Mapping an ADL to a Component-Based
Application Development Environment’

Virginia C.C. de Paula and Thais V. Batista

Department of Informatics and Applied Mathematics - DIMAp
Federal University of Rio Grande do Norte - UFRN
{vccpaula,thais}@ufrnet.br

Abstract. In this paper we discuss the mapping of an Architecture De-
scription Language, ZCL, to an environment for configuring distributed
application using CORBA components, LuaSpace. We focus on the map-
ping of the structural properties of ZCL and LuaSpace. In order to deal
with compatibility issues, we propose an extension to ZCL. The result of
this work is an integrated environment that combines the flexibility and
execution platform provided by LuaSpace with a tool for design and for
consistency checking - ZCL. The experience in combining an ADL with
a configuration based environment can give clues on how integrating the
activities of design and implementation during the lifetime of a software
system.

Keywords: Software architecture, configuration, component, CORBA,
ADL, scripting language, dynamic reconfiguration.

1 Introduction

Component-based development is a current trend in software engineering mainly
because it promises to concretize the idea of reusing existing components by
pluging-and-playing them in order to compose an application. Frameworks for
component interoperability are playing an important role in component based
application development because they offer support for working with heteroge-
neous components despite differences in language and in the execution platform.
The CORBA model [22] has drawn special attention as a framework for interop-
erability because it is independent of language and manufacturer and provides
easy access to components with transparent distribution. However, CORBA,
like other frameworks for component interoperability, does not have facilities to
describe the global organization of an application [25].

Several development environments [25/6)24] have been proposed to support
the construction of component-based applications. In general these environments
are based in a two level development model, in which not only the component

" Research for this paper was done with valuable support from CNPq (Brazilian Coun-
cil for Development of Science and Technology) under processes 68.0103/01-5 and
68.0102/01-9.

R.-D. Kutsche and H. Weber (Eds.): FASE 2002, LNCS 2306, pp. 128-[142] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Mapping an ADL to a Component-Based Application 129

level is considered but also the configuration level. In this second level, the struc-
ture of the application is composed of components and their interaction. Both
level support the implementation phase of a software application.

Another important field that has gain an momentum in component-based
development is Software Architecture [14]. The concept of software architecture,
also said system structure or system configuration, is especially important to
design complex software systems, providing a model of the large scale structural
properties of systems. These properties include the decomposition and interac-
tion among parts as well as global system issues such as coordination, synchro-
nization and performance [I5]. Structural issues include the organization of a
system as a composition of components; global control structures; the protocols
for communication [T4]. Therefore, it addresses the high-level design of a sys-
tem [21], named Architecture level. In this level the correct characterization of
component composition and relationship among components are defined using a
Software Architecture Description Language (ADL).

Although the terms architecture and configuration are usually treated as syn-
onymous in software architecture literature, in this work we call architecture the
abstract level via which we model an application. The term configuration we use
when talking about a level close to the application implementation.

In [21], it is mentioned that software architecture and configuration based
programming are related research areas that evolved separately but the solutions
in these areas center around the same system model. Despite some differences,
the approaches are complementary and share some features such as a related
terminology and the notion of components and configuration.

As mentioned in [16], some ADLs are taking a more pragmatic approach to
the development of distributed systems. This approach is worried about dealing
with middleware infrastructures, such as CORBA.

In this paper, we describe the mapping of an ADL, named ZCL [IJ3] to a
component-based application environment - LuaSpace [24]. The motivation that
lead us to develop this work arise from both sides involved. From the perspective
of ZCL, it is necessary an underlying execution platform to run the application
described using ZCL and to avoid architectural erosion [21]. From the perspec-
tive of LuaSpace, the use of an ADL can document the application design phase,
give an overall vision of the application topology and guide the application con-
sistency maintenance. In a more generic way, we want to integrate the flexibility
and execution platform provided by LuaSpace with a tool for design and for
consistency checking - ZCL.

One of the main features of ZCL is to have an associated formal framework
[1, specified in Z [], to describe and reason about dynamic distributed software
architectures. It focuses on the operations necessary for the construction of dy-
namic software architectures. ZCL deals with execution issues defining states for
the components and connections. So, the architect can concentrate on architec-
tural issues or he/she can also analyze execution issues. Although ZCL considers
execution issues, a platform is not available do run applications specified using
ZCL. Nevertheless, simulations are allowed using Z tools.

