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Abstract. We study intersection graphs of segments with prescribed
slopes in the plane. A sufficient and necessary condition on tuples
of slopes in order to define the same class of graphs is presented for
both the possibilities that the parallel segments can or cannot overlap.
Classes of intersection graphs of segments with four slopes are fully de-
scribed; in particular, we find an infinite set of quadruples of slopes which
define mutually distinct classes of intersection graphs of segments with
those slopes.

1 Introduction

Intersection graphs of various types of geometric objects attract attention of re-
searchers and find their applications in many areas of computer science. An in-
tersection graph of a set of geometric objects is the graph whose vertices cor-
respond to the objects of the set and two of them are joined by an edge if and
only if the corresponding objects intersect. Intersection graphs of chords in a
circle [2IBJ6], of arcs of a circle [16], of segments [BIGT3ITITH], of simple curves
in the plane EIRITO], of convex sets in the plane and others [T/TT] have been stud-
ied intensively. We focus our attention on intersection graphs of segments with
prescribed slopes in the plane (see [I3]) in this paper. Such classes of graphs have
been widely studied. A result of de Fraysseix et al. [7] says that each bipartite
planar graph can be represented as an intersection graph of segments with two
slopes such that no two segments have an interior point in common.

We study intersection graphs of segments such that the slopes of the seg-
ments of one of its realizations are among prescribed slopes a4, ..., ay (precise
definitions of the classes which interest us can be found in Section ). We study
both the classes for which parallel segments can or cannot overlap. The classes
of intersection graphs of non—overlapping segments were defined and investi-
gated by Kratochvil and Matousek in [I3]. They proved that for k& = 3 this class
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of graphs is the same (regardless the choice of the slopes) as the class of intersec-
tion graphs of segments with three distinct slopes (the slopes are not prescribed
in this case). On the other hand, they also proved in [13] that this does not
hold for £k = 4. We prove a sufficient and necessary condition on the k—tuples
of slopes a1,...,a, and (,...,0 in order to define equal classes of intersec-
tion graphs of segments with their slopes among these k—tuples (Theorem [I)) for
both the cases when the segments can and cannot overlap. We further prove that
the classes of graphs for distinct choices of slopes are either equal or, neither one
of them is a subset of the other (Theorem[2), even if one of them is a class of over-
lapping segments and the other is a class of non—overlapping segments. Classes
of intersection graphs of segments with four distinct slopes are fully described in
Theorem [ and in Corollary [l Corollary[dl answers the question presented by Jan
Kratochvil during the 1st Graph Drawing conference in Paris in 1993: “Are there
only finitely many distinct classes of intersection graphs of segments with pre-
scribed four distinct slopes?” This question can be rephrased in terms introduced
in Section [2 as follows: “Are there only finitely many mutually non-equivalent
quadruples of slopes?” Corollary [l provide us infinite number of distinct classes
of intersection graphs of segments with prescribed quadruples of slopes.

We give definitions and introduce notation used in the paper together with
the previously known results in Section[2 We study when two k—tuples of slopes
define the same class of graphs in Section Bl We present an example of a graph
which can be realized as an intersection graph of non—overlaping segments with
a given k—tuple of slopes and which cannot be realized by possibly overlapping
segments with slopes of another given k—tuple in Section 4l We combine the re-
sults of Section [3 and Section ] in Section Bl and we state our main results.

2 Definitions and Basic Properties

A graph is a simple undirected graph in the whole paper; if G is a graph, we write
V(G) for its vertex set and E(G) for its edge set. Let C be a class of sets indexed
by vertices of G. C' is an intersection realization of a graph G if ¢, Ne, # 0 if
and only if uv € E(G) where ¢, (c,) is the set of C' indexed by the vertex u
(v). A graph is an intersection graph with respect to a certain class of objects
if it can be realized by objects within this class. We study the following classes
of intersection graphs of segments which were defined in [13]:

— SEG is the class of intersection graphs of segments in the plane, i.e. those
graphs for which there exists a set of segments C such that C is an intersec-
tion realization of G (parallel segments may overlap).

— PURE-SEG is the class of intersection graphs of non—overlapping segments,
i.e. those graphs for which there exists a set of segments C' such that the par-
allel segments of C are disjoint (i.e. do not overlap) and C'is an intersection
realization of G.

— k—DIR(av, ..., ax) is the class of intersection graphs of segments with slopes
aq, ..., in the plane, i.e. those graphs for which there exists a set of seg-
ments C' with slopes among «q, ..., ax such that C' is an intersection real-
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ization of G (parallel segments may overlap). We assume w.l.o.g. throughout
the paper that 0 = a3 < ... < ap < 7.

