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Abstract. We define a translation from Condition/Event nets to the
Circal process algebra. Such a translation exploits the Circal feature of
allowing the simultaneous occurrence of distinct actions. This permits
us to give Condition/Event nets a semantics based on true concurrency,
in addition to the interleaving-based semantics. In this way the true
concurrency aspects of Condition/Event nets are preserved in the pro-
cess algebra representation and can be analysed using the verification
facilities provided by the Circal System. Systems modelled partly using
Condition/Event nets partly using the Circal process algebra can also be
analysed within the same verification environment.

1 Introduction

Petri nets and process algebras are very popular formalisms used for mod-
elling and verifying concurrent systems. However, they express different mod-
elling styles, have different underlying semantics and different mathematical and
graphical representations, and are associated with different analysis techniques.

In this paper, we define a translation from Condition/Events nets (C/E nets)
[20/19], a subclass of Petri nets where every place contains at most one token, to
the Circal process algebra [I3]. Among the many process algebras available we
have chosen Circal because of its distinctive feature of having processes guarded
by sets of actions, rather than by single actions, as in all other process algebras
[2T2/T4]. Having events consisting of simultaneously occurring actions allows the
representation of true concurrency and causality, which is explicit in Petri net
based formalisms such as C/E nets.

The paper is structured as follows. In Section 2] we motivate our approach.
Section [ is a brief introduction to C/E nets. In Section [ we present the Circal
process algebra and its implementation, the XCircal language. Our framework for
modelling Petri nets is presented in Section Bl Techniques for analysing properties
of C/E nets modelled in the Circal process algebra are presented in Section
Finally, Section [[highlights the novelty of this work and discusses the extension
of our approach to Place/Transition nets.

R.-D. Kutsche and H. Weber (Eds.): FASE 2002, LNCS 2306, pp. 49-63] 2002.
© Springer-Verlag Berlin Heidelberg 2002


http://www.itee.uq.edu.au/~antonio/

50 Antonio Cerone

2 Background and Motivation

Condition/Events nets (C/E nets) [20/19], allow the modelling of finite state sys-
tems and are, therefore, as expressive as Finite State Machines (FSMs). However,
FSMs have a global control, which describes a sequential behaviour, whereas C/E
nets have a distributed control, which is defined by distinct tokens being in dis-
tinct places at the same time, so allowing an explicit representation of causality.

FSMs have been extended with higher level constructs, which allow the as-
sociation of complex conditions or statements to states and transitions and the
representation of structured data types, and with compositional mechanisms.

Process algebras [2[T2IT3T4] can be seen as mathematical formalisms for
describing systems of concurrent, interacting FSMs. That is a way of giving
compositionality to FSMs. The behaviour of the composite system is, however,
still defined by a global FSM, where the concurrency among different components
is expressed as non-deterministic interleaving. Therefore, the distributed aspects
of the system specification do not appear in the behaviour of the composite
system.

Petri nets, instead, do not support compositionality. Every attempt to intro-
duce compositionality into Petri nets has resulted in a very restricted form of
composition, which is not very useful in system design.

Both FSMs and Petri nets have visual representations, which make them at-
tractive modelling tools also for those system designers who are not familiar with
formal specification languages and techniques. Moreover, due to their different
characteristics, FSMs and Petri nets are useful in modelling different aspects of
the same system.

Let us consider, for example, a process control application. Petri nets are
the appropriate formalism for specifying the distributed control of the whole
system or the protocol that governs the communication among the system com-
ponents. On the other hand system modes and system components might be
easily specified by FSMs. A similar situation occurs in modelling asynchronous
hardware [6R]. Gate-level or CMOS-level components are easily specified by fi-
nite state machines, whereas the asynchronous handshaking control protocol is
usually modelled by Signal Transition Graphs (STGs) [10], a subclass of Petri
nets. In both examples the Petri net-based part of the specification is usually
finite state, and may be modelled by C/E nets.

