
One Sided Crossing Minimization Is NP-Hard
for Sparse Graphs�
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Abstract. The one sided crossing minimization problem consists of
placing the vertices of one part of a bipartite graph on prescribed posi-
tions on a straight line and finding the positions of the vertices of the
second part on a parallel line and drawing the edges as straight lines such
that the number of pairwise edge crossings is minimized. This problem
represents the basic building block used for drawing hierarchical graphs
aesthetically or producing row-based VLSI layouts. Eades and Wormald
[3] showed that the problem is NP-hard for dense graphs. Typical graphs
of practical interest are usually very sparse. We prove that the problem
remains NP-hard even for forests of 4-stars.

1 Introduction

The one sided crossing minimization problem consists of placing of the vertices
of one part of a bipartite graph on prescribed positions on a straight line and
finding the positions of the vertices of the second part on a parallel line and
drawing the edges as straight lines such that the number of pairwise edge cross-
ings is minimized. This task represents the basic building block used for drawing
hierarchical graphs [2,9] or producing row-based VLSI layouts [11,13]. Hierar-
chical graphs are abstractions of the various information schemes, flowcharts,
PERT diagrams and relationship-structures from economic and social science. It
is known that the aesthetics and readability of such diagrams heavily depends
on the number of line crossings. The main aim is to produce such drawings auto-
matically which led to the design of tens of various heuristics and minimization
procedures. We only point on a very exhaustive recent comparative survey of
the best heuristics [1].
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From theoretical point of view the problem is NP-hard [3]. However the
graphs produced by the NP-hardness proof are very dense. More precisely, the
graphs contain n1n2/3 edges where n1 and n2 are the numbers of vertices on
the first and the second line, respectively. The median heuristic of Eades and
Wormald [3] approximates the crossing number in polynomial time within a
factor 3. If the maximum degree of the vertices on the free side is 2,3 or 4,
then there exists a 2-approximation algorithms [16]. DiBattista et al. [2] proved
that any algorithm gives a good approximation for dense graphs but the problem
remains the class of sparse graphs. Note that the typical instances of the problem
in practice are very sparse graphs [1]. The companion problem - the two sided
crossing minimization, when there are no prescribed positions of vertices on
either sides is usually solved by iterating the one sided crossing minimization
problem. The problem is NP-hard too [5], approximable for regular graphs by
a polylogarithmic factor and solvable in polynomial time for trees [12]. This
give rise to a natural question, what is the complexity of the one sided crossing
minimization problem for sparse graphs or trees. In this paper we prove that
the problem remains NP-hard even for forests of 4-stars. The result is in some
sense expectable as the related problem, the one sided maximal planar subgraph
problem, was proved to be NP–hard for forests of 2-stars [4].

The paper is organized as follows. In Section 2 we give basic notions. In
Section 3 we solve the problem for graphs having degrees at most 2 on the free
side. Our main result is presented in Section 4 and Section 5 contains some final
remarks.

2 Notations

Given a digraph G = (V,A), and given two its spanning subgraphs H1 = (V,A1),
H2 = (V,A2, the direct sum H1 ∪H2 is defined to be the digraph (V,A1 ∪A2).
Given a digraph G the (multi)digraph nG is obtained from G by replacing each
arc by n parallel arcs.

Given a directed graph G, the Feedback Arc Set problem (FAS) consists of
finding the minimum number of arcs of A whose removal makes G acyclic. The
decision version of the FAS problem is NP–complete [6]. Let fas(G) denote the
size of the minimum fedback arc set for G.

A k–star Sk is a tree with (k + 1) vertices and k leaves. The center of the
star is the only vertex of Sk which is not a leaf.

A directed star is a digraph whose underlying graph is a star and in which
all arcs are pointing towards the center or all arcs are pointing away from the
center. We will call them centripetal stars and centrifugal stars respectively.

We will refer to the One Sided Crossing Minimization problem for graphs of
maximal degree k on the free side as the OSCM-k problem.