— k — PURE-DIR(«,..., o) is the class of intersection graphs of non—over-
lapping segments with slopes aq,...,ax in the plane i.e. those graphs for
which there exists a set of segments C' with slopes among aq, ..., ax such
that the parallel segments of C' are disjoint (i.e. do not overlap) and C' is an
intersection realization of G. We also assume w.l.o.g. that 0 = a3 < ... <
ay < m in the paper.

— k —DIR = Ug,,....a,k — DIR(a1, ..., a) is the class of intersection graphs
of segments of at most k slopes.

— k — PURE-DIR = U,, ..o,k — DIR(av1, ..., a) is the class of intersection
graphs of non—overlapping segments of at most k slopes.

Note that SEG = U2 ; k—DIR and PURE-SEG = U2, k—PURE-DIR. It is also
clear that k¥ — PURE-DIR(«,...,a;) C k — DIR(ay,...,qar) for an arbitrary
choice of aq, ..., and k — PURE-DIR C k — DIR (both inclusions are strict).

We use linear transformations of the plane in several proofs in this paper.
We describe the transformations by 2 x 2—matrices of real numbers. If A is such
a matrix and if [x,y] is a point in the plane with the coordinates equal to x and
y, then the transformation described by A maps the point [z,y] to the point
Alz, y] with its coordinates equal to a1 + a12y and ag1x + azzy.

We say that two k—tuples of slopes aq,...,a; and f(i,...,0 are equiva-
lent if and only if ¥ — PURE-DIR(«y,...,a;) = k — PURE-DIR(f4, ..., Ok)-
Later (consult Theorem [I), we show that the latter condition is equivalent to
k — DIR(a1,...,ar) = k — DIR(f1, ..., Bk). We say that the k—tuple of slopes
Qi, ..., can be transformed to the k—tuple of slopes 31, ..., B if there exists
an affine transformation of the plane which transforms one of them to the other,
i.e. the following holds: There exists a regular square matrix A of size two such
that {[tcosa;, tsina;],t € R,1 <i <k} = {Aftcosf;, tsinf;],t € R,1 <i <k}
Note that if a1, ..., ar can be transformed to (1, ..., Ok, then B1,..., B can be
transformed to ai, ..., ax (consider the inverse matrix).

The following relations between distinct classes of intersection graphs of non—
overlapping segments were proved by Kratochvil and Matousek in [13]:

k—PURE-DIR C (k+1) — PURE-DIR for all k£ > 1 (the inclusion is strict).
2 — PURE-DIR = 2 — PURE-DIR(a, a3) for any 0 < a1 < g < 7.
3—PURE-DIR = 3—PURE-DIR(«1, asg, a3) for any 0 < ay < ag < g < 7.
— 4 — PURE-DIR # 4 — PURE-DIR(0, 7/4, 7/2, 37 /4).

The second and the third result can be restated in our terminology as follows:
Any two pairs (triples) of slopes are equivalent.

A finite collection of lines in the plane is called a line arrangement; we sup-
pose that no three lines of an arrangement share a common point in the whole
paper. Note that two non—homeomorphic line arrangements can be intersection
realizations of the same graph. The following lemma (Order Forcing Lemma),
originnaly proved in [I3], turned to be a really powerful tool:
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Lemma 1 (Order Forcing Lemma [12|13]). Let L be an arrangement of n
lines in the plane and let G be the intersection graph of the lines of L. Then
there exists a graph G’ with the following properties:

— G is an induced subgraph of G',

— G’ € SEG,

— if G € k — PURE-DIR(«y,...,a), then G' € k — PURE-DIR(ay, ..., ax)
(for k > 2),

— for each realization of G' by segments in the plane (with possible overlapping
of parallel segments), there exists a region §2 in the realization of G' and a
homeomorphism ¢ from the plane with the arrangement L to {2 such that
p(ly) = 7y where 1, is the line of L corresponding to the vertex u of G and
T, 18 the segment corresponding to the vertex u of G'.

We have presented this lemma here in a different (but of course equivalent) form
to the one presented in [I3]. This form seems to be more useful for our purposes.
This lemma assures that there exists a graph G’ for each line arrangement L,
such that each realization of G’ by segments in the plane contains a homeomor-
phic copy of the line arrangement L. Note that even if the realization of G’
may contain overlapping parallel segments, the homeomorphic copy of the line
arrangement, L consists of non—overlapping segments.