Among the many existing formal methods automatic tools [11], none is able
to manage system specifications consisting of a combination of Petri nets and
FSMs. Properties of the system which involve both aspects of the sub-systems
modelled by Petri nets and aspects of the sub-systems modelled by FSMs can-
not be analysed using such tools. This is the case for fundamental correctness
properties, such as the correctness of the circuitry implementation, modelled
by an FSM, of an asynchronous handshaking control protocol with respect to
its specification, modelled by an STG. This property has been automatically
verified by defining a translation from STGs to the Circal process algebra [13],
the FSM-based formalism used to model the circuit implementation, and then
feeding the specification and implementation models to the Circal System, an
automatic verification tool based on the Circal process algebra [6)8].
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3 Condition/Event Nets

Petri nets are an abstract formal model of information flow. They were intro-
duced by Carl Adam Petri in 1962 [I8]. The basic notion in Petri net theory is
the notion of a net, which is usually described as a triple (S, T', F) [19]. Sets S
and T are disjoint and are called the set of places and the set of transitions,
respectively. F' C (S x T)U (T x S) is a binary relation called the flow relation.
The basic notion of net is given a state, which is called a marking and is an
assignment of tokens to places. Depending on the number of tokens that can be
assigned to the same place and on the possible information carried by a token
we can have different classes of Petri nets [19J20]. The dynamic behaviour of a
Petri net is given by transition firings, which consume and produce tokens.
Condition/Event nets (C/E nets) are Petri nets where tokens are just mark-
ers for places and every place contains at most one token [20]. In a C/E net,
places are called conditions, transitions are called events and markings, which
are defined as the sets of places that are marked by one token, are called cases.
A C/E net is defined as a quadruple N = (B, E, F, C') such that (B, E, F)
isanet and C C B is a case.
A condition b € B is a precondition of an event e € E if and only if (b, e) € F.
A condition b € B is a postcondition of an event e € E if and only if (e, b) € F.
An example of C/E net Ny = (By, Ey, F1, C1) is given in Figure[l(a). In the

bo b1 b2 b3 bs

b1 bs eo |c[0]|p[1] e[0]
a b e e1 [pl0]|c[1] pl4l|el1]
eo e3 €2 pl2]|c[3]|c[4]|e[2]
€3 c[21|pl3] e[3]
b o b e4 cl[4]|e[4]
(a) (b)

Fig.1. (a): A C/E net N; defining a producer-consumer system; (b): Corre-
spondence between conditions and events of Ny and Circal actions

pictorial representation, conditions are represented as circles, events are repre-
sented as boxes, with arrows from circles to boxes and from boxes to circles
defining the flow relation. Tokens are represented by solid circles, each inside the
place to which it is assigned.

C/E net N; defines an unreliable producer-consumer system. The producer
consists of conditions by and b; and events ey and e;. When by is marked by a
token the producer is ready to produce, and event ey models the production of a
message; when by is marked the producer is ready to send, and event e; models
the sending of a message. The consumer consists of conditions by and b3 and
events ez and es. When b3 is marked the consumer is ready to receive, and event
ez models the receiving of a message; when by is marked the consumer is ready
to consume, and event e models the consumption of a message. Condition by
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models a 1-cell buffer between the producer and the receiver. Event e; models
the loss of the message from the buffer.

4 The Circal Process Algebra

In this section we give a brief description of the the Circal process algebra and
the Circal System [13]15].

Each Circal process has associated with it a sort, which specifies the set of
actions through which it may interact with other processes. Every sort will be a
non-empty subset of A, the collection of all available actions.

The behaviour of a process is defined in terms of the /\ constant and the op-
erators of guarding, external choice, and internal choice (behavioural operators).

The /\ constant represents a process which can participate in no communi-
cation. This is a process that has terminated or deadlocked.

In guarded process I' P the P process may be guarded by a set I" of simulta-
neously occurring actions. This is a key feature of Circal which greatly enriches
the modelling potential of the algebra in contrast to process algebras such as
CSP [12], CCS [14] and LOTOS [2], which only permit a single action to occur
at one computation instant.

A name can be given to a Circal process with the definition operator (<-).
Recursive process definitions, such as P <= I' P, are permitted.

The + operator defines an external choice, which is decided by the environ-
ment where the process is executed, whereas the & operator defines an internal
choice, which is decided autonomously by the process itself without any influ-
ence from its environment. Internal choices appear to an external observer as
non-determinism.

The structure of a process is defined in terms of the operators of composition
and hiding (structural operators).

Given processes P and Q, the term P * Q represents the process which can
perform the actions of the subterms P and Q together (composition). Any syn-
chronisation which can be made between two terms, due to some action being
common to the sorts of both subterms, must be made, otherwise the actions of
the subterms may occur asynchronously.