130 Virginia C.C. de Paula and Thais V. Batista

The main advantage of LuaSpace is to provide a flexible way to compose
application using CORBA components and to support dynamic reconfiguration
of applications. LuaSpace uses an interpreted and procedural language - Lua -
and a set of tools based on this language as a configuration tool to programming
a component-based application. LuaSpace focuses on flexibility for dynamic re-
configuration.

Architecture descriptions and middleware are used in different phases of soft-
ware development. The decision of modeling an application to be executed using
an specific middleware is a typical case in which the implementation has direct
influence on architecture decisions. Therefore, we intend to provide an appro-
priate way to model an architecture to be executed in LuaSpace, because for
a system to be implemented in a straightforward manner on top of a middle-
ware, the corresponding architecture has to be compliant with the architectural
constraints imposed by the middleware [16).

ZCL and LuaSpace were originally thought in a completely independent way.
However, they share a common interest in dynamic reconfiguration, supporting
dynamism in different abstraction levels. The integration must keep unharmed
the advantages of both approaches and it may enhance them with new function-
ality.

This paper is structured as follows. Section [presents the background of
this work describing LuaSpace and ZCL. Section B] discusses their integration.
Section Bl presents related works. Finally, section Bl presents our final remarks.

2 Background

2.1 ZCL

The ZCL language is based on the CL language [11]12], which uses most of
the principles of other MILs, but it has introduced new concepts, like planned
reconfiguration. In this kind of reconfiguration, the designer can predict some
modifications as likely to happen.

In ZCL, an architecture has a hierarchical structure in which the architecture
is a composition of components that can also be composite. Those components
that implement a functionality are simply called components or task components.
Composite components can be seen as (sub)architectures and are also called
group components. Task components are the smaller unit of computation we
are considering. An architecture in ZCL is constructed by successive use of its
operations. The components must exist in the library of components to be used
in the description of an architecture. ZCL includes (auxiliary) operations to add
components to the library.

Task components, composite components and ports of communication are the
basic elements of an architecture in ZCL. Communication ports constitute the
interface of a component through which it communicates to other components.
A link is a connection between two communication ports.

One important feature of ZCL is to have an associated formal framework
[103], by which the software architect can describe and reason about dynamic

Mapping an ADL to a Component-Based Application 131

distributed software architectures. ZCL was specified using Z[4]. In order to
illustrate a Z schema, we present below the ZCL_Component schema which rep-
resents a task component. It specifies the interfaces as a set of PortNames. Every
port has Port_Attributes: direction (DIR) to indicate that it receives messages
(entryport) or sends messages (exitport); mode (MODE) to indicate that it can
be notify (asynchronous) or requestreply (synchronous); and type (TYPE) to
indicate the type of data that can be transmitted by the port. It is also pos-
sible specify application specific attributes of a component (component_attr).
The given sets Indices and Attributes are used to classify application specific
attributes. ID_Component, Nodes, PortNames and Location are given sets rep-
resenting respectively identifiers of components, of instances, of ports and of
machines in which instances are executed. Each element in ZCL is specified by
a schema in Z. So, we have schemas specifying components, composite compo-
nents, instances of components (or composite components), etc.

_ ZCL_Component
component_attr : Indices - Attributes
interfaces : F, PortNames
port_attr : PortNames -+ Port_Attributes

dom port_attr C interfaces

ZCL works with the concept of library of components. Components existing
in the library can be used in the context of an architecture description. Instances
of components can be created and linked to other instances. They must have the
same interface to be linked. In ZCL, instances are not automatically activated.
This allows better control over parallelism. The architect must explicitly say
that an instance has to be activated. In summary, we can say that ZCL al-
lows the following commands to create an initial architecture: use, create, link
and activate. The commands to allow reconfiguration are: remowve, to remove a
component from the context; delete, to delete an instance; unlink, to disconnect
ports; and deactivate, to stop an instance. Moreover, each link is associated to a
ZCL_Connection, which stores information about each pair of ports connected.
In ZCL, an instance of port is always associated with an instance of component
(Nodes). Each connection has a buffer in which messages exchanged between the
sender (output port) and the receiver (input port) are stored.

Static verifications can be carried automatically by the framework. For exam-
ple, to verify whether a component being declared by the architecture exists in
the library or to verify whether an activate command is referring to an instance
already created.

