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Abstract. Program slicing is an important operation that can be used
as the basis for programming tools that help programmers understand,
debug, maintain, and test their code. This paper extends previous work
on program slicing by providing a new definition of “correct” slices, by
introducing a representation for C-style switch statements, and by defin-
ing a new way to compute control dependences and to slice a program-
dependence graph so as to compute more precise slices of programs that
include jumps and switches. Experimental results show that the new ap-
proach to slicing can sometimes lead to a significant improvement in slice
precision.

1 Introduction

Program slicing, first introduced by Mark Weiser in [I3], is a topic of on-going in-
terest. For example, Jens Krinke maintains a website [7] with over 100 references
to published work on slicing. This paper makes the following four contributions
in the area of program slicing:

Defining Correct Slices: Weiser defined a correct slice of a program P to
be a projection of P with certain properties (see Section [3). Podgurski and
Clarke [T0] defined a notion of semantic dependence that can also be used as the
basis for a definition of a correct slice; however, their definition did not take jump
statements (goto, break, etc.) into account. We give an example to illustrate a
shortcoming of Weiser’s definition, and offer a new definition, similar to the one
for semantic dependence, that overcomes the problem with Weiser’s definition,
and also makes sense for programs with jump statements.

Language Extension: We discuss how to represent C-style switch statements
in a program’s control-flow and program-dependence graphs. To our knowledge,
this is the first time switch statements have been discussed as such, rather than
assuming that they have been implemented at a low level using gotos. Handling
switch statements is important because many slicing applications involve dis-
playing the result of a slice to the programmer, or using the results to create
new source code. Thus, for those applications, if a slice includes code from a
switch, it needs to be displayed/represented in the new code as a switch rather
than in some low-level form. Representing and slicing a switch in a low-level form
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and then mapping the results back to the source level may lead to a final result
that is less precise than the one produced by working on the switch directly.

Improved Precision: Finding correct, minimal slices is an undecidable prob-
lem, whether correctness is defined according to Weiser, Podgurski/Clarke, or
using the new definition proposed here. However, it is still a reasonable goal to
design a slicing algorithm that is more precise than previous ones; i.e., to define
a new algorithm that is correct, and also produces smaller slices than previous
algorithms. In this spirit, we introduce some example programs with jumps and
switches for which previous slicing algorithms produce slices that include too
many components. While the examples with jumps are somewhat artificial, the
examples with switches are motivated by code from real programs. We show
that the reason extra components are included in the slices has to do both with
how control dependences are defined, and how slices are computed. We then
give a new definition of control dependence and a new slicing algorithm that is
more precise than previous algorithms in the presence of jumps and/or switches.
Due to space constraints, we discuss only intraprocedural slicing; extending the
algorithm to be interprocedural is straightforward [g].

Experimental Results: While it is possible to produce artificial examples in
which our new approach to slicing provides arbitrarily smaller slices than pre-
vious approaches, it is important to know how well it will work in practice. We
provide some experimental results that show that while in most cases slice sizes
are reduced by no more than 5%, there are examples of reductions of up to 35%.

2 Background

2.1 Assumptions

We assume that we are dealing with well formed programs; in particular, that
there is neither unreachable code (i.e., there is a path in the program’s control-
flow graph from the enter node to every other node) nor explicit infinite loops
(i.e., there is a path from every node in the control-flow graph to the exit node).