Term P - a b defines the hiding of actions a and b from process P.

The Circal process algebra has been extended with additional features and
resulted in the XCircal language, which is implemented by the Circal System
[13]. In XCircal the application of the structural operators (composition and
hiding) needs to be explicitly enforced using the ~ operator. XCircal has the
usual primitive data types, such as int for the integers and bool for the booleans.
There are also two datatypes which define events and processes.

The Event data-type implements sets of actions. Atomic events, which are
events consisting of a single action, must be declared before the use.

Event a, b, c[2]

The line above is the declaration of two events a, b and an array c of two events,
c[0] and c[1]. An event consisting of the set of actions a, b is represented in
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Circal as (a b). Singletons may be shortened by removing the parentheses. Thus
a is the same as (a).

In the following an object of type Event will be called a set of actions (or
an action, if it is a singleton) rather than an event, and the word event will be
reserved to the C/E net concept to avoid ambiguity.

The Process data-type implements processes. A process must be declared
before use. An array of processes may be declared. The composition of all the
elements of an array P of processes is denoted by *P. The same operator * is
used, with a different semantics, to denote the set of all elements of an array
of actions. Therefore, given the declaration of ¢ above, *c is a short form for
(cl0] c[1]).

Other features of XCircal that are used in this paper are the following:

Control Structures. These have a syntax immediately derived from the pro-
gramming language C.

Output. Values are sent to the standard output by the print function and
process behaviours are formatted and sent to the standard output by the
display function.

Testing Equivalence. The Circal System implements the testing equivalence
defined by Moller [15] giving to the expression P == Q the result true if P
and Q are equivalent, and false otherwise. The equivalence checking auto-
matically enforces the application of structural operators without requiring
the use of the ~ operator.

The composition operator of Circal provides synchronisation among an arbitrary
number of processes as in CSP and LOTOS. This particular nature of the com-
position operator is exploited by the constraint-based modelling methodology
[21]), which has been used in several application domains such as communication
protocols [5], safety-critical systems and asynchronous hardware [6lJS].

When a process P is composed with a process Q, we say that Q constrains
P if and only if there is a part of the behaviour of P whose restriction to the
intersections of the sorts of P and Q is not consistent with the behaviour of Q.

The notion of constraining is used in synthesising complex behaviours by
composing simple general behaviours with specific constraints. In Section [6l we
will also see how the notion of constraining can characterise behavioural inclusion
between processes.

5 Modelling Framework

5.1 Conditions and Cases

In C/E nets conditions can be seen as 1-cell buffers of tokens. A condition can
be modelled in Circal by two processes representing the two states, empty and
full, of the 1-cell buffer. We set the CONDS XCircal variable to be equal to the
maximum number of conditions and we define two arrays Empty and Full, each
consisting of CONDS processes. Then, for each i, processes Empty [] and Full [4]
model respectively the empty and full states of the (i 4+ 1)-th condition.



54 Antonio Cerone

The transition from Empty[i] to Full[:] is triggered by the production of
a token in the (i + 1)-th condition, which is modelled by produce action p[:].
Analogously, the transition from Full[:] to Empty[:] is triggered by the con-
sumption of a token from the (i +1)-th condition, which is modelled by consume
action c[i]. Figure [[(b) shows how actions p[i] and c[i] are associated with
conditions and events of the C/E net N; given in Figure [{a). For example,
action c¢[0] is in position (eg, by) of the table because an occurrence of ey con-
sumes the token in by; action p[1] is in position (eg, b1) of the table because an
occurrence of ey produces one token in b.

The Circal code is given as follows.

Event p[CONDS], c[CONDS]

Process Empty[CONDS], Full[CONDS]
for(i=0;i<CONDS;i++) Empty[i] <- p[i] Full[i]
for(i=0;i<CONDS;i++) Full[i] <- c[i] Empty[i]

The first line of the Circal code above is the declaration of two arrays of sets
of action, p and c; the second line is the declaration of two arrays of processes,
Empty and Full; the other lines are the definitions of the processes that are
elements of arrays Empty and Full.

Let us consider C/E net N; in Figure[ll(a). The initial case of N; associates
tokens only with by and b3. Thus the producer is ready to send, the buffer is
empty and the consumer is ready to receive. Such an initial case is represented
in Circal as follows.