As said above, ZCL focuses on the operations necessary for the construction
of dynamic software architectures. Each operation to mount an architecture has
a corresponding one to annul its effect. Therefore, an architect can modify an
architecture, but ZCL assures that the modification is done just in case it is a
valid one (it leaves the architecture in a valid state). To do that, the ZCL frame-
work has also an execution model based on states, which has the responsibility

132 Virginia C.C. de Paula and Thais V. Batista

for verifying whether an architecture is in a valid state. So, the architect can
concentrate on architectural issues or he/she can also analyze execution issues.

The architecture being described is stored in the configuration table, which is
dynamically modified to reflect changes suffered by the application architecture.
The ZCL operations use this table to ensure that the application is in a state
suitable for modifications. All operations contain error cases also specified as
schemas in Z. When any constraint of the operation is not obeyed, the error case
schema of the operation is used.

As said in [13], if an architectural fact is not explicit in the architecture,
or deducible from the architecture, then the fact is not intended to be true
of the architecture. Therefore, it is extremely important to have a model in
which all relevant features of an architecture can be specified. Observe that the
designer can use ZCL to both analyze static architectures and run-time issues,
such as dynamic reconfiguration. Observe also that the ZCL framework is highly
modular and we have separated the schemas related to structural (static) analysis
from those related to dynamic analysis. This means that the execution model
based on states can be easily replaced or modified.

2.2 LuaSpace

LuaSpace is an environment for development of component-based applications
integrating the CORBA platform with the interpreted and procedural language
Lua [T9], used to glue components. The application is written in Lua and can
be composed by components implemented in any language that has a binding
to CORBA.

LuaSpace provides a set of tools based on Lua that offer strategic functions
to facilitate the development of component based applications and to promote
dynamic application configuration. These tools are: LuaOrb, Generic Connector,
Meta-Interface and ALua [18]. Next, Lua, LuaOrb and Generic Connector are
briefly presented. The other tools are not presented here because they are not
necessary in the context of this work.

— Lua [19] is an dynamically typed, interpreted and procedural configuration
language that integrates strong data description facilities and reflexivity with
a simple sintax. Lua includes conventional aspects, such as syntax and control
structures similar to those of Pascal. It also has several non-conventional
features: functions are first-class values; associative arrays (called tables in
Lua) are the single data structuring facility; tag methods are Lua’s most
generic mechanism for reflection. Tag methods can be specified to be called
in situations in which the Lua interpreter does not know how to proceed. It is
the base for the implementation of the tools that compose LuaSpace because
in LuaSpace when the Lua interpreter does not know execute a command,
it invokes the appropriate tag method that knows to handle the command.
— LuaOrbd [26] is a binding between Lua and CORBA based on CORBA’s Dy-
namic Invocation Interface (DII) that provides dynamic access to CORBA
components available at remote servers exactly like any other Lua object.

Mapping an ADL to a Component-Based Application 133

This is done transparently and at runtime. Moreover, it uses CORBA Dy-
namic Skeleton Interface (DSI) to permit dynamic installation of new objects
in a running server.

the generic connector [23] is a mechanism to configure an application as a set
of services without being aware of the specific components that implements
the service. Those components, if available, would be inserted into the appli-
cation during its execution. At runtime, the generic connector searches for
components that can provide the service stated in the application configura-
tion program, activates the service and returns the result to the client. This
mechanism introduces a great flexibility in application modeling since the
developer can abstract away about specific components. It also addresses dy-
namic reconfiguration because different invocations of the same service may
result in the selection of different components. With the use of the generic
connector, it becomes impossible to distinguish the tasks of configuration
and of reconfiguration in the configuration program.

To illustrate development using LuaSpace, we present the producer-consumer

application. This application consists of producer and consumer components,
whose IDL interfaces are illustrated in Figure [l The producer component pe-
riodically adds an item in a buffer and can removes items from buffer. The
consumer component can retrieve an item from the same buffer when it receives
a notification that there is an item to be consumed. It can also ignore the noti-
fication. Issues regarding the concurrency control of the producer and consumer
application are not in the scope of this work. Figure 2] shows an example of a
configuration program developed using LuaSpace to the producer-consumer ap-
plication. There are three consumers that receive a notification (receive_note
method) when an item is produced (produce method) and eventually it is inter-
ested in retrieve an item (retrieve(item = ¢‘0K’’)) from buffer. In this case,
remove method of the producer is invoked.

