
W. Damm and E.-R. Olderog (Eds.): FTRTFT 2002, LNCS 2469, pp. 375–393,2002.
© Springer-Verlag Berlin Heidelberg 2002

Eliminating Queues
from RT UML Model Representations∗

Werner Damm1 and Bengt Jonsson

Uppsala University, Dept. of Computer Systems
S-751 05 Uppsala,

damm@offis.de, bengt@docs.uu.se

Abstract. This paper concerns analyzing UML based models of distributed real
time systems involving multiple active agents. In order to avoid the time-
penalties incurred by distributed execution of synchronous operation calls, it is
typically recommended to restrict inter-task communication to event-based
communication through unbounded FIFO buffers. This means that such systems
potentially have an infinite number of states, making them out of reach for
analysis techniques intended for finite-state systems. We present a symbolic
analysis technique of such systems, which can be tuned to give a finite, possibly
inexact representation of the state-space. The central idea is to eliminate FIFO
buffers completely, and represent their contents implicitly, by their effect on the
receiving agent. We propose a natural class of protocols which we call mode
separated, for which this representation is both finite and exact. This result has
impact on both responsiveness and predictability of end-to-end latencies, as
well for the protocol verification, enabling automatic verification methods to be
applied.

Keywords: Real-time distributed systems, RT UML, protocol verification,
verification of infinite state systems

1 Introduction

We are interested in analysing UML based models of distributed real time systems
involving multiple active agents. A central part of this modelling relates to the speci-
fication of protocols regulating the co-operation of such agents. Such protocols define
the interface between the (possibly complex) processing internal to the agent and
those aspects which must be visible to other agents to achieve the global co-operation.
A concrete instance of this modelling paradigm is the European Standard on Wireless
Train Control currently under development [1], where “agents” correspond to trains,
railroad-crossings, switches, or other control points, and the protocol specifies dia-
logues between such agents, ensuring e.g. that a train only passes a railroad crossing
once it has been secured. A simplified model of such a protocol can be found in e.g.
[2]. [3] gives a representative example using an executable object model based on
UML state-charts for such classes of applications.

∗ This research was partially supported by DFG USE and the STINT foundation.
1 On sabbatical leave from Dept. of Computer Science, University of Oldenburg. Oldenburg,

FRG

376 Werner Damm and Bengt Jonsson

Protocols in transportation applications often relate to safety critical functions of
distributed systems. Missing a signalling message in the train system application
could potentially cause accidents, hence system components related to such protocol
aspects typically would have high safety integrity levels. This paper provides a con-
tribution in assessing the use of UML for modelling such applications. It focuses on
those concepts of UML involved in the specification of inter-agent protocols, and
assesses the potential to use automatic model-checking based algorithms in their veri-
fication. The key result of this paper is, that indeed such verification methods can be
applied, given further support for the use of UML and analysing such application
classes.

A salient feature imposed from UML is, that state-machines representing the
agents communicate by exchanging events, which end up in unbounded FIFO buffers
at the receiver side. The verification problem for such models thus entails verification
of infinite state systems. In fact, two dimensions of infinity have to be addressed,
since in addition to unbounded communication channels such UML models would
typically also involve an unbounded number of state-machines. In this paper we focus
on providing exact finite abstractions of the communication protocols for a given
bounded number of so called mode-separated state machines. Intuitively, such state
machines use a particular protocol to enter what we call modes, i.e. machine states
representing global knowledge about the system state.

The analysis of protocols with unbounded FIFO queues has been considered rather
extensively in protocol verification (e.g. [4,5,6,7]), and a number of symbolic repre-
sentations, most of them being variants of regular expressions, have been proposed
[8,9,10,11,12,13]. In the current work, we take a different approach, by avoiding to
represent explicitly the buffers.

Central to our approach is the observation that in order to capture the behavior of
an agent, it is not necessary to represent the concrete contents of the queue of uncon-
sumed incoming events - all that really matters is its future impact on the receiving
protocol machine. Thus, instead of giving a symbolic representation of the queue
content, we partially evaluate the effect of consuming the events in the queue on the
state of the receiver machine. We represent this effect by designating as pending the
set of possible transitions that could be triggered by consuming events currently in the
input buffer. By making a transition pending, we indicate that the part of its guard
which requires event consumption can be neglected, when the computation of the
state machines eventually analyses enabledness of this transition.

The advantages of using the receiver state machine for representing queue contents
is that redundant and irrelevant messages will not be represented at all. A further
advantage is that when the symbolic representation grows in complexity, we can use
the structure of the receiving state machine as a guide for suitable over-
approximations. In fact, our technique allows to tune the degree of approximation. An
exact representation cannot in general be finite (this follows from undecidability of
the analysis problem [14]) hence we also turn our attention to characterizing classes
of protocols for which an exact and finite symbolic representation exists.

A key attribute of the application classes we consider is that the slackness between
agents, roughly meaning how closely the local state of one machine is determined by
the local state of the other machines, is bounded. Typically, the cooperation protocols
are mode separated, meaning that they are split into distinct modes, each of which is
intuitively associated with a global state of the system. Alluding to the train system
application, modes of a train could follow a pattern of moves originating from a

Eliminating Queues from RT UML Model Representations 377

purely local processing state on a track segment well separated from other trains or
control points, to an approach mode requiring the initiation of a protocol ensuring a
safe passage, to a pass-mode characterising the actual passage of the control point, to
a clean-up mode following the passage of the control point. Each such mode typically
is supported by distinct phases of the protocol, often requiring a dialogue involving
multiple events to be exchanged. Safety concerns stipulate a separation of such
modes: there must be no disagreement between agents concerning the sequence of
modes visited during an execution, in particular a mode should be re-entered only
after all transitions related to the previous activation of this mode have been com-
pleted, and modes should not share transitions. In our context, we will give a formal
definition of the concept of mode separation, and show that this property implies that
our symbolic representation yields a finite exact abstraction of the system of state
machines.