InitCasel = Empty[0] * Full[1] * Empty[2] * Full[3] * Empty[4]

Process InitCasel is the parallel composition of all the processes that define the
states of the buffers that implement the conditions of the net. Processes Full[1]
and Full [3] model the two fulfilled conditions, b; and b3, respectively. Processes
Empty [0], Empty[2] and Empty[4] model the three unfulfilled conditions, bg,
bo and by, respectively.

5.2 Events and Sequential Semantics

In the first two decades of Petri nets’ life, their semantics was based on the
philosophy that a transition firing is considered to be instantaneous, that is
to take zero time. Since time is usually considered as a continuous variable, the
probability of any two or more firings happening simultaneously is zero [16]. This
is the main argument to support an operational semantics, where transitions
cannot fire simultaneously and a single execution of a net can be seen as an
interleaving of markings or an interleaving of transitions or an interleaving of
alternating markings and transitions [17]. The behaviour of a C/E net can thus
be represented as a state graph, called a reachability graph, whose nodes are
cases and whose arcs are labelled by single events [17].

Givena C/Enet N = (B, E, F, C) and a case C C B, an event e is enabled in
C if and only if each of its preconditions is fulfilled and none of its postconditions
is fulfilled. That is Vb € B.((b,e) € F — b C)A((e,;b) € F — b¢g C).
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If an event e is enabled in C, then e may occur in C. The occurrence of e
generates a new case C’ by consuming tokens from all preconditions of e and
producing tokens in all postconditions of e. This is written as C[e)C".

We set the EVENTS XCircal variable equal to the maximum number of events
and we define an array e consisting of EVENTS actions. The declaration of the e
array of actions is as follows.

Event e[EVENTS]

Since only one event may occur at any time, the behaviour of the net is given by
a process consisting of a choice among all enabled events. For C/E net Np this
is modelled by the EvSeql Circal process given as follows.

Process EvSeql

EvSeql <- (c[0] p[1] e[0]1) EvSeql
(p[0] cl[1] pl[4] e[1]) EvSeql
(p[2] c[3] cl[4] e[2]) EvSeql
(cl2] p[3] el3D) EvSeql
(c[4] el4DD EvSeql

+ o+ + +

Every possible choice in the definition of EvSeql corresponds to a row in Fig-
ure [I(b). For instance, the first choice corresponds to the first row, which is
associated with event ey, whose occurrence is modelled by action e[0]. Since
the occurrence of ey consumes the token from by and produces a token in by,
then c[0], p[1] and e [0] are forced to occur simultaneously. Their simultaneous
occurrence is expressed in Circal by (c[0] p[1] e[0]).

The state graph that defines the behaviour of N; can thus be modelled by
process EvSeq1Sem, which consists of the parallel composition of InitCasel and
EvSeql, followed by the hiding of the actions that represent the consumption
and production of tokens.

EvSeqlSem = ~(InitCasel * EvSeql - (*c) (*p))

Process InitCasel provides process EvSeql with the production and consump-
tion actions that are feasible in the initial case. In this way InitCasel constrains
EvSeql to perform the second choice, which is the only one to be feasible in the
initial case and corresponds to the occurrence of e;.

We use the Circal command

display EvSeqlSem
to print the behaviour of process EvSeqlSem, which appears as follows.

S0 == e[1] S1

S1 == ((e[0] S2 + e[2] S3) + e[4] S54)
S2 == (e[2] S5 + e[4] S0)

S3 == (e[0] S5 + e[3] S4)

sS4 e[0] SO

S5 == (e[1] S6 + e[3] S0)

S6 == ((e[0] S7 + e[3] S1) + e[4] S3)
S7 == (e[3] S2 + e[4] S5)
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Such a behaviour is a representation of the reachability graph of N;.

Every state in the generated behaviour defines a case of N;. Thus SO defines
the initial case Cy = {b1, b3}, S1 defines C11 = {bo, b3, ba}, S2 defines Cy 2 =
{b1, b3, ba}. One possible interleaving of alternating cases and events is then:
01[61>01,1[60> 01,2[64>01-

5.3 Parallel Semantics

The sequential semantics of Petri nets resolves the concurrency and the causality
expressed by the definition of the Petri net in terms of a non-deterministic in-
terleaving of single event occurrences. However, the underlying assumption that
the probability of any two or more events happening simultaneously is zero is
too restrictive. A more modern view of Petri net semantics [19] is based on true
concurrency and emphasises the causality and independence of events, impor-
tant aspects of any net which are concealed by a sequential semantics. In our
paper such a true concurrency semantics is called parallel semantics.

