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Abstract. This paper investigates the following question: Given an in-
teger grid ¢, where ¢ is a proper subset of the integer plane or a proper
subset of the integer 3d space, which graphs admit straight-line crossing-
free drawings with vertices located at the grid points of ¢? We charac-
terize the trees that can be drawn on a two dimensional c¢-n X k grid,
where k£ and c are given integer constants, and on a two dimensional grid
consisting of k parallel horizontal lines of infinite length. Motivated by
the results on the plane we investigate restrictions of the integer grid in 3
dimensions and show that every outerplanar graph with n vertices can be
drawn crossing-free with straight lines in linear volume on a grid called a
prism. This prism consists of 3n integer grid points and is universal — it
supports all outerplanar graphs of n vertices. This is the first algorithm
that computes crossing-free straight line 3d drawings in linear volume
for a non-trivial family of planar graphs. We also show that there exist
planar graphs that cannot be drawn on the prism and that the extension
to an x 2 X 2 integer grid, called a box, does not admit the entire class
of planar graphs.

1 Introduction

This paper deals with crossing-free straight-line drawings of planar graphs in 2
and 3 dimensions. Given a graph G, we constrain the vertices in a drawing of
G to be located at integer grid points and aim at computing drawings whose
area/volume is small. A rich body of literature has been published on such
straight-line drawings in 2d. Typically, these papers focus on lower bounds on
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the area required by drawings of specific classes of graphs and on the design
of algorithms that possibly match these lower bounds. A very limited list of
mile-stone papers in this field includes the works by de Fraysseix, Pach, and
Pollack [7l8] and by Schnyder [20] who independently showed that every n-
vertex triangulated planar graph has a crossing-free straight-line drawing such
that the vertices are at grid points, the size of the grid is O(n) x O(n), and
that this is worst case optimal; the work by Kant [I617], Chrobak and Kant [3],
Schnyder and Trotter [21]], Felsner [12] and Chrobak, Goodrich, and Tamassia [4]
who studied convex grid drawings of triconnected planar graphs in an integer
grid of quadratic area; and the many papers proving that linear or almost-linear
area bounds can be achieved for classes of trees, including the result by Garg,
Goodrich and Tamassia [I3] and the result by Chan [2]. Summarizing tables and
more references can be found in the book by Di Battista, Eades, Tamassia, and
Tollis [9].

While the problem of computing small-sized crossing-free straight-line draw-
ings in the plane has a long tradition, the 3d counterpart has received less atten-
tion. Chrobak, Goodrich, and Tamassia [4] gave an algorithm for constructing
3d convex drawings of triconnected planar graphs with O(n) volume and non-
integer coordinates. Cohen, Eades, Lin and Ruskey [6] showed that every graph
admits a straight-line crossing-free 3d drawing on an integer grid of O(n?) vol-
ume, and proved that this is asymptotically optimum. Calamoneri and Sterbini
[I] showed that all 2-, 3-; and 4-colourable graphs can be drawn in a 3d grid
of O(n?) volume with O(n) aspect ratio and proved a lower bound of 2(n!-?)
on the volume of such graphs. For r-colourable graphs, Pach, Thiele and Téth
[1]] showed a bound of #(n?) on the volume. Garg, Tamassia, and Vocca [14]
showed that all 4-colorable graphs (and hence all planar graphs) can be drawn
in O(n!?) volume and with O(1) aspect ratio but using a grid model where the
coordinates of the vertices may not be integral.

In this paper we study the problem of computing drawings of graphs on inte-
ger 2d or 3d grids that have small area/volume. The area/volume of a drawing
I' is measured as the number of grid points contained in or on a bounding box
of I, i.e. the smallest axis-aligned box enclosing I'. Note that along each side of
the bounding box the number of grid points is one more than the actual length
of the side.