3 Equivalence Results

First, we state an easy lemma stating a sufficient condition for k—tuples of slopes
to be equivalent:

Lemma 2. If two k—tuples of slopes aq,...,ar and B1,...,0r can be trans-
formed one to the other, then they are equivalent.

Proof. Let G € k—PURE-DIR(ay,...,ax) and let C, be its realization by seg-
ments with slopes among aq,...,a. Let A be the matrix described in the def-
inition of transformation between k-tuples of slopes. Let Cg be the set con-
taining the following segments: If p is a segment of C,, then the segment
Ap = {Alz,y],[z,y] € p} belongs to the set Cs. Note that Ap and Agq in-
tersect (overlap) if and only if p and ¢ intersect (overlap) because A is a
regular matrix. Due to the choice of A, the slopes of segments of Cpz are
among (1,...,0 and thus G € k — PURE-DIR(f4, ..., Bk). This implies that
k—PURE-DIR(ay,...,a;) € k—PURE-DIR(f4, . .., Ok). The opposite inclusion
can be proved in the same way.

The following lemma provides us some canonical choice of slopes:

Lemma 3. Let ay,...,ar be a k—tuple of slopes (where k > 3). There ex-
ists /2 < By < ... < Br < 7 such that k — PURE-DIR(ay,...,ar) =
k — PURE-DIR(0,7w/4,7/2, B4, ..., Bk). In particular if k is eqaul to 3, then
3 — PURE-DIR(«1, ag, a3) = 3 — PURE-DIR(0, 7/4, 7/2) for all ay,as, as.



On Intersection Graphs of Segments with Prescribed Slopes 265

Proof. We can assume w.l.o.g. that 0 = a1 < ... < aj < 7 as stated in Section
2l Consider the following matrix A:

1 —cotg as
A= (0 sin(az—az) )
sin aip sin ag

The matrix A is regular, since its determinant is non—zero. Note that the follow-
ing holds:
Alcosay,sinaq] = A[1,0] = [1,0]

) sin(ag — ) sin(as — o)
Alcos az, sin as] = { sinag  sinag

Alcos aig, sin ag] = [0, M}

sin ao

Thus the matrix A transforms the slope a; (a2, ag respectively) to 0 (7/4,
/2 respectively). Let §; (where 4 < i < k) be the slope which the slope «;
is transformed to. It is enough to apply Lemma ] to the k—tuples aq, ..., ag
and 0,7/4,7/2, B4, ..., Pk to prove the statement of the lemma. The matrices
A and A~! witness that these two k—tuples of slopes can be transformed one to
the other.

We haven’t used in the proofs of Lemma P] and Lemma [J] that the parallel
segments do not overlap; thus the corresponding lemmas for the classes of over-
lapping segments also hold:

Lemma 4. If two k—tuples of slopes aq,...,ap and B1,...,0; can be trans-
formed one to the other, then k — DIR(ay,...,ar) =k — DIR(B1, ..., 0%k)-

Lemma 5. Let ay,...,ar be any given k-tuple of slopes (for k > 3). Then
there exists m/2 < By < ... < By < m such that k — DIR(ay,...,ar) = k —
DIR(0,7/4,7/2, B4, ..., 0k). In particular if k = 3, then 3 — DIR(a1, a2, a3) =
3 — DIR(0,7/4,7/2) for all oy, o, aig.

4 Non-equivalence Results

Lemma 6. Let 7/2 < ay < ... < ap < 7 and € > 0 be given. Then, there
exists a graph G with three distinguished vertices U, V' and W with the following
properties:

— G € k—PURE-DIR(0,7/4,7/2, 4, - . ., k),

- G¢ (k—1)—DIR,

— the segments corresponding to U, V and W have different slopes in any
realization of G by (not neceserally non—overlapping) segments with k slopes
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— let C be any realization of G by (possibly overlapping) segments with k slopes
such that the segment corresponding to U (V, W, respectively) has the slope
0 (m/4, w/2, respectively). Let 0 < B4 < ... < Bp < 7 be the remaining
slopes of the segments of C. It has to hold that w/2 < B4 and |B; — a;| < €
forda <i<k.

Proof. We assume w.l.o.g. that e is small enough in order that ay — e > /2 and
ap +e <.

