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Abstract. In this paper, we show that the standard point of view of
the neuroimaging community about fMRI time series alignment should
be revisited to overcome the bias induced by activations. We propose to
perform a two-stage alignment. The first motion estimation is used to
infer a mask of activated areas. The second motion estimation discards
these areas during the similarity measure estimations. Simulated and
actual time series are used to show that this dedicated approach is more
efficient than standard robust similarity measures.

1 Introduction

In functional MRI (fMRI) activation studies, motion correction is a required
pre-processing step, in order to accurately compensate for subject motion dur-
ing data acquisition. However, it is known that standard registration is often
not sufficient to correct for all signal changes due to subject motion. Serious
confounds may appear due to the “spin history” effect, or due to interaction
between motion and susceptibility artifacts. We have also recently shown that
the presence of activated regions may introduce a systematic bias in the motion
correction parameters when using L2-metrics based similarity measures, even
in the absence of subject motion [1]. According to its amplitude, this motion-
independent artifact, which stems from the fact that activated areas behave like
biasing outliers, may create spurious activations after the time series alignment,
especially along high contrast edges.

A second study has shown that robust similarity measures could highly re-
duce the amplitude of this task correlated motion correction artifact [2]. While
this amplitude reduction was sufficient to get rid of spurious activations in the
studied cases, the estimated motion parameters were still correlated with the
cognitive task timing. This bias prevents the use of the motion parameters as
regressor of non-interest during the following activation inference. Moreover this
observation means that the problem is not fully overcome by the robust similarity
measures. This weakness is due to the fact that the signal variations occurring
in activated areas are often at the noise level. Hence, the simple mechanisms
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underlying robust similarity measures are not sufficient to discard the influence
of the whole activated area.

In this paper, we propose to go one step further to devise an fMRI align-
ment method completely robust to the presence of activations. This approach is
maybe the more straightforward at first glance: discard the voxels included in
the activated area detected by a first rapid statistical inference. This approach is
more cumbersome than the standard ones because it requires a first realignment
and some knowledge about the experiment timing. The computation time re-
mains however reasonable because the first realignment/inference sequence can
be performed with very simple methods. The resulting activated area used to
modify the similarity measure, indeed, does not need to be perfect.

This approach is illustrated first using a motion-free simulated time series in-
cluding artificial activation-like signal changes based on a periodical paradigm.
The improvement is finally highlighted with three actual time series obtained
from a 3T magnet. All the experiments are performed using five different stan-
dard similarity measures.

2 Materials and Methods

2.1 fMRI Acquisitions

The three fMRI time series used in the paper were acquired on a Brucker scanner
operating at 3T. Volume geometry consists of 18 contiguous slices (slice array
64 × 80), with in-plane resolution of 3.75 mm and slice thickness of 5.00 mm.
The experimental paradigm was based on an on/off design consisting of two
alternating visual stimuli, with period of 18 frames (2 s/frame). The time series
include 10 periods plus 12 initial frames used to reach the scanner steady state.

2.2 Similarity Measures

In this work, five very usual similarity measures were chosen to evaluate the ben-
efit introduced by the proposed approach. Each similarity measure belongs to a
different family of the taxonomy described by Roche [3], namely: intensity con-
servation (difference of squares denoted by LS [4]), intensity conservation with
outliers (Geman-McClure M-estimator denoted by GM) [5]; affine relationship
(ratio of image uniformity denoted by RIU) [6]; functional relationship (correla-
tion ratio denoted by CR) [7]; and statistical relationship (mutual information
denoted by MI) [8,9]. All the registration methods share the same computational
framework (implemented in C language), which includes a cubic spline based in-
terpolation method [10,11] and a Powell like optimization method. For GM, the
cut-off value, C, was set to 0.5% of mean brain value. The smoothing Gaussian
kernels applied to the data before registration to increase robustness have 8 mm
width for LS, and 4 mm width for GM and RIU. No smoothing was applied for
CR and MI, according to the experiments described in [2].
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2.3 Discarding Activated Regions

The proposed new approach is based on the identification of a mask supposed
to include all activated areas. All the voxels of this mask are discarded from
the similarity measure’s evaluation during the final motion estimation. It should
be noted that this mask may include some spurious activations stemming from
a biased initial motion correction, which is not a problem. Whatever the time
series, the sketch of the performed experiment is the following:

1. Apply the standard motion estimation procedures using each of the 5 stan-
dard similarity measures. These estimations are the references to which will
be compared the results of the new approach;

2. Use the initial motion estimation given by LS to resample the time series
(here we have chosen to perform only one initial resampling according to the
estimation given by the fastest but also the less robust registration method;
hence the same mask was used in each case; of course, in actual applications,
the same robust registration method could be used for the two stages);