We approach the drawing problem with the following point of view: Instead of
“squeezing” a drawing onto a small portion of a grid of unbounded dimensions,
we assume that a grid of specified dimensions is given and we consider which
graphs have drawings that fit that restricted grid. For example, it is well-known
that there are families of graphs that require {2(n?) area to be drawn in the
plane, the canonical example being a sequence of n/3 nested triangles (see [8]
5120]). Such graphs can be drawn on the surface of a 3 dimensional triangular
prism of linear volume and using integer coordinates. Thus a natural question
is whether there exist specific restrictions of the 3d integer grid of linear volume
that can support straight-line crossing-free drawings of meaningful families of
graphs. For planar graphs the best known results for 3 dimensional crossing-free
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straight-line drawings on an integer grid are by Calamoneri and Sterbini [1] who
show O(n?) volume for general planar graphs and by Eades, Lin and Ruskey [6]
who show O(nlogn) volume for trees. By following the above described approach
we have been able to design the first algorithms that draw significant families of
planar graphs in an integer 3d grid requiring only O(n) volume.

The main contributions of this paper are combinatorial characterizations
and negative results on the drawability of graphs on 2d and 3d restricted integer
grids and new drawing algorithms for some classes of graphs. An overview of the
results is as follows:

— We characterize those trees that can be drawn on an integer restricted 2d grid
consisting of k consecutive infinite horizontal grid lines (for a given positive
integer k) and where edges can connect either collinear vertices or vertices
that are one unit apart in their y-coordinates; we also present a linear time
recognition and drawing algorithm for this class of trees.

— We study those trees that can be drawn on an integer restricted 2d grid of
dimensions ¢ - n x k, where ¢ and k are two given integer positive constants
and n is the number of vertices of the tree. In this case we relax one of
our drawing constraints to allow adjacent vertices to be more than one unit
apart in their y-coordinates, and show that this family of drawable trees
coincides with those studied within the drawing convention of the previous
item. A consequence of our characterization is that for any given k and ¢
there always exist some trees that are not drawable on the c¢-n x k grid.

— Motivated by the results on restricted integer 2d grids we explore the capa-
bility of restricted integer 3d grids for supporting linear volume drawings of
graphs. In particular, we focus on two types of 3d integer grids to be defined
subsequently, both having linear volume, called the prism and the box. We
show that all outerplanar graphs can be drawn in linear volume on a prism.
Note that this is the first result on 3d straight-line drawings of a significant
class of planar graphs that achieves linear volume with integer coordinates.

— We further explore the class of graphs that can be drawn on a prism by
asking whether the prism is a universal integer 3d grid for all planar graphs.
We answer this question in the negative by exhibiting examples of planar
graphs that cannot be drawn on a prism. We also investigate the relationship
between prism-drawable and Hamiltonian graphs.

— We extend our study to box-drawability and present a characterization of
the box-drawable graphs. While the box would appear to be a much more
powerful grid than the prism, we prove that not all planar graphs are box-
drawable.

2 Preliminaries

We assume familiarity with basic graph drawing, and computational geometry
terminology; see for example [I9J9]. Since in the remainder of the paper we shall
study crossing-free straight-line drawings of planar graphs, from now on we shall
simply talk about ”graphs” to mean ”planar graphs” and about ”drawings” to
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mean ”crossing-free straight line drawings”. We use the terms ”vertex” and
7edge” for both the graph and its drawing.

We will draw graphs such that vertices are located at integer grid points.

The dimensions of a grid are specified as the number of different grid points
along each side of a bounding box of the grid. In 2 dimensions, a p x ¢ grid
consists of p grid points along the z-axis and of ¢ grid points along the y-axis.
In 3 dimensions, a p X ¢ X r grid consists of p grid points along the z-axis, g
grid points along the y-axis, and r grid points along the z-axis; p, ¢ and r are
referred to as the z-, y-, and z-dimension of the grid, respectively.

e.g.

We shall deal with the following grids and drawings.