We first construct line arrangements Ly, ..., Ly and L}, ..., L; and we use
later them to construct the desired G. Let i, 4 < i < k, be fixed in the rest of this
paragraph. Let us choose integers p and ¢ such that tg (a; — e — 7/2) < p/q <
tg (o; — m/2) and let us choose integers p’ and ¢’ such that tg (a; — 7/2) <
p'/qd < tg (o + € —m/2). Let L; and L, be the line arrangements drawn in
Figure [I} the slope of the bold line is «;. Let us suppose that we have a line
arrangement homeomorphic to L;. If the slopes of horizontal (diagonal, vertical
respectively) lines are precisely 0 (7/4, m/2 respectively), then we claim that
the slope of the bold line is at least 7/2 + arctg (p/q): Let x5 be the widths of
the cells (1 < s < p) and let y; be the heights of the cells (1 < ¢ < ¢) of any
realization of the line arrangement L;. The positions of diagonal lines in the cells

2.7

assure that x5 > y; for all s and t. These inequalities imply that 3 ys > % and
+ t

thus the slope of the bold line has to be at least m/2 + arctg (p/q). Similarly,
the slope of the bold line in a line arrangement homeomorphic to L) has to be
at most w/2 + arctg p'/q’.

We construct a line arrangement L by placing all the arrangements L; and L
for 4 < i < k to the plane (see Figure[2); we preserve the horizontal, diagonal and
vertical slopes of the lines of all the arrangements and we place the arrangements
with the whole lines, i.e. the non—parallel lines of distinct arrangements intersect
each other. We do not care at all how the lines of distinct arrangements intersect.
The lines of L intersect if and only if they are not parallel. The line arrangement
L can be clearly realized by lines with slopes 0,7/4,7/2, ay,...,a. Since L
contains k lines with distinct slopes such that any pair of them intersects, no
arrangement of lines homeomorphic to L can be realized by lines with fewer than
k slopes; moreover, the lines in any realization with exactly k slopes which is
homeomorphic to L are parallel if and only if they are parallel in L. We choose
one of the vertices of the intersection graph corresponding to a horizontal line
to be U, one of those corresponding to diagonal lines to be V' and one of those
corresponding to vertical lines to be W. If the line corresponding to U in a
realization is horizontal, i.e. its slope is 0, then the slopes of all the horizontal
lines are 0, since all the parallel lines must have the same slope in any realization.
The same holds for diagonal and vertical lines. Thus if a homeomorphic copy
of L consists of lines of at most k slopes and the lines corresponding to U (V,
W respectively) are horizontal (diagonal, vertical respectively), then the slopes
of the lines have to differ from 0,7/4,7/2, ay, ..., @i by at most €; the bold lines
of L; and L, have to be parallel as mentioned above in this paragraph.
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Fig. 1. The line arrangements L; and L. The slope of the bold line is «;.

Let G be the graph for the line arrangement L given by Lemma [[l The
graph G belongs to k —PURE-DIR(0, 7/4,7/2, ay, . . . , @k ). Any realization of G
by lines of at most k slopes (with or without possible overlapping of parallel
segments) contains a homeomorphic copy of the line arrangement L including
the distinguished lines/vertices U, V and W.. Thus the graph G is the desired
graph from the statement of the lemma.
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Fig. 2. Placing the line arrangements L1,...,Lx and Lj,..., L} to the plane. The
original arrangements are marked by bold lines.

Lemma 7. Let aq,...,a; and B1,...,0r be any two k—tuples of slopes which
cannot be transformed one to the other. Then, there exists a graph G such that
G € k — PURE-DIR(«y,...,ar) \ k — DIR(G4, ..., 0k).

Proof. Let us assume w.l.o.g. that a; = 0, ap = 7/4 and a3 = 7/2 due to Lemma
Bl Choose € > 0 small enough in order that there exists 7 such that |8 — a;| > €
for any k-tuple 0,7/4,7/2,0},...,0; to which the k—tuple fi,..., B can be
transformed. Note that there are at most 2k such k—tuples (and thus such e
exists): There are k ways of choosing a slope which we want to be horizontal and
if the horizontal slope is chosen, there two ways of choosing a slope which we
want to be the “r/4” one (only the slopes which neighbour with the “horizontal”
one can be chosen).