interface producerf{

}

string produce(item);
void remove(item);

interface consumer{

void receive_note();
string retrieve(item);

Fig.1. Producer-Consumer IDL interfaces

The use of an interpreted and procedural configuration language introduces

a different style of configuring an application where explicit linking and unlink-
ing commands are not necessary. The procedural model is used to describe an

134 Virginia C.C. de Paula and Thais V. Batista

i=1

p = createproxy{‘ ‘producer’’}

while i<=3 do
c[i]l = createproxy{‘‘consumer’’}
i=1i+1

end
i=1
while true do
if (p:produce(item) = ‘‘0K’’) then
while i<=3 do
c[i] .receive_note()
if (c[i] .retrieve(item) = ‘‘0K’’) then
p:remove (item)
end

end
end

Fig. 2. LuaSpace configuration program

application. As a consequence there is no rigid distinction between the configu-
ration and reconfiguration of an application. The simple use of conditional (if)
or iteration (while) command in the configuration program implies in dynamic
reconfiguration. Through an interactive console is possible to directly build and
modify configuration programs. As Lua is a dynamically typed language, it is
not necessary previously to declare the component instances that will be used in
a program. New components can be selected dynamically according to runtime
conditions.

LuaSpace provides support to implement both programmed and ad-hoc re-
configuration. For programmed reconfiguration, the Lua conditional commands
can be used to establish the conditions that determine reconfiguration in the
application source code. In this way, reconfiguration points are explicitly defined
by the programmer. Moreover, the generic connector introduces the possibility
of automatic reconfiguration, since for each call, different components can be
selected to execute the required service.

Ad-hoc reconfiguration can be programmed interactively through the Lua
console. This tool offers the programmer a way to have control over the appli-
cation by directly interacting with the system. Another way is to use the ALua
mechanism in which reconfiguration can be defined by sending the application
a message with the reconfiguration code to be executed.

LuaSpace can be used in two scenarios of applications. In one scenario, Lu-
aSpace is used to develop applications that explores the flexibility in lieu of
static checking and that are not worried with consistency. This is the original
proposal of LuaSpace because these features fit in Lua dynamic style that pro-
motes flexibility. In the other scenario, LuaSpace is used in applications that
need to maintain integrity. In this case, a software architecture should guide

Mapping an ADL to a Component-Based Application 135

the evolution of the application. Dynamic reconfiguration is done according the
architectural model, following the restrictions imposed. The use of LuaSpace in
this kind of application is useful because the application can explore the set of
tools to facilitate dynamic reconfiguration, access to CORBA components and
object localization regardless programmer intervention and, at same time, it has
the guarantee that the architectural model is preserved. This work address the
second scenario, integrating an ADL to the LuaSpace environment. In this con-
text, a specific ADL, ZCL, will support the semantics of reconfiguration in order
to verify the validity of the changes.

3 Mapping ZCL to LuaSpace

Figure [illustrates the two stages of development involved in this work: ZCL at
design phase and LuaSpace at implementation phase.

ZCL

LuaSpace

ScriptLua

LuaOrb

CORBA

Fig. 3. Overall view of development phases

The mapping from ZCL to LuaSpace consists of defining the conversion of
ZCL architectural elements to LuaSpace configuration aspects. There are signif-
icant structural differences between ZCL and LuaSpace. While ZCL follows the
structure proposed by the configuration paradigm [I0], LuaSpace does not obey
any specific structural model. With this mapping it is possible to move from the
high level specification toward the corresponding implementation.

In LuaSpace, a configuration program of an application consists of compo-
nents, scripts and glue codes. Components are CORBA entities whose interface

136 Virginia C.C. de Paula and Thais V. Batista

is described using the CORBA Interface Description Language (IDL). No infor-
mation about implementation issues is published in component interface. Inter-
face describes only component provided services. An application is composed of
CORBA components that communicate through the CORBA bus that acts as
an intermediary between components.

Since LuaSpace uses a procedural and interpreted language as a configura-
tion tool, there is no explicit linking and unlinking command. Interconnection
between components are represented by method invocation. In the same way,
there is no explicit reconfiguration command. Conditional and interaction struc-
tures can determine dynamic reconfiguration. Another way of dynamically re-
configuring an application is interactively via the Lua console. In this way, there
is no rigid distinction between configuration and reconfiguration in a program.