Givena C/Enet N = (B, E,F, C) and a case C C B, a set of events T C E
is enabled in C if and only if the three following properties hold:

— for every event e € T, preconditions of e are fulfilled and no postcondition
of e is fulfilled;

— the sets of the preconditions of the events in T are pairwise disjoint;

— the sets of the postconditions of the events in T are pairwise disjoint.

If a set of events T is enabled in C, then all events in 7 may simultaneously
occur in C generating a new case C’. This is written as C[T)C".

In order to allow events to occur simultaneously in our Circal model of C/E
nets, we need to represent the occurrence of different events as a parallel com-
position rather than a choice. We set CONDS1 to the number of conditions in Ny
and we define an array Cctrl of processes, one process for every condition. Then
we define process EvPar1 as the parallel composition of the processes that are
elements of Cctrl.

CONDS1 = 5

Process Cctrl[CONDS1]

Cctrl[0] <- (e[1] p[0]) Cctrl[O]
Cctrl[1] <- (e[0] p[1]) Cctrl[1]
Cctrl[2] <- (e[2] p[2]) Cctrl[2]
Cctrl[3] <- (e[3] p[3]) Cctrl[3]
Cctrl[4] <- (el1] pl4]) Cctrl[4]

(c[0] e[0]) Cctrl[O]
(c[1] e[1]) Cectrl[1]
(c[2] e[3]) Cctrl[2]
(c[3] e[2]) Cctrl[3]
(cl[4] e[2]) Cctrll4] +
(cl[4] e[4]) Cctrl[4]

+ o+ o+ o+ o+

EvParl = ~(*Cctrl)

The Cctrl[i] process, which corresponds to condition b;, consists of all possible
choices of consumption of a token from b; or production of a token in b;. For
instance, let us discuss the definition of process Cctrl[4]. A token can be pro-
duced in by only by an occurrence of event e;. This corresponds to the choice
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(e[1] pl[4]) Cctrl[4]. A token can be consumed from b4 either by an occur-
rence of event ey or by an occurrence of event e4. This corresponds to the other
two possible choices (c[4] e[2]) Cctrl[4] and (c[4] e[4]) Cctrl[4].

The behaviour of N; can thus be represented by a graph whose nodes are
cases and whose arcs are labelled by set of events occurring simultaneously.
Such a graph is modelled by process EvPariSem, which consists of the parallel
composition of InitEventl and EvPar1l, followed by the hiding of the actions
that represent the consumption and production of tokens.

EvPariSem = ~(InitCasel * EvParl - (*c) (¥p))
display EvPariSem

The display command outputs the behaviour of process EvPar1Sem as follows.

S0 == e[1] S1

S1 == ((((e[0] S2 + (e[0] e[4]) SO) + (e[0] e[2]) 83) +
e[2] S4) + e[4] s5)

S2 == (e[2] S3 + e[4] S0)

S3 == ((e[1] S6 + (e[3] e[1]) S1) + e[3] S0)

S4 == ((e[0] S3 + (e[0] e[3]) S0) + e[3] S5)

S5 == e[0] SO
86 == ((((((e[0] S7 + (e[0] e[4]) 83) + (el[0] e[3]) 82) +

(e[0] e[3] e[4]) S0) + e[3] S1) + (el[3] e[4]) S5) + el[4] sS4)
S7 == ((e[3] S2 + (e[3] e[4]) SO) + e[4] S3)

Again, every state in the generated behaviour defines a case of N;. Now
SO defines the initial case C; = {b1, b3}, S1 defines Cy 1 = {bo, b3, b4}, and S2
defines C1 o = {b1, b3, ba}. One possible interleaving of alternating states and
sets of events is then: Ci[{e1})Ci1[{eo, €4})Ch.