2.2 Slicing Using the PDG

Informally, the slice of a program from statement S is the set of program com-
ponents that might affect S, either by affecting the value of some variable used
at .S, or by affecting whether and how often S executes. More precise definitions
have been proposed, and are discussed below in Section Bl

Slicing was originally defined by Weiser [13] as the solution to a dataflow
problem specified using the program’s control-flow graph (CFG). Ottenstein
and Ottenstein [9] provided a more efficient algorithm that uses the program-
dependence graph (PDG) [4]:
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prod = 1;

k=1;

while (k <= 10) {
prod = prod * k;
k++;

}

print(k);

print(prod);

(a) Example Program
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Fig. 1. Example program, its CFG, and its PDG. The PDG nodes in the slice
from “print(k)” are shown in bold

Algorithm 1 (Ottensteins’ Algorithm for Building and Slicing the PDG)

Step 1: Build the program’s CFG, and use it to compute data and control de-
pendences: Node N is data dependent on node M iff M defines a variable
x, N uses x, and there is an x-definition-free path in the CFG from M to
N. Node N is control dependent on node M iff N postdominates one but
not all of M’s CFG successors.

Step 2: Build the PDG. The nodes of the PDG are almost the same as the
nodes of the CFG: a special enter node, and a node for each predicate and
each statement in the program; however, the PDG does not include the CFG’s
exit node. The edges of the PDG represent the data and control dependences
computed using the CFG.

Step 3: To compute the slice from statement (or predicate) S, start from the
PDG node that represents S and follow the data- and control-dependence
edges backwards in the PDG. The components of the slice are all of the
nodes reached in this manner.

Example: Figure [l shows a program that computes the product of the numbers
from 1 to 10, its CFG, and its PDG. The nodes in the slice of the PDG from
“print (k)” are shown using bold font. (For the purposes of control-dependence
computation, an edge is added to the CFG from the enter node to the exit node;
to avoid clutter, those edges are not shown in the CFGs given in this paper).
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prod = 1;

k=1;

while (k <= 10) {
if (MAXINT/k > prod) break;
prod = prod * k;
k++;

}

print(k);

print(prod);

(a) Example Program

(c) PDG

Fig. 2. Example program with a break statement, its CFG, and its PDG

2.3 Handling Jumps

Early slicing algorithms (including Weiser’s and the Ottensteins’) assumed a
structured language with conditional statements and loops, but no jump state-
ments (such as goto, break, continue, and return). Both [2] and [3] pointed out
that if a CFG is used in which a jump statement is represented as a node with
just a single outgoing edge (to the target of the jump), then no other node will
be control dependent on the jump, and thus it will not be in the slice from any
ot her node. For example, Figure[Z{a) shows a modified version of the program
from Figure [l now including a break statement. Figures Z{b) and Zlc) show the
program’s CFG and the corresponding PDG. Note that in this PDG, there is
no path from the break to “print(k)” or to “print (prod)”, and therefore the
break is (erroneously) not included in the slices from those two print statements
even though the presence of the break can affect the values that are printed.

The solution proposed by [2] and [3] involves using an augmented CFG,
called the ACFG, to build a dependence graph whose control-dependence edges
are different from those in the PDG used by Algorithm [l We will refer to the
new dependence graph as the APDG, to distinguish it from the PDG.

Algorithm 2 (Building and Slicing the APDG)

Step 1: Build the program’s ACFG. In the ACFG, jump statements are treated
as pseudo-predicates. Fach jump statement is represented by a mode with
two outgoing edges: the edge labeled true goes to the target of the jump, and
the (non-executable) edge labeled false goes to the node that would follow the
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(a) ACFG (b) Corresponding APDG

Fig.3. ACFG and the corresponding APDG for the example program from
Figure[2

Jump if it were replaced by a no-op. Labels are treated as separate statements;
i.e., each label is represented in the ACFG by a node with one outgoing edge
to the statement that it labels.

Step 2: Build the program’s APDG. Ignore the non-executable ACFG edges
when computing data-dependence edges; do not ignore them when comput-
ing control-dependence edges. (This way, the nodes that are executed only
because a jump is present, as well as those that are not executed but would
be if the jump were removed, are control dependent on the jump node, and
therefore the jump will be included in their slices.)

Step 3: To compute the slice from node S, follow data- and control-dependence
edges backwards from S as in Algorithm [l A label L is included in a slice iff
a statement “goto L” is in the slice.

