. Coquidé and R. Gilleron. Proofs and reachability problem for ground rewrite
systems. In Aspects and Prospects of Theoretical Computer Science, volume 464 of
LNCS, pages 120-129. Springer, 1990.

6. Max Dauchet, Thierry Heuillard, Pierre Lescanne, and Sophie Tison. Decidability
of the confluence of finite ground term rewrite systems and of other related term
rewrite systems. Information and Computation, 88(2):187-201, October 1990.

7. Max Dauchet and Sophie Tison. The theory of ground rewrite systems is decidable.
In Proceedings LICS 90, pages 242-248. IEEE Computer Society Press, 1990.

8. Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon. Efficient
algorithms for model checking pushdown systems. In Proceedings of CAV 2000,
volume 1855 of LNCS, pages 232-247. Springer-Verlag, 2000.

9. Javier Esparza and Astrid Kiehn. On the model checking problem for branching
time logics and Basic Parallel Processes. In Proceedings of CAV ’95, volume 939
of LNCS, pages 353-366, 1995.

10. Orna Kupferman and Moshe Y. Vardi. An automata-theoretic approach to rea-
soning about infinite-state systems. In E. A. Emerson and A. P. Sistla, editors,
Proceedings of CAV 2000, volume 1855 of LNCS. Springer-Verlag, 2000.

11. Richard Mayr. Process rewrite systems. Information and Computation, 156(1—
2):264-286, 2000.

12. Christophe Morvan. On rational graphs. In Proceedings of FoSSaCS ’99, volume
1784 of LNCS, pages 252—-266. Springer, 1999.

13. David E. Muller and Paul E. Schupp. The theory of ends, pushdown automata,
and second-order logic. Theoretical Computer Science, 37:51-75, 1985.

14. Igor Walukiewicz. Pushdown processes: Games and model checking. In Rajeev
Alur and Thomas A. Henzinger, editors, Proceedings of CAV ’96, volume 1102 of
LNCS, pages 62-74. Springer-Verlag, July-August 1996.

	Model-Checking Infinite Systems Generated by Ground Tree Rewriting
	1 Introduction
	2 Ground Tree Rewriting Systems and Tree Automata
	3 Reachability
	4 Recurrence
	5 Universal Reachability and Universal Recurrence
	6 A Logic for Model-Checking over GTRS Graphs
	Conclusion
	References