A 2d 1-track (or simply a track) is a oo x 1 grid; a 1-track drawing of a graph
G is a drawing of G where the vertices are at distinct grid points of the track.
A 2d strip is a oo X 2 grid; note that a strip consists of two tracks. A strip
drawing of a graph G is a drawing of G with the vertices located at distinct
grid points of the strip and the edges either connect vertices on the same
track or connect vertices on different tracks.

Let k be a given positive integer value. A 2d k-track grid is a co x k grid
consisting of k consecutive parallel tracks. A k-track drawing of a graph G is
a drawing of G where the vertices are at distinct grid points of the k-track
and edges are only permitted between vertices that are either on the same
track or that are one unit apart in their y-coordinates.

Let k and ¢ be two given positive integer values. In a ¢-n X k-grid drawing
of a graph G the vertices are located at distinct grid points and the edges
can connect any pair of vertices on that grid.

We will also study two different types of n x 2 x 2 grids. A boxisanx2x2
grid where each side of the bounding box is also a grid line. Therefore, a box
has four tracks which lie on two parallel planes and are one grid unit apart
from each other. A prism is a n x 2 x 2 grid obtained by removing a track
from a box. Figure [l shows an example of a box of size 4 X 2 x 2 and an
example of a prism.

Fig. 1. A Box and a Prism

Note that k-track drawings differ from the so-called k-level drawings (see,
[15]) as in a k-track drawing (consecutive) vertices on the same track are

permitted to be joined by an edge and the given graph is undirected.

Let ¢ be one of the grids defined above. We say that a graph G is ¢ drawable

if G admits a ¢ drawing I" where each vertex is mapped to a distinct grid point

of ¢.
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Property 1. A graph is 1-track drawable if and only if it is a simple path

While in a k-track drawing no edge can connect vertices that are on non-
consecutive tracks, in a ¢-n X k-grid this is allowed. As the following property
shows, this difference has immediate consequences on the families of k-track
drawable and ¢ - n x k-grid drawable graphs, and the graph K, provides an
example.

Property 2. Let ¢, k be two positive integers. There exist graphs with n vertices
that are ¢ - n x k-grid drawable but are not k-track drawable.

3 Two-Dimensional Restricted Grids

In this section we characterize the family of k-track drawable trees and the family
of ¢-n x k-grid drawable trees. In contrast to Property[2, we show that these two
families of trees are actually the same. We also give linear time recognition and
drawing algorithms for these trees. The approach is as follows. We first study
strip-drawable trees, then we extend the result to the k-track grid, and finally
we show that the result also holds on a c-n x k grid.

3.1 Strip-Drawable Trees

By Property [[l we have that all paths are strip-drawable, since they are in fact
1-track drawable. A tree is defined as 2-strict if it contains a vertex of degree
greater than or equal to three. An immediate consequence of Property [0lis the
following.

Property 8. A 2-strict tree is not 1-track drawable.

An edge is defined as a core edge if its removal results in two 2-strict com-
ponents. For an edge e = (u,v), we refer to the two subtrees resulting from its
removal as T,, and T,,.

Lemma 1. Core edges are connected.

Proof. (sketch) Let e; = (u,v) and ea = (w, z) be 2 core edges and consider any
edge on the tree between them. Each such edge receives one 2-strict component
from T, and one from T, and thus must be core.

T
(= ¥y
S~

Fig. 2. Core edges are connected
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Lemma 2. A tree is strip drawable if and only if its core edges form a path.

Proof. (sketch) (=) (by contradiction) By the previous lemma, if the core edges
do not form a path, then there is a vertex v with at least 3 incident core edges
(v,a), (v,b), (v, c) — see Figure Bl If the subtrees T,, Ty, T. are drawable then by
Property [ their associated drawings I, Iy, I each require 2 tracks. There is
no location for v that permits a crossing-free connection to all 3 subdrawings.