Example: Figure B shows the ACFG for the program in Figure P{a), and the
corresponding APDG. (The non-executable false edge out of the break in Fig-
ure [Bl(a) is shown using a dotted arrow.) Note that in Figure [3(b), there are
control-dependence edges from the break to “prod = prod * k” and to “k++";
therefore, the break is (correctly) included in every slice that includes one of
those two nodes.

3 Semantic Foundations for Slicing

In his seminal paper on program slicing [I3], Weiser defined a slice of a program
P from point S with respect to a set of variables V' to be any program P’ such
that:
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Program Intuitive Slice [Also Correct by Weiser’s Definition
[1] x = 2; [1] x = 2;
21 y = 2; [2] y = 2;
[3] w=x *y;
[4] x = 1; [4] x = 1;
(61 y = 3; (61 y = 3;
[6] z=x + y;|[6] z=x + y;|[6] z=x+y;

Fig.4. Example illustrating a shortcoming of Weiser’s definition of a correct
slice

— P’ can be obtained from P by deleting zero or more statements.

— Whenever P halts on input I, P’ also halts on input I, and the two programs
produce the same sequences of values for all variables in set V' at point S if
it is in the slice, and otherwise at the nearest successor to S that is in the
slice.

One problem with this definition is that it can be inconsistent with the in-
tuitive idea that the slice of a program from point S is the set of program
components that might affect S. For example, Figure [ shows a program, the
slice that a programmer would probably produce if asked to slice the program
from statement [6] with respect to variable z, and another slice that is correct
according to Weiser’s definition, but that does not match our intuition about
slicing. Furthermore, the requirement that a slice be an executable program may
be too restrictive in some contexts (e.g., when using slicing to understand how
a program works, or to understand the effects of a proposed change). In those
cases, it might be more appropriate to define the slice of a program simply to
be a subset of the program’s components, rather than an executable projection
of the program.

Given these observations, we propose to define the slice of program P from
component S to be the components of P that might have a semantic effect on
S. But what does it mean for a statement or predicate X to have a semantic
effect on another statement/predicate S? To make that notion more precise, we
consider what happens when a new program P’ is created by modifying X or
removing it from program P as follows:

X is a normal predicate: P’ is created by replacing X with a different pred-
icate that uses the same set of variables as X. (For example, in the program
whose ACFG is shown in Figure 3] the predicate “MAXINT/k > prod” could
be replaced by any other predicate that uses only variables k and prod, such
as: “k < prod”, or “k != 0 && prod > 227.)

X is a pseudo-predicate (a jump statement): P’ is created by removing
statement X from P.

X is a non-jump statement: P’ is created by replacing X with a different
statement that uses and defines the same sets of variables as X . (For example,
in the program whose ACFG is shown in Figure B, the statement “prod =
prod*k” could be replaced by any other statement that uses only variables
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prod and k, and that defines variable prod, such as: “prod = k + prod”, or
“prod = prod-k-47.)

Definition 0. (Semantic Effect): X has a semantic effect on S iff there is
some program P’ created by modifying or removing X from P as defined above,
and some input I such that:

— Both P and P’ halt on I.
— The two programs produce a different sequence of values for some variable
used at S.

Note that the sequence of values produced for a variable used at S can differ
either because the two sequences are of different lengths, or because their k"
values differ (for some k).

Definition [0l is similar to the definition of finitely demonstrable semantic de-
pendence given by Podgurski and Clarke in [10]. However, that definition did
not take jump statements into account: according to their definition, no pro-
gram component is ever semantically dependent on a jump; therefore, if a cor-
rect slice from S is defined to include all components on which S is semantically
dependent, jump statements will never be included in a slice. This is clearly con-
trary to one’s intuition, and therefore is a shortcoming of the Podgurski/Clarke
definition.

As usual with any interesting property of a program, determining which
components have a semantic effect on a given component S, according to Defini-
tion [0, is an undecidable problem. Therefore, we must say that a (correct) slice
of program P from component S is any superset of the components of P that
have a semantic effect on S.