_ ZCL_ExplicitConnector
= ZCL_Library
Z CL_Component
sender : ID_Component — I, InteractionPoints
receiver : ID_Component — | InteractionPoints
type : TYPE
buffer : seq MSG
behaviour : BEHAVIOUR

dom sender C ran tasks V dom sender C ran groups
dom receiver C ran tasks V dom receiver C ran groups
Vidcomp : ID_Component | idcomp € dom sender
e sender(idcomp) C (tasks(idcomp)).interfaces V
sender(idcomp) C (groups(idcomp)).interfaces
Vidcomp : ID_Component | idcomp € dom receiver
o recetver(idcomp) C (tasks(idcomp)).interfaces V
receiver(idcomp) C (groups(idcomp)).interfaces

In ZCL, components, connections and architectures (composite components)
are considered architectural elements. Components can be viewed as a black
boxes entities with a well defined interface described by input and output ports.
Components interact via ports and message passing is the only way of commu-
nication between components. Therefore, in the original version of ZCL there is
not explicit connector. Nevertheless, it exists connections between components
ports. An architecture in ZCL is a composite component which joins all the
components or other composite components and the connections between them.
Modelling LuaSpace’s glue codes as ZCL connections does not seem a correct
decision, because, as we have already said, it limits the communication between
components to message passing. Another important issue is the lack of declara-
tion of required services in CORBA component interfaces. Therefore, we propose
an extension to ZCL in which a new architectural element is created - an explicit
connector. As a consequence, we propose ports be replaced by interaction points
at ZCL_Component schema and Port_Attributes to be replaced by Properties.

Mapping an ADL to a Component-Based Application 137

These changes give flexibility to the framework because it is now allowed other
forms of communication besides message passing.

The ZCL_Library is a schema specified by a function, tasks, which maps an
identifier of a component, ID_Component, into a ZCL_Component and another
one, groups, that maps an ID_Component into a ZCL_CompositeComponent.
The same ID_Component can not exist in both sets.

A ZCL_ExplicitConnector is a ZCL_Component and it uses the ZCL_Library,
which is not changed by the connector. So, it has a set of interaction points and
it is composed of two sets of interaction points (sender and receiver), a buffer
which would be used depending on the type of the connector, and a behavior by
which the connector can be described. The type of the connector is used to allow
ZCL to deal with different kinds of connectors, such as glue codes, multicast
channels, ORB [16], etc.

The framework has a schema to represent an instance of component. In the
same way, we have included a schema to represent an instance of an explicit
connector. We have also changed some of the operations schemas to adapt them
to this new element. Special attention we dedicated to the link operation since we
had a component-component connections and now we have component-connector
and connector-component attachments.

In section B.2], we present the producer-consumer application. We now model
the same application using ZCL and the proposed extensions.

As we have already said, to create an architecture in ZCL, it is necessary to
use the operations of the framework. Initially, we use the operations to create the
producer and the consumer component, their interfaces and to update the library
including them. We show below the corresponding operations invocations.

CL_Create_Task[comp_attr? := 0, itrct_points := produce, remove]
A CL_Create_InteractionPoint[itrct_points? := produce, remove]
A CL_Update_LibSimple[nc? := Producer]

The consumer is created using the same sequence of operations. Its interac-
tion points are retrieve and receive_note.

Having included the components in the library, the architect has to use them
in the context and to create their instances. In our case study, we want to create
one instance of producer and three instances of consumer. For spaces reasons,
we just present the operations which create the instances. In a similar way, we
activate the instances.We have the following operations invocations:

CL_Create_Instance[node? := prod, component? := Producer]

CL_Create_Instance[node? := consl, component? := Consumer]
CL_Create_Instance[node? := cons2, component? := Consumer]
CL_Create_Instance[node? := cons3, component? := Consumer]

Before linking the interaction points, we have to include the connector in the
library and to create an instance of it. This is done invoking the appropriate
operations as we have done to create components.

138 Virginia C.C. de Paula and Thais V. Batista

Consl

Prod

Cons2

Cons3

Fig. 4. Producer-Consumer

To link a component to a connector the ZCL_Link operation is used. It
receives the pair (component instance, interaction point) and the pair (connector
instance, interaction point). An interaction point is independent from the others.
Therefore, the operation must be invoked as many times as the quantity of
interaction points.