5.4 Read-Only and Overwrite Arcs

The semantics of C/E nets given in the previous section does not allow an event
to occur when one of its postconditions is fulfilled. This causes the following
implicit restrictions on C/E nets:

1. an event whose set of preconditions and set of postconditions have a non-
empty intersection can never occur (self-loop);

2. an event with all preconditions fulfilled might be prevented from occurring
by one of its postconditions being fulfilled (contact).

A semantics which does not associate an active behaviour to a self-loop is very
limiting. It is often useful to model a system where the content of a condition can
be read without consuming the token. In the C/E net N; in Figure 2(a), event
es models a test on condition by: we would like e5 to occur when there is a token
in by, but without consuming the token. This is impossible using the Circal
implementation of C/E nets given above. However, we can modify the Empty
and Full arrays of processes defined in Section [.1] by allowing a simultaneous
occurrence of c[i1] and p[i] in Full[i]. Therefore, we replace arrays Full and
Empty respectively with arrays ReadFull and ReadEmpty defined as follows.
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b1 €5 bs

€1 ), 4 €2
€0 €3

b() €4 bo bo bs b
(a) (b)

Fig.2. (a): A C/E net Ny defining a producer-consumer system with test on
the buffer; (b): A C/E net N3 defining a contact-free producer-consumer system

Process ReadEmpty[CONDS], ReadFull [CONDS]

for(i=0;i<CONDS;i++) ReadEmpty[i] <- p[i] ReadFull[i]

for(i=0;i<CONDS;i++) ReadFull[i] <- c[i] ReadEmpty[i] +
(c[i] p[il) ReadFull[i]

Term (c[i] p[il) ReadFull[i] now allows an event to simultaneously con-
sume and produce a token in the same condition, which is equivalent to a read-
only operation on that condition. The initial case of N> allowing active self-loops
is then given as follows.

InitCase2R = ReadEmpty[0] * ReadFull[1] =*
ReadEmpty[2] * ReadFull[3] * ReadEmpty[4]

The choice among all enabled events is modelled by the EvSeq1R Circal process
given as follows.

Process EvSeqlR

EvSeqlR <- (c[0] p[1] e[0]) EvSeqiR +
(p[0] cl1] pl[4] e[1]) EvSeqlR +
(p[2] c[3] cl4] e[2]) EvSeqlR + (c[2] p[3] e[3]) EvSeqlR +
(c[4] e[4]) EvSeqlR + (c[4] p[4] e[5]) EvSeqlR

EvSeqiRSem = ~(InitCase2R * EvSeqlR - (*c) (*p))

The last term of the definition of EvSeq1R models that event e; (implemented
by e[5]) simultaneously consumes a token (action c[4]) from and produces a
token (action p[4]) to by.

In order to allow an event to occur even though at least one of its postcon-
ditions is fulfilled, we define arrays OWFull and OWEmpty as follows.

Process OWEmpty[CONDS], OWFull[CONDS]
for(i=0;i<CONDS;i++) OWEmpty[i] <- p[i] OWFull[i]
for(i=0;i<CONDS;i++) OWFull[i] <- c[i] OWEmpty[i] + p[i] OWFull[i]

Term p[i] OWFull[i] in the definition of process OWFull[i] now allows an
event to produce a token in a fulfilled condition. When defining the initial case
of a given C/E net, we will then use the Full [k] and Empty [k] processes for each
non-overwritable condition b; and the OWFull[j] and OWEmpty [j] processes for
each overwritable condition b;. For instance, if we want buffer overwriting in
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the C/E net N; in Figure[I(a), we need to make condition by overwritable. The
initial case is then represented in Circal as follows.

InitCaselOW = Full[0] * Empty[1] * Full[2] * Empty[3] * OWEmpty[4]

We will see an application of overwritable conditions in Section Gl
We can also have both read-only arcs and overwrite conditions by using the
following processes.

Process ROWEmpty[CONDS], ROWFull [CONDS]
for(i=0;i<CONDS;i++) ROWEmpty[i] <- p[i] ROWFull[i]
for(i=0;i<CONDS;i++) ROWFull[i] <- c[i] ROWEmptyl[i] +

pli] ROWFull[il] + (c[i] p[il) ROWFull[il

The initial case is for C/E net Ny in Figure Pl(a), with read-only in self loops
and condition by overwritable is implemented in Circal as follows.