We will focus on bipartite graphs being forests of stars Sk in which leaves
are on prescribed positions on the bottom line and centers must be placed on
the top line in such a way that the number of crossings is minimum.
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The vertices on the bottom (resp. top) line will be denoted by v1, v2, ..., vm

(resp. w1, w2, ..., wn). The order of v1, v2, ..., vm will be defined by the indexes.
For any two top vertices wi, wj , cr(i, j) stands for the number of crossings

produced by edges incident to wi and wj when wi is placed to the right of wj .
In the example of Figure 1 we get cr(2, 3) = 6.

w1

v1 v2 v5 v10

w2

v3 v4 v8 v9

w3

v5 v6 v7 v11

w4

v6 v7 v10 v11

Fig. 1. Example of an input for the OSCM-4

3 Complexity of OSCM-2

In this section we prove that a barycenter algorithm solves the OSCM-2 problem
in linear time. Besides its independent interest, the result will be used in proving
our main result.

First we give a lower bound on the number of crossings for the OSCM-2
problem. Let G be the input graph. Let wi (resp. wj) top vertices with neigbours
va, vb with a < b (resp. vc, vd with c < d). Without loss of generality we assume
a � c. The following table give the lower bound on the number of crossings
cr(i, j) and cr(j, i).

Situation min(cr(i, j), cr(j, i)) Example in Figure2
b � c 0 i = 6, j = 8

c < b � d 1 i = 1, j = 2
d < b ∧ a = c 1 i = 1, j = 3
d < b ∧ a < c 2 i = 6, j = 2

w1

v1 v5

w2

v3 v7

w3

v1 v3

w4

v7 v8

w5

v8v2

w6

v2 v10

w7

v4 v9

w8

v10 v11

Fig. 2. Example of an input for the OSCM-2
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These lower bounds are achieved by placing a node wi with neighbours va

and vb on a unique place on the top line in the position (a + b)/2 + i/n (see
for example Figure 3). From this discussion the following corollary is an easy
exercise.

Corollary 1. The OSCM-2 problem can be solved in linear time.

w1

v1 v5

w2

v3 v7

w3

v1 v3

w4

v7 v8

w5

v2 v8

w6

v2 v10

w7

v4 v9

w8

v10 v11

Fig. 3. An optimal solution for the above example

4 Complexity of OSCM-4

In this section we prove that the decision version of the OSCM-4 problem is
NP-complete even for forests of 4-stars by a reduction from the decision version
of the FAS problem, which immediately implies the NP-hardness of the OSCM-4
problem.

4.1 Restrictions Graph

Definition 1. Given an instance for the OSCM-k problem with n k–stars labeled
1, . . . , n, the restrictions graph is defined as the (multi)digraph RP = (V,A) with
vertex set V = {1, . . . , n} corresponding to the n stars of the instance and in
which there are cr(i, j)− cr(j, i) arcs from i to j, i, j ∈ V iff cr(i, j) > cr(j, i).

Proposition 1. Solving the OSCM-k problem for an instance P is equivalent
to solving the FAS problem for its restrictions graph RP .

Proof. In any ordering of the centers of the stars there will always be a certain
number of unavoidable crossings. Moreover, the number of unavoidable crossings
will be ∑

1�i<j�n

min{cr(i, j), cr(j, i)}.

Notice that if there exists a labeling for the vertices of RP with numbers
1, . . . , n such that all arcs (i, j) satisfy that i < j (i.e. RP is a partial order),
then the placing of the centers of the stars in the order given by such a labeling
will make the number of crossings to be minimum.
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If such a labeling is not possible, then minimizing the number of crossings
is equivalent to find a labeling of the vertices of RP with a minimal number of
arcs (i, j) with i > j. This is also the same as removing the minimum number
of arcs of RP such that RP becomes a acyclic.