Note that using Definition[(), statements [4] and [5] in the example program
in Figurell (but not statements [1] and [2]) have a semantic effect on statement
[6]. Therefore, a correct slice from statement [6] must include statements [4]
and [5] (but not statements [1] and [2]), which is consistent with our intuition
about that slice.

4 Representing Switch Statements

Consider a C switch statement of the form:

switch (E) {
case el: S1; break;

case en: Sn; break;
default: S;
}

Clearly, “switch(E)” should be represented in the CFG (and the ACFG)
using a (normal) predicate node with n + 1 outgoing edges: one to each case
including the default. If there were no default, the n + 1°¢ edge should go
to the first statement following the switch (because in C, if the value of the
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Fig. 5. ACFG for a switch statement

switch expression does not match any case label, and there is no default then
execution continues immediately after the switch).

Now consider how to represent the case labels. One’s initial intuition might
be that they are similar to other labels in a program (the targets of goto state-
ments). However, there is an important difference: if a program includes “goto
L1”, then label L1 must be in the program, or it is not syntactically correct. If
there is no “goto L1”, then it doesn’t matter whether label L1 is in the program:
its presence or absence has no semantic effect. However, these observations are
not true of a case label. Removing a case label from a program never causes a
syntax error, but can have a semantic effect. For example, if expression E in the
code given above evaluates to el, then statement S1 will execute. However, if
“case el” is removed, then statement S1 will not execute; instead, statement S
will execute. Therefore, it makes sense for “case el1” to be in the slice from S1
as well as in the slice from S.

This suggests that, like jumps, case labels should be represented using pseudo-
predicates in the ACFG. The target of the outgoing true edge from a case-label
node should be the first statement inside the case, and the target of the outgoing
false edge should be the node that represents the default label if there is one,
and otherwise the first statement that follows the switch (because if the case
label is removed, and the switch expression matches that value, then execution
proceeds with the first statement after the switch). The target of the outgoing
false edge from the default case should always be the first statement that follows
the switch.

Example: Figure [l shows the ACFG for the switch statement given above (for
n = 3).
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| Code Fragment | Ideal Slice [Slice computed using Algorithm [
switch (E) { switch (E) | { |switch (E) | {

case el: S1; break; case el: S1; break; case el: | S1; | break;

case e2: S2; break; case e2: S52; |break; case e2: | S2; | break;

case e3: break; case e3: S3; | break; case e3: S3; | break;
¥ } )
switch (E) { switch (E) | { | switeh (B) | {
case el: if (P) return; case el: if (P) return; case el: |if (P) | ’Turn;‘
break; break;

} } }
if (P1) goto L1; |if (P1) | |goto L1;

if (P1) goto L1;

if (P2) goto L3; if (P2) goto L3; if (P2) || goto L3;

goto L2; goto L2; goto L2; |
L2: ... L2:| ... L2: | ...
L3: ... L3: ... L3:

Fig. 6. Examples for which Algorithm R]produces slices with extra components.
The first column gives a code fragment, with one statement enclosed in a box.
The second column shows the ideal slice from the boxed statement (according
to Definition [0 given above in Section [3). The third column shows the slice
computed using Algorithm

5 DMotivation for a New Slicing Algorithm

Figure [6] gives three examples where Algorithm P (see Section Z3) produces
slices that include unwanted components. (In these examples, we assume that
switch statements are represented in the ACFG as discussed above in Section [])
The first column in Figure Bl gives a code fragment, with one statement enclosed
in a box. The second column shows the ideal slice from the boxed statement
(according to Definition [ given above in Section [3)). The third column shows
the slice computed using Algorithm [2l The first two examples involve switches,
while the third example involves only gotos.

Note that in the first example the slice from S3 should include the break from
the previous case, because the presence/absence of that break affects whether
or not S3 executes. In particular, consider what happens when expression E
evaluates to e2. If the break is not in the program, S3 executes, while if the
break is in the program, S3 does not execute.