InitCase2RW4 = ReadEmpty[0] * ReadFull[1] *
ReadEmpty[2] * ReadFull[3] * ROWEmpty [4]

6 Analysis of Properties

A correctness concept that can be readily characterised in Circal is the be-
havioural equivalence P == Q between two given processes P and Q, which is
implemented by the Circal System.

However, in performing formal verification equivalence is often too strong
a property. Analysing systems often consists of determining that certain prop-
erties hold, where these properties do not constitute a complete specification.
Concurrent systems frequently require us to determine if the behaviour of a
given process Q is included in the behaviour of another process P.

The constraint-based modelling technique supports a clear characterisation
of such a behavioural inclusion. The behaviour of Q is strictly included in the
behaviour of P if and only if the following three properties hold:

1. P and Q have the same sort;
2. Q constrains P;
3. P does not constrain Q

We want to prove that if P and Q are not equivalent and Condition 1 holds,
then Conditions 2 and 3 hold if and only if the equivalence check Q * P ==
gives true as a result. If P and Q are not equivalent, then the equivalence above
gives true as a result if and only if the part of the behaviour of P that is not
consistent with the behaviour of Q disappears after the composition (that is
Condition 2 holds) and the behaviour of Q is preserved after the composition (it
is fully consistent with the behaviour of P, that is Condition 3 holds).

As an example of behavioural inclusion we would like to verify for the C/E
net Np given in Figure [[{a) that the behaviour defined by the parallel semantics
introduced in Section[5.3]strictly includes the behaviour defined by the sequential
semantics introduced in Section B2, We first verify that the two semantics are
not equivalent. The equivalence check
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EvSeql == EvPar()

gives false as a result.
The two semantics have the same sort. Thus we check that the following
equivalence is true.

EvSeql * EvPar() == EvSeql

Notice that this result is independent of the initial case of Nj.

The behavioural inclusion checking allows the analysis of interesting prop-
erties of concurrent systems. Together with the equivalence checking and with
other techniques for safety [5] and performance [6)8] analysis introduced in pre-
vious papers it may be used for the verification of systems in part modelled as
C/E nets and in part directly modelled as Circal processes. In the next section,
we present an example of verification of a simple property of C/E nets.

6.1 Contacts and Complementation

We have said in Section B4 that an event with all preconditions fulfilled might
be prevented from occurring by one of its postconditions being fulfilled. This
situation is called a contact. More precisely, in a C/E net there is a contact
if and only if all preconditions and at least one postcondition of an event are
fulfilled. A C/E net is contact-free if and only if a contact can never occur.

It might be considered not very elegant that the occurrence or non-occurrence
of an event depends on both preconditions and postconditions [20, p.16]. This
is an argument for avoiding contact situations in design. It is indeed possible to
remove a situation of contact by adding additional conditions to the C/E net.
In order to remove contacts, we introduce the concept of a complement to a
condition.

In a C/E net a condition b’ is a complement to a condition b if and only if
for every event e the following properties hold:

— b is a precondition of e if b’ is a postcondition of e;
— b is a postcondition of e if b’ is a precondition of e;
— b’ is unfulfilled in the initial case if and only if b is fulfilled in the initial case.

It is easy to show that if b’ is a complement of a condition b, exactly one of
the two conditions is fulfilled in each case. Therefore, adding a complement to a
condition does not change the behaviour of the net.

A C/E net can be made contact-free by adding a complement to every post-
condition that causes a contact.

In the C/E net N; in Figure[l(a) the occurrence of e; followed by the occur-
rence of ey results in a case with tokens both in b; and by. Event e; has its only
precondition by fulfilled, but it cannot occur because its postcondition b4 is also
fulfilled. This is a contact situation.

In order to detect the contacts in N; using the Circal System, we define
the OverWritel array of processes such that, for each 7, process OverWritel [i]
is obtained by replacing in the initial case the Empty[i] and Full[<] processes
respectively with the OWEmpty [4] and OWFull [:] processes defined in Section[5.41
For example process OverWritel[1] is defined as follows.
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OverWritel[1] = Empty[0] * OWFull[1] * Empty[2] * Full[3] =*
Empty[4] * EvSeql - (*c) (*p)

We can now detect all contacts in N; through the following equivalence checks
for(i=0;i<CONDS1;i++){print (EvSeqlSem == OverWritel[i]); print" "}

which give as result: true true true true false. For each i, OverWritel [7]
is equivalent to EvSeqiSem if and only if the p[i] action may not occur in
OWFull[4]. Action p[¢] may occur in OWFull[7] if and only if the token in b; is
overwritten by the occurrence of an event having b; as a postcondition, that is
when b; being fulfilled causes a contact. Thus the equivalence of OverWritel [7]
and EvSeql1Sem holds if and only if there is no contact caused by b;. Therefore,
the equivalence checks above show that in N; contacts are only caused by by.
This contact can be removed by adding a complement to condition by as in
C/E net N3 given in Figure 2Ib). Since by was the only cause of contact, N3 is
contact-free. The Circal sequential model of N3 is given as follows.