In Figure it is illustrated the structure of the created architecture. In
this Figure, we can see a dotted line which represents the invocation of the
retrieve function by the consumer. As already said in section 222, sometimes
the consumer is not interested in retrieving an item. In this case, we have to
unlink the corresponding interaction points in the architecture. This is done
by invoking the ZCL_Unlink operation which have the same parameters than
ZCL_Link.

In summary, ZCL components can be considered components (or scripts)
in LuaSpace. ZCL architectures model LuaSpace configuration programs that
can contain components, scripts and glue codes. Component provided services
of LuaSpace are equivalent to interaction points in ZCL. In LuaSpace there are
many facilities to model interactions between components [20], such as: glue
code, generic connector and events. In ZCL, all these elements are represented
by the ZCL_ExplicitConnector abstraction, which deals with different types of
connector, allowing the specification of the behaviour of them.

Dynamic reconfiguration is expressed in ZCL through operations over archi-
tectural elements, as described in section 2.1. The equivalence of ZCL operations
for dynamic reconfiguration and LuaSpace reconfiguration support are execution
issues and it is under development. Observe that as well as ZCL, LuaSpace ad-
dresses ad-hoc and planned reconfiguration [2].

Table[l] summarizes the correspondence between structural issues of ZCL and
of LuaSpace.

4 Related Works

Although nowadays the importance of joining ADLs and Component-based de-
velopment is broadly treated in several works, in this section we just present two
approaches which address this issue.

Mapping an ADL to a Component-Based Application 139

Table 1. Summary of equivalences

| Structural Issues | ZCL | LuaSpace |
System Topology Components, connectors and| Components, scripts and
composite components glue codes
Interfaces interaction points provided services
Component interactions Connectors Glue code, Generic Connector
and Lua event

Dynamic Reconfiguration ad-hoc and planned ad-hoc and planned

4.1 C2

In [I6], we can find a work related to our, in which the authors use ADLs to
describe middleware-induced architectural styles and provide an evaluation of
ADLs in order to show their suitability for defining middleware-induced archi-
tectural styles. The authors mention the idea of implementing, in long term, an
environment that supports the definition of architectures by providing a library
of styles induced by specific middlewares. This environment would be able to
partially automate the implementation of the architecture on the corresponding
middleware.

The authors want to capture the architectural assumptions induced by mid-
dlewares in terms of middleware-induced styles. The middlewares Regis and
C2, which ADLs (Darwin and C2SADEL) have been specifically defined, are
considered. The characteristics that components, connectors and configurations
of instances must have to be compliant with a specific middleware are consid-
ered to define and to specify a middleware-induced style. A similar approach
considering layered style and CORBA middleware can be found in [I7]. Two
middlewares were chosen: JEDI and C2. They were specified using the ADLs
ARMANI, Rapide, Darwin, Wright, and Aesop. In this way, some requirements
ADLSs should have to specify middleware-induced styles were identified [16]:

— ADLs should be able to define styles and provide a mechanism for exploiting
a style in the definition of an architecture;

— ADLs must support the specification of some general topological constraints
that must be respected by any specific instantiation of the component and
connector types defined in the style;

— ADLSs must support the description of the behavior of components and con-
nectors, because topological constraints are not enough to define styles;

— An important requirement for both connectors and components is the pos-
sibility of refining their internal structure in terms of the composition of
other components and connectors. So, ADLs must support the co-existence
of different levels of abstraction in an architecture;

— An special conclusion was taken related to connectors. Connectors have been
specified explicitly. Nevertheless, in general, the semantics associated to ex-
plicit connectors does not seem appropriate to model more modern kinds of

140 Virginia C.C. de Paula and Thais V. Batista

connectors, such as event dispatchers, ORBs, and multicast channels. There-
fore, it is necessary to define an intermediate, artificial connector type to
attach the “real” connectors to the actual components of a C2 architecture.

Our goal is quite different from the one of the work described above in the
sense we want to allow the modeling of a system to which it is known to be
executed in a specific middleware - LuaSpace. More than that, we want this
modeling to be specified using ZCL. Nevertheless, we can consider the conclu-
sions listed above about ADLs to evaluate how ZCL is supposed to support
“LuaSpace-oriented” specifications. We want to guarantee that the system mod-
eled in ZCL can be implemented in LuaSpace. However, in this paper, we are
not proposing an automatic implementation of the modeling system.