In the second example, the slice from S should include neither “if (P)” nor
“return”. Whatever the value of predicate P, statement S will not execute (be-
cause either the return or the break prevents execution from “falling through”
from “case el” to “case e2”). Similarly, whether or not the return is in the
program makes no difference since it is followed by the break (and thus S is
always prevented from executing).
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if (P) {
L: S1;
}
else goto L;
S2;

Example Code Corresponding ACFG Corresponding APDG

Fig. 7. Example in which a control dependence does not reflect a semantic effect.
The APDG includes a control-dependence edge from “if (P)” to S1. However,
“if (P)” cannot in fact affect the execution of S1; it always executes, regardless
of whether P evaluates to true or to false

In all three examples, extra components are included in the slices com-
puted using Algorithm ] because of a chain of control-dependence edges. For
instance, the APDG for the second example includes the following chain:
case el — if (P) — return — break — case e2 — S. Thus, since Algo-
rithm [ follows all control-dependence edges backwards, all of those compo-
nents are included in the slice from §1. In this example, each individual control-
dependence edge represents a possible semantic effect: “case el” has a semantic
effect on “if (P)”, which has a semantic effect on “return”, which has a se-
mantic effect on “break”, which has a semantic effect on “case e2”, which has a
semantic effect on S. However, the backwards closure of the control-dependence
relation starting from S yields a superset of the components that have a semantic
effect on S; i.e., the “semantic-effect” relation is not transitive.

It is also possible to have an example in which even an individual control
dependence (computed using the ACFG) does not reflect a semantic effect, as
illustrated in Figure[7] In this example, the APDG includes a control-dependence
edge from “if (P)” to S1 because S1 postdominates the true successor of the if
in the ACFG, but does not postdominate its false successor (because the goto’s
non-executable false edge bypasses S1). However, “if (P)” cannot in fact affect
the execution of S1; it always executes, regardless of whether P evaluates to true
or to false.

These examples motivate the need for a new definition of control dependence
to avoid control-dependence edges like the one in Figure [ that do not reflect a
semantic effect. They also motivate the need for a new way to compute slices

! Furthermore, the entire backward closure from predicate P of the control- and data-
dependence relations will be included in the slice computed by Algorithm [2] making
it arbitrarily larger than the ideal slice.
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that does not involve taking the transitive closure of the control-dependence
edges, since, as discussed above, the semantic-effect relation is not transitive.

6 New Definition of Control Dependence and New
Slicing Algorithm

Recall that the definition of control dependence used in Algorithm[Ilis as follows:

Definition 1. (Original Control Dependence): Node N is control depen-
dent on node M iff N postdominates, in the CFG, one but not all of M’s CFG
SUCCESSOTS.

To permit control dependence on jumps, Algorithm 2] replaces “CFG” with
“ACFG” in the definition of control dependence:

Definition 2. (Augmented Control Dependence): Node N is control de-
pendent on node M iff N postdominates, in the ACFG, one but not all of M’s
ACFG successors.

Unfortunately, as illustrated in Figure [[, Definition [Z is too liberal; it can
cause a spurious control dependence of N on M due to the presence of an
intervening pseudo-predicate. For example, in the ACFG in Figure [7] node S1
fails to postdominate the false successor of the if only because of the non-
executable edge from “goto L1” to S2. Since the execution of S1 is affected by
the presence/absence of the goto it should be considered to be control dependent
on the goto; however, (as noted previously), S1 will execute regardless of the
value of predicate P, and therefore it should not be considered to be control
dependent on the if. So in this case, the actual influence of “goto L1” on
statement S1 causes an apparent (but spurious) influence of “if (P)” on S1.

The solution to this dilemma is to replace only the second instance of “CFG”
with “ACFG” in Definition [k

Definition 3. (Control Dependence in the Presence of Pseudo-
predicates): Node N is control-dependent on node M iff N postdominates,
in the CFG, one but not all of M’s ACFG successors.