Fig. 3. T is not strip-drawable if the core edges are not a path

(<) If the core edges form a path of at least 2 vertices, then draw them
consecutively on track ¢;. Consider an arbitrary non-core edge e = (u,v) with
u on track t;. Since e is non-core, T, must not be 2-strict and is thus 1-track

Fig. 4. Drawing a tree on a strip

drawable. Therefore v can be placed on track t; with the drawing of T, also on
the same track as in Figure

There is one degenerate case to consider. If there are no core edges (i.e. a
path of length 0), then either the tree has no vertex of degree 3 and is in fact 1-
track drawable, or there exists at most one vertex v with neighbours wy, wo, ...wy
and each T, is not 2-strict. Each of the subtrees can thus be drawn on track ¢,
and v on track t; as in Figure Bl

Fig. 5. A degenerate core path
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Lemma 3. Let T be a tree with n vertices. There exists an O(n)-time algorithm
that recognizes whether T is strip-drawable and, if so, computes a strip drawing
of T.

Proof. (sketch) Note that a tree is 2-strict iff it has more than 2 leaves; thus
counting leaves is the crucial operation. First the core edges must be established
and then the path condition on the core edges checked.

With each edge e = (u,v) we associate 2 counters: I, will be the number of
leaves in T, and [, will be the number of leaves in T,,. Let [ be the number of
leaves in the entire tree T'. Then clearly [, + 1, = [. By the previous observation,
e is a core edge iff both [, and [, > 2.

Choose an arbitrary non-leaf vertex r as a root. Each vertex v reports the
number of leaves in the subtree below it to its parent u — thus establishing [,
for the edge (u,v) and hence l,,. If v has no children then it is a leaf and reports
1. A simple recursive function can be used to implement this counting step in
linear time.

Finally, checking that the core edges form a path is also easily accomplished
in linear time as is the production of a strip drawing.

Theorem 1. A tree T with n vertices is strip drawable if and only if its core
edges form a path. Furthermore, there exists an O(n)-time algorithm that deter-
mines whether T is strip drawable and, if so computes a strip drawing of T'.

3.2 k-Track and c-n X k-Grid Drawable Trees

The results of Theorem [1] can be extended to k tracks by generalizing some of
the concepts of the previous section. A tree is k-strict if it contains a vertex
adjacent to at least three subtrees that are (k — 1)-strict. An edge is a k-core
edge if its removal results in two k-strict components. The proofs of some of the
following lemmas are similar to the case when & = 2 and are omitted in this
extended abstract.

Property 4. A k-strict tree is not (k — 1)-track drawable.
Lemma 4. k-core edges are connected.
Lemma 5. A tree is k-track drawable if and only if the k-core edges form a

path.

The following lemma shows that the families of k-track drawable trees and
¢+ n X k-grid drawable trees coincide.

Lemma 6. Let ¢,k be two positive integer. A tree T is c-n X k-grid drawable if
and only if it is k-track drawable.
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Proof. (sketch) Since a k-track drawing is a restricted form of a ¢-n x k grid
drawing where c is any given positive integer constant, it suffices to show that
if T has a ¢-n x k grid drawing, then the k-core edges form a path which can
be shown by contradiction — the proof follows the form of Lemma 2]

Theorem 2. Let T be a tree with n vertices and let ¢ and k be two positive
integer constants. The following three statements are equivalent:

1. T is ¢-n X k-grid drawable.
2. T is k-track drawable.
3. the k-core edges of T form a path.

Furthermore, there exists an O(n)-time algorithm that determines whether T
satisfies the above conditions and computes a k-track and a c-n x k-grid drawing
of T.

One consequence of the previous theorem is the existence of non-drawable
trees — ternary trees for example provide the critical strict components.

Corollary 1. The complete ternary tree of height k is not drawable on a c-n x
(k — 1) grid, for any positive integer c.

4 Three-Dimensional Drawings of Outerplanar Graphs

In this section we show that all outerplanar graphs are prism-drawable by provid-
ing a linear time algorithm that computes this drawing. This is the first known
three-dimensional straight-line drawing algorithm for the class of outerplanar
graphs that achieves O(n) volume on an integer grid.