4.2 Darwin

Darwin [7] supports the definition of architectures in terms of components, ser-
vices and bindings. Components are described by interfaces that declares the
provided and required services. Systems are specified in Darwin by describing
the set of component instances and the set of bindings between required and
provided services.

[9) describes the use of Darwin to structure systems using CORBA objects.
This work mentions that object interaction and interface compatibility are the
concern of ORB and the CORBA bus and the Interface Definition Language
(IDL), while the structure of an application is supported by an ADL. We think
that this ADL does not address architectural mismatches [8] between compo-
nents, once it supposes that interface compatibility is a issue supported by
CORBA bus. CORBA bus is the mediator of the communication and facili-
tates transparent access to remote components but the configuration language
is used to determine the components involved in the communication. We argue
that there is a level - the configuration level - between the bus and the architec-
ture description. At this level it is possible to determine the overall structure of
the application and to address interface incompatibility as well as to dynamically
reconfigure the application.

In the mapping from Darwin to CORBA, the Darwin compiler translates a
Darwin component specification to the IDL interface. Each provision in the Dar-
win specification is translated into a read only attribute of the object reference
type. Each requirement is similarly mapped into an attributed which is not read
only because it is set externally to reflect the binding of the component instance.

In our work, there is no compiler to translate ZCL to LuaSpace. We define
the mapping of each architectural entities into configuration elements.

5 Final Remarks

In this paper we evaluate the mapping of an ADL to an environment for
component-based application development that uses a scripting language and

Mapping an ADL to a Component-Based Application 141

associated tools for configuring an application. We identify the common terminol-
ogy of the two research areas involved: software architecture and configuration-
based development. We focus on the mapping of the structural properties of
ZCL and LuaSpace. We also propose an extension to ZCL in order to address its
differences to LuaSpace, regarding modeling components interconnections. The
definition of the behavioral aspects are under development. We are analyzing
the correspondence of the states treated by the ZCL execution model with the
LuaSpace execution issues.

Comparing the features of ZCL with those mentioned by [16] and presented
in section EET] we can say that ZCL and its extension proposed in this paper,
satisfies almost all of them. The only one ZCL still does not satisfy is the re-
finement of connectors. Composite components in ZCL supports refinement of
internal structure of components.

The experience in combining an ADL with a configuration based environment
can give clues on how integrating the activities of design and implementation
during the lifetime of a software system. In [5] we find a classification of tech-
nologies as component-centric and system-centric. The former are represented
by component middleware technologies such as CORBA and JavaBeans. They
deal with external component properties (interfaces, binding mechanism, and
expectations regarding the runtime environment). The second one focuses on
the architecture level in which components are black-box entities. In our work,
we address the integration of these two approaches.

References

1. de Paula, V. C. C.: A Formal Framework for Specifying Dynamic Distributed
Architectures. PhD Thesis, Federal University of Pernambuco, Brazil, (1999)

2. Young, A. and Magee, J.: A Flexible Approach to Evolution of Reconfiguration
Systems. In: Proceedings of the First International Workshop on Configurable Dis-
tributed Systems, IEE, pp. 152-163, (1992).

3. de Paula, V. C., Justo, G. R. R. and Cunha, P. R. F.: Specifying and Verify-
ing Reconfigurable Software Architectures In: In: 5th International Symposium
on Software Engineering for Parallel and Distributed Systems (PDSE-2000), pp.
21-31, IEEE Computer Society, Limerick, Ireland, June (2000).

4. Spivey, J.M.: The Z Notation, A Reference Manual, Editor Prentice-Hall, (1989)

5. Oreizy, P. and Medvidovic, N. and Taylor, R. and Rosenblum, D.: Software Ar-
chitecture and Component Technologies: Bridging the Gap, In: Proceedings of the
OMG-DARPA Workshop on Compositional Software Architectures, Monterey, CA,
January, (1998).

6. Issarny, V. and Bidan, C. and Saridakis, T.: Achieving Middleware Customization
in a Configuration-Based Development Environment: Experience with the Aster
Prototype, In: Proceedings of the Fourth International Conference on Configurable
Distributed Systems, pp. 207-214, Annapolis, Maryland, May, (1998).