Since a digraph is compatible with a total order if and only if it is acyclic
[14], removing the minimum number of arcs such that RP becomes acyclic is
equivalent to minimizing the number of crossings. Finally observe that if GP is
the graph corresponding to the instance P

cr(GP ) =
∑

1�i<j�n

min{cr(i, j), cr(j, i)}+ fas(RP ).

��
Let us recall that proving the complexity for OSCM-2 could have be done

easily by proving that the restrictions graph is always a partial order (i.e. is
always acyclic). We prefered to show a constructive method to make further
sections clearer.

Remark 1. Note that the connection between the FAS and the one sided cross-
ing minimization was first observed by Sugiyama et al. [15] by their penalty
minimization heuristic. It was also essentially used by Eades and Wormald [3] in
their NP-hardness proof for dense graphs. Demetrescu and Finocchi [1] utilized
the connection in designing a practical heuristic for the problem.

In the rest of the paper we will show that given any simple digraph G there
exists a polynomial time algorithm for finding an instance of the OSCM-4 prob-
lem with restrictions graph RP such that FAS for RP is equivalent to FAS for
G.

4.2 Descent Digraphs

Definition 2. Given a permutation π on the set 1, 2, . . . , n, the descent digraph
Dπ(n) is defined as the directed graph with vertices being integers from 1 to n,
and in which there is an arc from vertex i to vertex j whenever i > j and
π(i) < π(j).

The name of descent digraphs comes from the concepts of descents in the
context of permutations (see [14] for definition and related results on descents).

Recall the following Lemma:

Lemma 1. Any forest of directed stars is a descent digraph.

Proof. It is easy to see that the digraph Dπ(n) with π being the cyclic permu-
tation (12 . . . n) is a centrifugal star with center n and that Dρ(n) with ρ being
the cyclic permutation (n(n− 1) . . . 21) is a centripetal star with center 1.

Any forest of directed stars can be represented by a product of disjoint cycles
of consecutive numbers, and hence it is a descent digraph. ��

Notice that given a forest of stars the permutation for the descent digraph is
not unique.
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4.3 k–Recognizability

Definition 3. A digraph G is said to be k–recognizable if there is an instance
for the OSCM-k problem with restrictions graph being isomorphic to G that can
be found in polynomial time.

Proposition 2. Let Dπ be a descent digraph. Then 2Dπ is 2-recognizable.

Proof. First of all let us recall that constructing an instance for the OSCM-2
problem with n stars S2 consists of determining the placement for the 2n leaves
on a line.

Let us label the two leaves of each S2 with labels 1, 2 and let us name stars
with numbers 1, . . . , n. That is, each of the 2n leaves will be denoted by a pair
(i, j), i ∈ {1, 2}, j ∈ {1, . . . , n}.

If π is a permutation on n symbols, then placing the leaves in the order

v1,π−1(n) v1,π−1(n−1) . . . v1,π−1(1) v2,1 v2,2 . . . v2,n

produces an instance for the OSCM-2 problem with restrictions graph being
2Dπ(n). In fact, suppose that there is an arc from the vertex i to the vertex j
in the descent digraph Dπ. It means that i > j and π(i) < π(j). The inequality
π−1(π(i)) > π−1(π(j)) implies that the left (right) leaf of the star j is placed left
from the left (right) leaf of the star i. It means that c(i, j) = 3 and c(j, i) = 1
and there are 2 arcs from i to j. (See Figure 4.) ��

w1

v1,1 v2,1

w2

v1,2 v2,2

w3

v1,3 v2,3

w4

v1,4 v2,4

w5

v1,5 v2,5

Fig. 4. An instance for the OSCM–2 with the restrictions graph being a centripetal
star with 2 parallel arcs isomorphic to 2Dπ with π = (54321).

The following lemma is evident

Lemma 2. Let G be a digraph obtained from a digraph G by reversing all arc
orientations in G. Then G is k-recognizable iff Ḡ is k-recognizable.