A high level description of our drawing algorithm, called Algorithm Prism
Draw, is as follows. Let G be an outerplanar graph with a specified outerplanar
embedding, i.e. a circular ordering of the edges incident around each vertex such
that all vertices of G belong to the external face. Algorithm Prism Draw com-
putes a prism drawing of G by executing two main steps. Firstly a 2d drawing
of G is computed on a grid that consists of O(n) horizontal tracks and such that
adjacent vertices are at grid points whose y-coordinates differ by at most one by
visiting G in a breadth-first fashion. Secondly, the drawing is ”wrapped” on the
faces of a prism by folding it along the tracks.

Algorithm Prism Draw

input: An outerplanar graph G with a given outerplanar embedding.
output: A prism drawing of G.

Step 1. The 2d Drawing Phase: A 2d grid drawing I" of G where vertices are
assigned to distinct tracks is computed as follows.
— Add a dummy vertex d on the external face and an edge connecting d
to an arbitrary vertex v.
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— mark d; i:=0; currx:=0
— draw v on track ¢y by setting X(v) := currx; Y(v) :=i
— currx := currx +1
— mark v
— while there are unmarked vertices of G do
e visit the vertices on track ¢; from left to right and for each encoun-
tered vertex u do
* let w be a marked neighbour of v in G
* visit the neighbours of u in counterclockwise order starting from
w, and for each encountered vertex r such that r is unmarked do
- draw r on track t;11 by setting X(r) := currx; Y(r) := i+1
- currx := currx +1
- mark r
e i:=1+1
Step 2: The 3d Wrapping Phase: A prism drawing I is obtained by folding
I' along its tracks as follows.
— for each vertex v of I' define its coordinates X'(v), Y'(v) and Z'(v) in I
by setting:
e X'(v):=X(v)
e if Y(v) =0,1mod 3 then Y'(v) := 0, else Y'(v) :=1
e if Y(v) =0,2 mod 3 then Z’'(v) := 0, else Z'(v) :=1

End of Algorithm Prism Draw

i
7L N

Fig. 6. An outerplanar graph drawn by Step 1 of Algorithm Prism Draw.

Figure [l shows an example of the output of Step 1 of the algorithm. The cor-
rectness of Algorithm Prism Draw is established via the following observations:

— No two vertices of I" are assigned the same X-coordinate.
— Every vertex assigned to track t; 1 has a neighbour on track ¢;, for i > 0.
— No pair of edges between vertices on adjacent tracks intersect.

Theorem 3. Every outerplanar graph G with n vertices admits a crossing-free
straight line grid drawing in 8 dimensions in optimal O(n) volume. Furthermore,
there exists an algorithm that computes such a drawing of G in O(n) time and
with the vertices of G drawn on the grid points of a prism.



Straight-Line Drawings on Restricted Integer Grids 337

5 Prism-Drawable Graphs

Since by Theorem Blall outerplanar graphs can be drawn on a prism, it is natural
to investigate the class of graphs that are prism-drawable. For example, note that
the family of planar graphs consisting of a sequence of nested triangles and that
are known to require £2(n?) area in the plane, can be drawn on the prism (and
thus have O(n) volume). It is also clear that since any drawing on the prism can
be augmented by edges to form a convex polytope, by the theorem of Steinitz
only planar graphs are prism-drawable. In this section, we give a characterization
for the prism-drawable graphs and show that not all planar graphs are in this
class. Figure [ shows a graph, and its prism drawing.

Fig. 7. A prism-drawable graph G and its drawing

5.1 Characterization of Prism-Drawable Graphs

An essential prerequisite of our characterization of prism-drawable graphs, is
the study of the strip-drawable graphs since a prism effectively consists of three
strips. We define a spine in a graph as a sequence of adjacent vertices with no
chord. The characterization of strip-drawable graphs proposed in this section
notes that in a strip drawing, there must exist 2 potential spines and that edges
incident to vertices on both spines must not cross. This formulation will be
generalized in subsequent sections to larger grid sets.