We will refer to a dependence graph that includes control-dependence edges
computed using Definition [ as a PPDG (pseudo-predicate PDG) to distinguish
them from the PDGs whose control-dependence edges are computed using Def-
inition [T, and the APDGs whose control-dependence edges are computed using
Definition Bl

Example: The program and ACFG from Figure [7] are given again in Figure ]
with the corresponding PPDG. Note that neither label L nor statement S1 is
control dependent on “if (P)”.

Definition [3 addresses the problem of control-dependence edges that do not
reflect semantic effects. The next problem that needs to be addressed is the fact
that even when every control-dependence edge does represent a semantic effect,
the backward closure of control-dependence edges from a node S may include
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if (P) {
L: S1;
}
else goto L;
S2;

Example Code Corresponding ACFG Corresponding PPDG

Fig. 8. Example code and ACFG from Figure [l with the corresponding PPDG

nodes that have no semantic effect on S. For example, consider again the PPDG

in Figure Bl If the slice from node S1 includes all nodes reached by following

control-dependence edges backwards, then “if (P)” will (erroneously) be in the

slice because of the chain of control-dependence edges: if (P) — goto L — S1.
To address this problem, we need the following definition:

Definition 4. (IPD): The immediate post dominator (IPD) of a set of
ACFG nodes is the node that is the least-common ancestor of that set of nodes
in the CF'G’s postdominator tree.

Consider a (normal or pseudo) predicate P, with ACFG successors nj...ng,
and let D = IPD(ny...nk). Intuitively, P may affect the execution of a program
component S only if there is a path in the CFG from one of P’s ACFG succes-
sors to S that does not include node D. (If there is such a path, we say that
S is controlled by P.) The value of P (for a normal predicate), or its pres-
ence/absence (for a pseudo-predicate) determines which of its ACFG successors
is executed. The execution of the nodes along the paths from those ACFG suc-
cessors to D are also affected by the value (or presence/absence) of P. However,
since whenever P is executed, execution will always reach D (barring an infinite
loop or other abnormal termination), the execution of nodes “beyond” D are
not affected by P.

As discussed above, following control-dependence edges backwards from S in
the PPDG can cause extra nodes to be included in the slice from S. In terms of
the “is controlled by” relation, this is because there may be a chain of control-
dependence edges in the PPDG from a predicate P to .S, yet S is not controlled
by P. However, we have proved the following Theorem []]:

Theorem: Node S is controlled by (normal or pseudo) predicate P
iff there is a chain of control-dependence edges in the PPDG:
P— M, — My — ...— My — S, such that every M; in the chain is a nor-
mal predicate node. (Note that there may also be no M;’s at all; i.e., there
may be a single control-dependence edge P — S.)
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switch (E) {
case el:
if (P) return;
break;
case e€2: S;

Example Code Corresponding ACFG Corresponding PPDG

Fig.9. The code, ACFG, and PPDG for the second example in Figure 6 The
PPDG nodes in the slice from S, computed using Algorithm[3], are shown in bold

This Theorem tells us that it is not necessary to follow control-dependence edges
back from a pseudo-predicate; for any predicate P such that there is a node S
in the slice that is controlled by P, P will be picked up by following chains
backwards only from normal predicates.

The new algorithm for building and slicing the PPDG is given below.

Algorithm 3 (Building and Slicing the PPDG)

Step 1: Build the ACFG as described above for Algorithm 2

Step 2: Build the PPDG: Ignore the non-executable ACFG edges when com-
puting data-dependence edges; compute control-dependence edges according
to Definition [3

Step 3: To compute the slice from node S, include S itself and all of its data-
and control-dependence predecessors in the slice. Then follow backwards all
data-dependence edges, and all control-dependence edges whose targets are
not pseudo-predicates; add each node reached during this traversal to the
slice. Include label L in the slice iff a statement “goto L” is in the slice.