3. Perform statistical inference from the resampled time series, in order to
obtain a coarse estimation of activated regions (A1 activation pattern); in
this paper, SPM99 was used but simpler methods should be sufficient;

4. Dilate the activation pattern A1; for the experiments described in this paper,
A1 26-neighborhood was added to the mask. This dilation is used first to
reduce the number of false negatives, second to help the registration methods
that perform a smoothing before the measure estimation. This smoothing,
indeed, corrupts a lot of voxels with the activation profile;

5. Perform a second motion estimation from the initial time series using each
of the 5 adapted similarity measures. This adaptation consists of discarding
the voxels of the dilated activation pattern;

6. For each registration method, compute the cross-correlation of the 6 esti-
mated motion parameters with the cognitive task profile.

3 Experiments

3.1 Simulated Activations

The benefit of the proposed approach is firstly evaluated with an artificial time
series designed to simulate an activation area in the absence of subject motion.
This was done duplicating the reference image of the first actual time-series 40
times and adding an activation-like signal change in order to mimic a cognitive
activation process. The activation pattern was obtained from statistical inference
of one actual time series related to a visual experiment. In order to simulate the
effects of thermal noise, Rician noise obtained with two Gaussian distributions
in real and complex axis with SD corresponding to 2% of mean brain value,
was added. The results indicate a clear reduction in correlation values for the
activation detection-based method whatever the similarity measure (see Fig.
1 and Table 1). The number of activated voxels discarded from the similarity
measure estimation, given as a percentage of the brain, was 14%.
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Fig. 1. Registration parameters ty and rx for simulated time series. From top to
bottom: activation profile, LS, GM, RIU, CR and MI. For each similarity measure, (1)
stands for conventional registration method and (2) for the proposed approach.
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Table 1. Correlation values for the simulated time-series. For each similarity measure,
(1) refers to the conventional registration method and (2) for the proposed approach.

param. LS 1 LS 2 GM 1 GM 2 RIU1 RIU2 CR 1 CR 2 MI 1 MI 2
tx 0.09 0.01 0.06 0.07 0.07 0.14 0.20 0.05 0.04 0.33
ty 0.84 0.38 0.45 0.12 0.82 0.32 0.34 0.03 0.40 0.05
tz 0.84 0.16 0.49 0.12 0.79 0.04 0.18 0.40 0.25 0.09
rx 0.79 0.17 0.03 0.01 0.79 0.24 0.07 0.03 0.23 0.28
ry 0.04 0.17 0.28 0.21 0.19 0.05 0.05 0.13 0.03 0.16
rz 0.25 0.13 0.13 0.20 0.22 0.29 0.10 0.06 0.07 0.01

3.2 Experiments with Actual Time Series

The same experiment was performed with three different actual time series. For
these data, the activation profile used to compute cross-correlation was obtained
by the convolution of the task timing with SPM99 hemodynamic model. A mov-
ing average was removed from the estimated parameter before computing the
correlation in order to discard slow motion trends features. The number of acti-
vated voxels in the mask is respectively 19%, 22% and 18% of the brain size. Fig.
2 presents the results for ty and rx (pitch), for one of the time series. Clear re-
ductions in the correlation with activation paradigm are visible for the different
methods, particularly for LS and RIU, the most biased ones. Table 2 summarizes
the correlation coefficients for the three data sets.

4 Discussion

The work presented in this paper has been triggered by recurrent difficulties
observed in our institution relative to alignment by SPM of time series acquired
with our 3T magnet [1]. The observation of estimated motion parameters per-
fectly correlated with the cognitive experiment led us to suspect a bias of the
registration method. This bias, however, was not systematic. For the experiment
used in this paper, a high amplitude bias was clearly observed for only 3 differ-
ent subjects among 14. Hence, while some simulations had shown that activated
areas could father a similar bias, the existence of an actual motion for these 3
subjects was still possible. The results obtained from the experiments performed
in this paper definitively rule out this explanation. Discarding indeed about 20%
of the voxels almost remove the correlation with the task.

Since most of the current fMRI realignments are performed using LS based
method (SPM and AIR), our result is rather alarming. Fortunately, the bias is
highly related to the field strength, and we did not observe such problem with our
1.5T magnet. Our results, however, call for a refinement of the current packages,
which should not be difficult. A few parameters have also to be tuned to make
our approach more robust. For instance, the dilation of the activated area seems
too ad hoc and should be replaced by an activation detection taking into account
the smoothing performed during motion estimation. The mask dilation has an
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Fig. 2. Registration parameters ty and rx for the first actual time series. From top to
bottom: activation profile, LS, GM, RIU, CR and MI. For each similarity measure, (1)
stands for conventional registration method and (2) for the proposed approach.
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Table 2. Correlation values for the three actual time-series. For each similarity mea-
sure, (1) stands for conventional registration method and (2) for the proposed approach.