Proposition 3. Let H0 and H1 be spanning subgraphs of a digraph G. If H0
and H1 are 2–recognizable, then H0 ∪H1 is 4–recognizable.
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Proof. Place the leaves of the stars corresponding to H0 and append at the
rightmost part the leaves of the stars corresponding to H1. Identify centers of
stars corresponding to the same vertices in H0 and H1. The reader can trivially
notice that the result is an instance for the OSCM–4 with restrictions graph
being (H0 ∪H1), which by Lemma 2 implies that H0 ∪ H1 is 4–recognizable.
Notice that the instance can be generated in linear time. ��

4.4 Transformation from FAS

Definition 4. Given a digraph G = (V,A), the stretch of G, G′ = (V ′, A′), is
defined as the digraph with vertex set V ′ = V ∪A and arc set A′ = {(x, (x, y)) |
(x, y) ∈ A} ∪ {((x, y), y) | (x, y) ∈ A}.

In other words, the stretch of G is defined as the digraph obtained from G
by replacing arcs in G by dipaths of length 2.

Proposition 4. FAS for G is equivalent to FAS for its stretch G′.

Proof. Let G = (V,A) be a graph and G′ = (V ′, A′) be it’s stretch.
Assume that G = (V, F ) with F ⊂ A is acyclic, i.e G becomes acyclic by

deleting |A \ F | arcs. Then H ′ = (V ′, A′ \ {((x, y), (x, y) | (x, y) ∈ A \ F}) is
acyclic.

Assume now that H ′′ = (V ′, F ′) with F ′ ⊂ A′ is acyclic. Then G′ = (V,A \
{(x, y) | (x, (x, y)) ∈ F ′ ⊂ A′ ∨ ((x, y), y) ∈ F ′ ⊂ A′}) is acyclic.

In both cases the number of deleted arc stays the same, proving that FAS
for G is equivalent to FAS for its stretch G′. ��

Proposition 5. Given any digraph G its stretch G′ is the direct sum of two
descent digraphs and both digraphs can be identified in polynomial time.

Proof. Let us consider each vertex v ∈ V ) and assign label 1 to the arcs point-
ing away from it and label 0 to the arcs pointing towards to it. Clearly after
completing the labeling for all vertices in V all arcs in A′ will have a label (and
only one). The subgraph induced by arcs of label 1 is a spanning subgraph of
G′ consisting of a forest of directed stars and so is the subgraph induced by arcs
with label 0. Since forests of stars are descent digraphs, the result is proved.
Notice that the digraphs can be identified in linear time. ��

Finally consider the following trivial result:

Lemma 3. FAS for a digraph G is equivalent to FAS for nG.

Putting together all these results, we have

Theorem 1. The decision version of the OSCM-4 problem is NP–complete.
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Proof. Given a generic digraph G, construct the stretch G′ of G, and descent
digraphs H0, H1 such that G’= H0 ∪ H1, (Lemma 1 and Proposition 5). By
Proposition 2, 2H0 and 2H1 are both 2-recognizable, and by Proposition 3, 2G′ is
4-recognizable. Determine an instance I of the OSCM-4 problem with restriction
graph isomorphic to 2G′. By Proposition 1 and Lemma 3, solving I is equivalent
to FAS for G′ and for G. Finally, let GI = (V0, V1, E), V1 = {1, 2, 3, ..., n} be the
graph corresponding to the instance I then

cr(GI) =
∑

1�i<j�n

min{cr(i, j), cr(j, i)}+ 2fas(G).

��

5 Conclusions and Further Work

We proved that the one sided crossing minimization problem is NP-hard even
for forests of stars of degree 4. So far it was known that the problem is NP-hard
for dense graphs. Our result motivates for looking for good approximation algo-
rithms for sparse graphs, which are typical practical instances. As we shown in
Section 3, the OSCM-2 problem can be solved in linear time using the barycenter
algorithm. It remains to resolve the problem OSCM-3. We conjecture that it is
NP-hard.
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