Theorem 4. A graph G is strip-drawable iff it is possible to augment G with
edges to produce a graph G' which contains two pairs of adjacent vertices r,b and
r', b and there exists a spine from r to r', a spine from b to b’ with all vertices
of G on the two spines and if there exists an edge (r;,b;) then there are no edges
of the form (ri,b;) with (k <i andl>j)or (k>1iandl <j).

Proof. (sketch) Refer to Figure[8 Given a strip drawing, it is clear that edges can
be added along the 2 tracks to form the 2 spines, and to add an edge between the
leftmost pair on the two tracks and between the rightmost pair on the 2 tracks.
Since no pair of edges intersect, the non-crossing conditions are maintained.
Given an augmented graph with the required properties, a valid strip drawing
is obtained by drawing each spine on a separate track, and the edge conditions
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Fig. 8. Strip characterization

ensure there are no crossings. Vertices on each spine can be placed at consecutive
integral X-coordinates thus ensuring that the strip is at most of length n.

The characterization of prism drawable graphs generalizes Theorem Hl to 3
dimensions, namely it must be possible to augment a given graph to obtain 3
spines with 2 lids (3 cycles) and between each pair of spines the non-crossing
condition on edges must hold. We omit the proof.

Theorem 5. A graph G is prism-drawable iff it is possible to augment G with
edges to produce a graph G' which contains two three cycles r,b,g and r', V', g
and there exists a spine from r to r’, a spine from b to V', a spine from g to g’
with all vertices of G on the three spines and for each pair of spines x — z' and
y—=y (z,y=mrbg, x#y),if (xi,y;) is an edge, then there are no edges of
the form (xp,y) with (k <t andl>j) or (k>1iandl < j).

5.2 Prism-Drawability and Planarity

Define a graph G as strictly prism-drawable if it is prism-drawable and all prism
drawings of G have at least one edge on each facet of the prism. Note that Ky
is strictly prism-drawable. Our goal is to show the existence of series-parallel
graphs that are not prism-drawable, and the graph P of Figure [ is a more
useful strictly prism-drawable graph for this purpose.

Fig. 9. A strictly prism-drawable graph P

Lemma 7. The graph P in Figure[d is strictly prism-drawable.

Lemma 8. Let G be a I-connected graph that has a cut vertex whose removal
separates the graph into h strictly prism-drawable components (h > 3); then G
is not prism-drawable.
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Fig. 10. A non-prism-drawable graph

Proof. (sketch) Figure [[0 outlines the necessary construction. Consider a prism
drawing I; of G;. I; has a 3-cycle which defines a plane that intersects all three
facets of the prism, because G; is strictly prism-drawable. Thus, each I slices
the prism into h + 1 slices. Now there is no location for v that permits it to be
connected crossing-free to all I'; without crossing at least one 3-cycle.

It is not critical that v be a cut vertex in the previous proof — any vertex
connected to 3 or more strictly prism-drawable subgraphs will suffice and thus
the previous lemma generalizes; however we omit the stronger result in this
extended abstract.

Theorem 6. There exist series-parallel graphs that are not prism-drawable.

Proof. (sketch) The graph in Figure[I]] has the required properties.

Fig. 11. A series-parallel graph that is not prism-drawable

Theorem 7. Not all mazimal planar graphs are prism-drawable. Also, the fam-
ily of maximal planar prism drawable graphs is a proper subset of the family of
Hamiltonian planar graphs.

Proof. (sketch) It is not hard to show that all prism drawings of maximal planar
graphs are Hamiltonian. Since there exist maximal planar graphs which are
not Hamiltonian it immediately follows that not all maximal planar graphs are
prism-drawable.

It is also possible to use the spine characterization more directly to produce
planar graphs that are not prism-drawable — even Hamiltonian.