Examples: (1) Using Algorithm[3], the slice from S1 of the program in Figure
would include the nodes for S1, “goto L”, L, and the enter node. It would not
include the node for “if (P)” because, since “goto L” is a pseudo-predicate, its
incoming control-dependence edge would not be followed back to the if node.
(2) Figure [d shows the code, ACFG, and PPDG for the second example in
Figurel@l Bold font is used to indicate the nodes that would be in the slice from
statement S computed using Algorithm Bl Note that “case e1”, “if (P)”, and
“return” are correctly omitted from the slice.

6.1 Complexity

The time required for Algorithm Blincludes the time to build the PPDG and the
time to compute a slice. Like previous slicing algorithms that use a dependence
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lines of] number of [number of| Av. slice size

source [APDG/PPDG| slices | (# of nodes)

code nodes Alg2[ Alg

gce.cpp| 4,079 16,784 1,932|11,693|11,670
byacc | 6,626 21,239 468| 2,119 2,110
CADP | 12,930 35,965 499| 7,921| 7,905
flex 16,236 31,354 1,716| 8,150| 8,082

Fig. 10. Information about the C programs used in the experiments

graph, the time for slicing itself is extremely efficient, requiring only time propor-
tional to the size of the slice (the number of nodes and edges in the sub-PPDG
that represents the slice). The only difference in the time required to build the
PPDG as compared to the time required to build the APDG is for the compu-
tation of control dependences. Computing control dependences can be done for
both the APDG and the PPDG in time O(F + C), where E is the number of
edges in the ACFG and C is the number of control-dependence edges. However,
C may be different for the APDG and PPDG. For example, in Figure [ the
PPDG includes edges from “switch (E)” to “if (P)” and to S that would not
be in the corresponding APDG. Figures [7 and [§ illustrate control-dependence
edges that are in the APDG but not in the PPDG.

7 Experimental Results

To evaluate our work, we implemented Algorithms [ and Bl and used each of
them to compute slices in four C programs (information about the programs, the
number of slices taken in each, and the average sizes of those slices is given in the
table in Figure[IT). Slices were taken from all of the nodes that could be reached
by following one control-dependence edge forward from a node representing a
switch case, and then following five data-dependence edges forward. This ensured
that every slice would include a switch, but (by starting further along the chain
of data dependences) avoided, for example, slices that would include only switch
cases and breaks.

More details about the experimental results are given in the tables in Fig-
ures [Tland Figure [Tl presents information about the differences in the sizes
of the individual slices taken using the two algorithms. The first column gives
the number of cases where the two algorithms produced slices of exactly the
same size. The other columns give the number of cases where the slice produced
by Algorithm [ was larger than the slice produced by Algorithm [B} the second
column gives the number of cases where the size difference was between 1 and
10, the third column gives the number of cases where the size difference was
between 11 and 20, etc.

Figure [[2 presents information about how much the use of Algorithm [3 re-
duced the sizes of the slices. The first column gives the number of cases where
there was no reduction in slice size (a 0% reduction). The other columns give
the number of cases where the reduction in size falls within the range specified
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0]1-10{11-20|21-30|31-40|41-50{51-60|61-70|71-80(81-90
gce.cpp| 2| 0O 48| 1881 0 1 0 0 0 0
byacc | 0] 229 239 0 0 0 0 0 0 0
CADP |18| 152 160 169 0 0 0 0 0 0
flex 0o O 5/ 127| 48| 41 8| 79| 1405 3

Fig. 11. Differences in slice sizes using the two algorithms. Each entry gives the
number of cases where the size difference in the slices produced by Algorithms
and [3 falls into the range given at the top of the column

|0%] 5%|10%|15%|20% |25%|30%|35%)|

gce.cpp| 2|1918 3 1 g 0 0 O
byacc 0| 438 18 7/ 5/ 0O 0O O
CADP | 18| 481 ©Of o O O o0 O
flex 0/1572| 0| 5| 13| 52| 66| 8

Fig. 12. Percent reduction in slice sizes achieved using Algorithm B. Each entry
gives the number of cases where the reduction in slice size falls into the range
specified by the previous and current column headings

by the previous and current column headers. For example, the second column
gives the number of cases where there was a size reduction greater than 0% and
less than or equal to 5%; the third column gives the number of cases where there
was a size reduction greater than 5% and less than or equal to 10%.