LS 1 LS 2 GM 1 GM 2 RIU1 RIU2 CR 1 CR 2 MI 1 MI 2
SET1 tx 0.27 0.27 0.14 0.13 0.29 0.23 0.04 0.05 0.02 0.14

ty 0.65 0.17 0.32 0.12 0.64 0.12 0.27 0.01 0.41 0.06
tz 0.46 0.14 0.16 0.34 0.17 0.25 0.12 0.27 0.19 0.42
rx 0.72 0.10 0.35 0.03 0.74 0.13 0.36 0.01 0.58 0.06
ry 0.02 0.05 0.14 0.09 0.07 0.07 0.06 0.03 0.14 0.07
rz 0.01 0.13 0.18 0.15 0.13 0.18 0.07 0.13 0.18 0.01

SET2 tx 0.17 0.24 0.03 0.02 0.20 0.30 0.13 0.01 0.01 0.02
ty 0.57 0.27 0.45 0.18 0.58 0.18 0.25 0.09 0.34 0.04
tz 0.63 0.29 0.27 0.02 0.45 0.19 0.11 0.15 0.17 0.05
rx 0.72 0.37 0.53 0.26 0.73 0.33 0.41 0.02 0.57 0.15
ry 0.05 0.16 0.12 0.04 0.21 0.20 0.01 0.02 0.10 0.20
rz 0.20 0.03 0.03 0.02 0.03 0.07 0.01 0.18 0.08 0.06

SET3 tx 0.36 0.40 0.03 0.15 0.36 0.41 0.03 0.09 0.29 0.21
ty 0.67 0.29 0.51 0.17 0.62 0.22 0.17 0.08 0.32 0.07
tz 0.64 0.11 0.33 0.03 0.46 0.04 0.33 0.06 0.23 0.10
rx 0.69 0.05 0.44 0.01 0.68 0.14 0.23 0.08 0.40 0.13
ry 0.01 0.04 0.06 0.03 0.10 0.02 0.04 0.15 0.07 0.01
rz 0.38 0.17 0.13 0.09 0.29 0.22 0.12 0.19 0.08 0.06

important positive effect. Using a non-dilated mask, for instance, the correlation
coefficients for LS and RIU are much higher (0.26, 0.52, 0.07, 0.41, 0.09 and 0.20)
and (0.26, 0.52, 0.10, 0.49, 0.06 and 0.27), respectively, for the first data set. In
the standard registration packages, in fact, a large smoothing is applied to reduce
the occurrence of local minima during the estimation of the motion parameter.
It has been shown, however, that this smoothing was largely increasing the bias
amplitude [1,2]. A careful implementation of the method presented in this paper
should allow to discard these smoothing related problems.

Another important point is related to the issue of motion estimation vari-
ability. Increasing the number of voxels to be discarded is bound to decrease the
method accuracy, because the remaining voxels have a non-uniform localization
in the brain. The rigid body hypothesis, indeed, does not take into account the
distortions induced by susceptibility artifacts, which depend on the head local-
ization in the magnet. Hence, removing some parts of the brain could penalize
them with regard to the remaining ones. Some experiments may also lead to
very large activations (and consequently, masks), which would result in more
local minima due to the reduction in the number of samples.

Finally, the approach described in this paper could raise some more problems
with complex experiments where different brain areas are activated according to
different activation profiles. Such experiments call for some improvements of
our framework. Anyway, using some robust estimators or mutual information



670 L. Freire and J.-F. Mangin

could be a simpler choice in such cases. In return, for standard simple clinical
brain mapping experiments used in the context of surgery planning, our ap-
proach would be very easy to apply and would decrease the risk of false positive
disturbing the surgeon thinking.

5 Conclusion

In this paper, we have shown that the standard point of view of the neuroimaging
community about fMRI alignment should be revisited. A lot of teams, indeed, are
in the process of upgrading the field strength of their scanners. The refinements
of the registration methods proposed in this paper are relatively simple and
should discard any bias related to activations. While a lot of generic robust
similarity measures have been proposed for registration, our work has shown
that dedicated approaches have to be designed for each problem. Using a priori
knowledge about the cognitive experiment, indeed, is the simplest way to get rid
of experiment related outliers.

References

1. Freire, L., and Mangin, J.- F.: Motion correction algorithms may create spurious
brain activations in the absence of subject motion. NeuroImage 14, (2001) 709–722

2. Freire, L., Roche, A. and Mangin, J.-F.: What is the best similarity measure
for motion correction of fMRI time series?. IEEE Trans. Med. Imag. 21 (2002)
470-484

3. Roche, A.: Recalage d’images médicales par inférence statistique. PhD Thesis,
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