7. Magee, J. and Kramer, J.: Dynamic Structure in Software Architectures, In: Pro-
ceedings of SIGSOFT’96 Symposium on the Foundations of Software Engineering,
San Francisco, CA, October, (1996).

142

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

Virginia C.C. de Paula and Thais V. Batista

Garlan, D. and Allen, R. and Ockerbloom, J.: Architectural Mismatch or Why it’s
hard to build systems out of existing parts, In: Proceedings of the Seventeenth
International Conference on Software Engineering, Seattle, WA, April, (1995).
Magee, J. and Tseng, A. and Kramer, J.: Composing Distributed Objects in
CORBA, In: Third International Symposium on Autonomous Decentralized Sys-
tems - ISADS 97, pp. 9-11, Berlin, Germany, April, (1997).

Kramer, J. and Magee, J.: Dynamic Configuration for Distributed Systems, In:
IEEE Transactions on Software Engineering, 11(4),pp.424-435, April, (1985)
Justo, G. R. R. and Cunha, P. R. F.: Programming Distributed Systems with
Configuration Languages, In: International Workshop on Configurable Distributed
Systems, London,(1992)

Justo, G. R. R. and Cunha, P. R. F.: An Application Framework for Dynamic
Distributed Software Architectures, In: 5th International Conference on Advanced
Computing (ADCOMP’97. IEEE CS Press, December, (1997)

Moriconi, M. and Qian, X.: Correctness and Composition of Software Architec-
tures, In: Proceedings of ACMSIGSOFT’94: Symposium on Foundations of Soft-
ware Engineering, New Orleans, Louisiana, USA, 164-174, December, (1994)
Shaw, M. and Garlan, D.: Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall, (1996)

Allen, R.: A Formal Approach to Software Architecture, PhD Thesis, School of
Computer Science, Carnegie Mellon University, May, (1997)

Di Nitto, E. and Rosenblum, D.: Exploiting ADLs to Specify Architectural Styles
Induced by Middleware Infrastructures, In: Proceedings of the 21st International
Conference on Software Engineering (ICSE’99), Los angeles, CA, USA, May, (1999)
da Silva, L. F. and de Paula, V. C. C.: A Meta-model to Specify Layered Software
Architectures, In: Brazilian Symposium on Software Engineering (SBES’2001), Oc-
tober, (2001)

Ururahy, C; Rodriguez, N.: Alua: An event-driven communication mechanism for
parallel and distributed programming. In: PDCS’99, Fort Lauderdale, Florida,
(1999).

Terusalimschy, R, Figueiredo, L, Celes, W.: Lua - an extensible extension language.
In: Software: Practice and Experience, 26(6):635-652, (1996).

Batista, T. and Rodriguez, N.: Using a Scripting Language to Dynamically Inter-
connect Component-based Applications. To be submitted the 22th International
Conference on Distributed Computing Systems (ICDCS), Viena, Austria,(2002).
van der Hoek, A., Heimbigner, D., Wolf, A.: Software Architecture, Configuration
Management, and Configurable Distributed Systems: A Ménage a Trois Technical
Report CU-CS-849-98, University of Colorado, (1998).

Siegel, J.: CORBA: Fundamentals and Programming. John Wiley & Sons,(1996)
Batista, T., Chavez, C. and Rodriguez, N.: Dynamic Reconfiguration through a
Generic Connector. In: Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA’00), CSREA
Press, Vol. 11, pp 1127 — 1132, Las Vegas, USA, June (2000).

Batista, T. and Rodriguez, N.: Dynamic Reconfiguration of Component-based Ap-
plications. In: 5th International Symposium on Software Engineering for Parallel
and Distributed Systems (PDSE-2000), pp. 32-39, IEEE, Ireland, June (2000)
Bellissard, L. and Riveill, M.: Constructions des applications réparties, In: Ecole
Placement Dynamique et Répartition de Charge, Juillet,(1996).

Cerqueira, R., Cassino, C., lerusalimschy, R.: Dynamic Component Gluing Across
Different Componentware Systems. In: International Symposium on Distributed
Objects and Applications (DOA’99), 362-371, OMG, Scotland, September, (1999).

	Mapping an ADL to a Component-Based Application Development Environment
	Introduction
	Background
	ZCL
	LuaSpace

	Mapping ZCL to LuaSpace
	Related Works
	C2
	Darwin

	Final Remarks