Note that in almost all cases Algorithm B] did produce smaller slices than
Algorithm Pl Although this led to only a small reduction in the total size of
the slice in most cases, there were some cases in both gcc.cpp and byacc where
Algorithm [3] provided reductions in slice sizes of more than 15%, and some cases
in flex where it provided reductions in slice sizes of more than 30%.

8 Related Work

Choi-Ferrante: The paper by Choi and Ferrante [3] that presents Algorithm
also includes a second algorithm: Given a node S, it starts with the slice from §
computed using Algorithm [I], then adds goto statements to the slice to form a
program that will always produce the same sequence of values for the variables
used at S as the original program. This technique may produce smaller slices
than those produced using Algorithm [2I However, the gotos that are added are
not necessarily in the original program; therefore, it satisfies neither Weiser’s
definition of a correct slice, nor Definition [ from Section 3l

Agrawal: Agrawal [1] also gives an algorithm that involves adding jump state-
ments to the slice computed using the standard PDG, but the statements that
he adds are from the original program. He states that this algorithm produces
the same results as Algorithm 2} however, no proof is provided.

Harman-Danicic: More recently, Harman and Danicic [5] have defined an
extension to Agrawal’s algorithm that produces smaller slices by using a refined
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criterion for adding jump statements (from the original program) to the slice
computed using Algorithm . When applied to programs without switches, it
may or may not produce slices that satisfy Definition [l This is because their
algorithm includes some nondeterminism: when there are cycle-free paths from a
predicate to its immediate-postdominator both via its true and its false branches,
then the jump statements along either of the paths can be chosen to be in
the slice. Unfortunately, when applied to programs with switch statements, this
algorithm can be as imprecise as Algorithm 2. For example, when used to slice
the switch statement in the first example in Figure B it produces exactly the
same slice as Algorithm 2l Another disadvantage of this algorithm as compared
to ours is that the worst-case time to compute a slice can be quadratic in the
size of the CFG, while our algorithm is linear in the size of the computed slice.

Sinha-Harrold-Rothermel: In [12], Sinha, Harrold, and Rothermel discuss
interprocedural slicing in the presence of arbitrary interprocedural control flow;
e.g., statements (like halt, setjmp-longjmp) that prevent procedures from re-
turning to their call sites. That issue is orthogonal to the one addressed here
(better slicing of programs with jumps and switches); thus, the two approaches
can be combined to handle programs with arbitrary interprocedural control flow
as well as jumps and switches.

Schoenig-Ducassé: An algorithm for slicing Prolog programs is given in [11]. It
is observed that some arguments of some clauses (referred to as failure positions)
must be included in a slice because they may cause a relevant goal to fail (so
excluding them from the slice might change the control-flow of the program).
This idea is related to our notion of the semantic effect of a jump statement
(because in that case too, removing the statement might change the control-flow
of the program).

9 Summary

We have provided a new definition for a “correct” slice, a new definition for
control dependences, and a new slicing algorithm. The algorithm has essentially
the same complexity as previous algorithms that compute slices using program
dependence graphs, and is more precise than previous algorithms when applied
to programs with jumps and switch statements.

The motivation for this work was the observation that slices of code with
switch statements computed using the approach to handling jumps proposed
by [2I3] (as implemented in the CodeSurfer [6] programming tool) often include
many extra components, which is confusing to users of the tool. We expect that
the new approach will have an important practical benefit (to users of slicing
tools) as well as being an interesting theoretical advance.
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