InitCase3 = Empty[0] * Full[1] * Empty[2] *
Full[3] * Empty[4] * Full[5]
Process EvSeq3
EvSeq3 <- (c[0] p[1] e[0]) EvSeqg3 +
(c[1] c[5] pl0] pl[4] el[1]) EvSeqg3 +
(c[3] cl4] pl2] pl[5] e[2]) EvSeqg3 +
(c[2] p[3] e[3]) EvSeq3 +
(c[4] p(5] el[4]) EvSeq3
EvSeq3Sem = ~(InitCase3 * EvSeq3 - (*c) (*p))

Now, if we build the OverWrite3 process for N3 in the same way as we have built
the OverWritel process for Ny and we set CONS3 equal to 6, then the following
equivalence checks

for(i=0;i<CONDS3;i++){print (EvSeq3Sem == OverWrite3[i]); print" "}

give as result: true true true true true true. This proves that N3 is contact-
free. We can also check that N3 has the same behaviour as N; through the
following equivalence.

EvSeqlSem == EvSeq3Sem

7 Conclusion and Future Work

We have presented a technique for implementing Condition/Event nets in a pro-
cess algebra. We have chosen the Circal process algebra, which has the distinctive
feature of allowing simultaneity of actions. We have exploited such a feature to
implement a true concurrency semantics as an alternative to the implementation
based on non-deterministic interleaving.

We have also seen that our implementation allows the design of systems
modelled by C/E nets and the verification of general properties of C/E nets,
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such as equivalence and behavioural inclusion, or more specific properties, such
as contact-freedom. Moreover, having an implementation of C/E nets within a
process algebra allows the use of a unique verification engine in the analysis of
systems which are modelled using different specification formalisms such as Petri
nets and Finite State Machines.

All the Circal code used in this paper can be downloaded from the World
Wide Web [3]. In order to run it it is necessary to install the Circal System [1].
Our implementation of C/E nets is exploited by the Petrinette graphical design
and verififcation tool [9J3].

A natural continuation of this work is its extension to Place/Transition nets
(P/T nets) and higher-level Petri nets. Circal allows the modelling of finite state
systems, whereas P/T nets may have infinite states. Thus P/T nets cannot be
translated into a finite state process algebra without an abstraction step which
reduces the behaviour to a finite state system. Therefore, in order to have a
complete translation, we must restrict our work to bounded P/T nets. However,
the technique presented in this paper cannot be directly applied to bounded P/T
nets. The main change to the modelling framework involves the implementation
of places. Conditions in C/E nets have been implemented using 1-cell buffers,
but the implementation of a place in a P/T net would require a buffer consisting
of at least as many cells as the capacity of the buffer. Moreover we have to
implement a test on the number of tokens in the buffer to check the enabling of
transitions. The main problem is how to exploit the result of the test taking into
account possible conflicts among transitions. The problem becomes even more
complex if we allow the simultaneous firing of distinct transitions or even multiple
concurrent firings of the same transition. Investigating all these problems is part
of our current research.

Finally, we would like to point out that the Circal feature of allowing the
simultaneous occurrence of distinct actions has eased the definition of the mod-
elling framework presented in Section bl and made possible the definition of the
parallel semantics presented in Section B3l This is further evidence that the si-
multaneity of actions enriches the ability to model aspects of concurrent system
which are believed hard to characterise in process algebra frameworks. Among
these aspects we have already investigated priorities among actions [4l5], the
modelling of dense time [7] and the verification of performance properties [6l/g].
All such works exploit simultaneous actions in modelling systems and verifying
properties. In our future work we plan to investigate the use of such a feature
in further application domains, such as multitasking, security and mobility.
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