Let us consider the graph G from Lemmalf] for ay,...,a; and € and let U, V
and W be its distinguished vertices. Let us suppose that G has an intersection
realization by (possibly overlapping) segments with the slopes /1, . .., Bk. Let 3;,
(Biy » Biw respectively) be the slope of the segment corresponding to the vertex U
(V, W respectively). The indices iy, iy and iy of the slopes are mutually distinct
due to Lemma [61 Apply the transformation of the plane transforming 3;, to 0,
Biy tow/4 and B;,, to w/2 — see the proof of Lemmal[Z for details of the construc-
tion of this transformation. Let 0,7/4,7/2, 34, ..., ;. be the slopes 01, ..., Bk
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after performing this transformation. But the properties of any realization of G
by segments which are stated in Lemma [6] contradict our choice of € unless
Qq,...,q can be transformed to (1, ..., O;. Thus such realization of G by seg-
ments cannot exist and G € k — PURE-DIR(«, ..., ax) \ k — DIR(G4, ..., Ok).

5 Main Results

We present our main results in this section. First, we state a necessary and
sufficient condition for two k—tuples to be equivalent:

Theorem 1. The following statements for two k—tuples of slopes a, . .., and
B1,..., 0k are equivalent:
— The k—tuples aq,...,ax and By, ..., 0k can be transfomred one to the other.
— The k-tuples a1,...,a and (1,...,0r are equivalent, i.e. the following

holds: k — PURE-DIR(au, ..., o) = k — PURE-DIR(A1, . .., Br).
— k—DIR(ov,...,a;) =k —DIR(A,. .., Bk).

Proof. If they can be transformed one to the other, they are equivalent due
to Lemma [2 the corresponding claim for overlapping version of the classes is
due to Lemma M If they cannot be transformed, they are non—equivalent for
both the versions of the classes due to Lemma [l and due to simple fact that
k — PURE-DIR(aq,...,ar) C k — DIR(aq,. .., ag).

We describe the relation between classes of intersection graphs of segments of pre-
scribed slopes in the next theorem:

Theorem 2. Let aq,...,ax and By, ..., 0k be two k—tuples. Then the following
holds:

— If the k—tuples of slopes a,...,ar and By,...,Bx can be transformed one
to the other, then k — PURE-DIR(«y,...,ar) = k — PURE-DIR(f4, - .., Ok)
and k — DIR(a1, - ..,ax) = k — DIR(B4, ..., Bk).

— If the k—tuples of slopes a1, ..., and B, ..., Bx cannot be transformed one
to the other, then k — PURE-DIR(ay,...,a;) C k— DIR(aq,...,ak) € k —
DIR(G1, ..., 3k), k—PURE-DIR(ay,...,a;) € k — PURE-DIR(B4, ..., Ok).

Proof. If the k—tuples of slopes can be transformed one to the other, they are
equivalent and thus the corresponding classes of intersection graph of segments
are equal as stated in Theorem [l If they cannot be transformed one to the other,
Lemma [ provides a graph which witness the second statement.

Theorem 3. Let 0 = a1 < as < ag < ag < 7 be any quadruple of slopes. There
exists exactly one 3, w/2 < 3 < 3w /4 such that the quadruples aq, as, ag, oy and
0,7/4,7/2, 8 are equivalent.
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Proof. Lemma [J assures existence of 7/2 < (' < 7 such that the quadruples
aq, 0, a3, a4 and 0,7/4, /2, 3" are equivalent. In case that 8 > 37 /4, consider

the following matrix:
-1 0
A= ( 0 cotgﬁ’)

The transformation described by A transforms the quadruple 0,7/4,7/2,8" to
0,7/4,7/2,37/2— (. Thus choosing 3 = 37 /2— 3" assures the existence of 7/2 <
B8 < 3m/4.

It remains to prove that such § is unique. There are exactly eight matrices
(up to multiplication by a constant) which transform the quadruple 0, 7 /4, 7/2, 3
to a quadruple 0,7/4,7/2,v where 7/2 < v < 7:

10 1 —cotgp 0 1 —cotg 8 -1 1
01 cotg B —cotg tg 5—1 0 —1 cotg

01 cotg B —cotg tg 6—1 0 —1 cotg B
10 1 —cotg 8 0 1 —cotg 8 -1 1
It is a matter of routine calculation to check that the only quadruples which can

be obtained through these transformations are actually only 0,7/4,7/2, 5 and
0,7/4,7/2,37/2 — /3. This proves the unicity of 3.

The immediate previously promised corollary is the following:

Corollary 1. The classes of graphs 4 — PURE-DIR(0,7/4,7/2, ) for m/2 <
a < 3w /4 are mutually distinct and any class 4 — PURE-DIR(1, B2, B3, B4) is
equal to exactly one of them.

Note that statements of Corollary[Il can be also formulated for 4 — DIR class
of graphs (the one with overlapping parallel segments) in the same way.

Acknowledgement. Attention of the authors to intersection graphs of geo-
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