340 S. Felsner, G. Liotta, and S. Wismath

Fig.12. K5 and K33 drawn on a box

6 Box-Drawable Graphs

The family of box-drawable graphs is clearly a superset of the class of prism-
drawable graphs. Furthermore, there exist non-planar graphs that are box-
drawable; for example K5 and K33 are box-drawable as shown in figure
Note however that K is not box-drawable and we will show that there exist
planar graphs (and even series-parallel graphs) that are not box-drawable. We
refer to the 6 possible strips on which edges can be drawn as the facets of the
box although two such facets appear inside the bounding box.

Theorem 8. A graph G is box-drawable iff it is possible to augment G with edges
to produce a graph G' which contains two four cycles r,b,g,0 and v, b, g’,0' and
there exists a spine from r to r', a spine from b to V', a spine from g to ¢', and
a spine from o to o with all vertices of G on the four spines and for each pair
of spines x — a’ and y — ', if (x;,y;) is an edge, then there are no edges of
the form (xp,yi) with (k <i andl>j) or (k>1i andl < j).

Proof. (sketch) As in the previous characterizations for the strip and prism, a
box drawing can be augmented to complete the spines and the 6 facets must
form valid strips. In this case there appears to be an extra condition necessary
to ensure that the 2 pairs of strips on the 2 diagonally opposite spines do not
intersect, however these 2 pairs of spines can be separated to ensure no diagonal
crossings appear in the interior of the box.

Examples of graphs that are not box-drawable can be constructed using
Theorem &

Theorem 9. Not all planar graphs are box-drawable.

7 Conclusions, Extensions, and Open Problems

In this paper we showed that all outerplanar graphs can be drawn in linear
volume on a prism. We gave efficient characterizations of the trees that are
drawable in 2 dimensions on an n X k grid. Classes of planar graphs that are
not prism-drawable nor box-drawable were also provided. There remain several
interesting problems and directions for further research.

1. Can all outerplanar graphs be drawn in o(n?) area on a 2d integer grid? Does
there exist a 2d universal grid set of o(n?) area that supports all outerplanar
graphs?
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2. Characterize the graphs drawable on an n x k grid.

3. Can all planar graphs be drawn in O(n) volume on a 3d integer grid? Does
there exist a 3d universal grid set of O(n) volume that supports all planar
graphs?

4. Aspect Ratio: Our results about linear volume come at the expense of
aspect ratio. Is it possible to achieve both linear volume and o(n) aspect
ratio for outerplanar graphs? We conjecture that it is in fact not possible in
2d to simultaneously attain O(n) area and O(1) aspect ratio for some classes
of planar graphs.

Fig. 13. A graph S,, with poor aspect ratio?

Conjecture 1. There is no fixed constant k£ for which the family of graphs
Sy, (in Figure[T3)) can be drawn in a 2d integer grid of size kv/n X y/n.

Note that the graph S,, can be drawn on a n x 3 grid (and hence in O(n)
area but with linear aspect ratio).

5. Grid Drawings and Pathwidth: The notion of the pathwidth of a graph
has been well-studied in the graph theory literature — for definitions, see
for example the book by Diestel [10]. A connection between pathwidth and
layered graphs was established in [I1]. Tt is not difficult to show that for
trees there is a strong connection between pathwidth and grid drawings as
summarized in the following propositions.

Proposition 1. For a tree T, pathwidth(T)=miny (T is drawable on a nxk
grid).

Proposition 2. If G is a planar graph then pathwidth(G) < ming (G is
drawable on k-tracks).

We have not been able to determine whether there are planar graphs with
pathwidth(G) < ming (G is drawable on a k-strip). If not, a linear time
algorithm for recognizing graphs of pathwidth < k would provide us with a
linear time algorithm to recognize k-track drawable graphs. We believe that
2-strip drawable graphs can be recognized in polynomial time, however the
complexity of the recognition of k-strip drawable graphs for & > 3 remains
open.
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