We conjecture that the technique we are proposing has independent value in en-
suring responsiveness of UML based implementations for real-time applications. It
can be realised as a pre-compilation phase, compiling away the FIFO buffer, and
yielding a model with instantaneous processing of emitted events. This should sub-
stantially ease analysis of end-to-end response time, and eliminate the need of deter-
mining appropriate FIFO buffer sizes. Moreover, by considering pending transitions
as purely local transitions, run-to-completion steps in the precompiled model effec-
tively process multiple events in one sweep, significantly speeding up response time.
This is in particular relevant for applications, where events signal hazardous situations
requiring immediate attention.

The paper is structured as follows. In the following section, we introduce as a
formal model of multi-agent systems an (infinite state) transition system with explicit
representations of channel contents, reducing the verification problem of the applica-
tion domain to a formal reachability analysis of its state space. The subsequent section
formalises the idea of introducing pending transitions into the model of a protocol
machine, and shows that this yields a finite abstraction for mode-separated protocols.
Section 5 gives a simple syntactic condition called mode separation, guaranteeing the
abstraction to be exact.

2 Formal Model of UML State Machines

In this section we give a formal model capturing the mathematical essence of UML
based specifications of co-operation protocols. We focus here on the co-operation of
two active objects, whose behaviour for simplicity we assume to be defined by UML
statecharts. The model we propose is scalable to an arbitrary number of active objects,
since it explicitly takes into account the effect of an unrestricted environment, which
at any point in time can insert events into the event queue of either active object. This
section is based on [15] giving a full semantics of the behavioural model of UML. In
this paper, we restrict ourselves to pure event-based asynchronous communication
between state-machines. Emitting an event does not block the sender machine, and
causes the event to be inserted into the event queue of the receiving machine.

We assume as given a set E of events, with typical elements e, e1, e2, …. We de-
note the emitting of event e to the partner state-machine by e!, to the sending ma-
chine by self!e, and to the environment by env!e. An emitted event will then be in-

378 Werner Damm and Bengt Jonsson

serted into the receiver´s event queue; events emitted to the environment cause no
state change in the observed system. The consumption of an event e is denoted by
e?; note that UML does not allow to qualify such a reception to some selected sender.

A further simplification taken in this paper is to ignore all aspects dealing with lo-
cal data and operation calls. Thus the action language is reduced to emitting events or
performing some un-interpreted local action, denoted αj – with j ranging over the
natural numbers - , for which we assume as given their semantics [[αj]]. We similarly
abstract from conditions on data values, by incorporating a countable set τj of sym-
bols for local conditions, with semantics [[τj]]. Such conditions can appear as guards
of transitions, as may the consumption of an event, or a conjunction of both. Thus, we
assume a set A of actions with A = { αj , e! , self!e , env!e | e ∈ E, j ∈ω} and a set G
of guards with G = { τj , e? , e?[τj] | e ∈ E, j ∈ ω }.

A UML state-machine M is a tuple

M = (Q, T, q0)
where
– Q is some finite set of states
– T ⊆ Q × (G × A) × Q is the set of labelled transitions
– q0 ∈ Q is the initial state

We analyse a system S = M1 || M2 built from two asynchronously communi-
cating UML state machines M1 and M2, working in the context of some unspecified
environment.

The dynamic behaviour of S is captured as a transition relation over its configura-
tions. A configuration c of S is a tuple

c = << q1 , σ1, γ1, ν1>, < q2 , σ2 , γ2, ν2 >>
where

– q1, q2 denote the current state of M1 and M2, respectively
– σ1, σ2 denote the current valuation of local data of M1, M2, resp.
– γ1 , γ2 ∈ E* denote the current content of event queues associated

with M1, M2, resp.
– ν1,ν2 ⊆ E denote the set of events emitted in the current step by M1,

M2, to the environment

We denote the set of all configurations of S by CS , or simply C if the denoted
system is clear from the context.

A central concept in the execution semantics of UML statecharts is the notion of
run-to-completion steps (RTC steps for short). We call a state q of a UML state ma-
chine stable, if consuming an event is the only way the computation can proceed,
Formally, we define stability of a given state q and data-valuation σ of state-
machine Mj as follows:

stable(q,σ) ↔ (∀t=(q,<τ,α>,q´)∈Tj [[τ]](σ) =false)

In other words: any transition originating from q with a pure local guard is disabled
given the current valuation of data-variables σ. Under the RTC semantics, performing
local computations has priority over consuming events. Thus, a new event is only
dispatched, once the state machine has become stable.

Eliminating Queues from RT UML Model Representations 379

In summary, the transition relation on configurations will thus cover all of the fol-
lowing:

– local-j: Mj is taking a local computation step (j=1,2)
– dispatch-j: Mj is stable and an event is dispatched and accepted (j=1,2)
– discard-j: Mj is stable and the dispatched is not accepted (j=1,2)
– env-j: The environment generates an event for machine Mj (j=1,2)

Since UML assumes an interleaving semantics, the transition relation capturing the
dynamic semantics of S is thus defined as the disjunction of these sub-relations. We
now proceed to define each of the sub-relations.

Local-1
c = <<q1,σ1,γ1,ν1>, <q2,σ2,γ2,ν2>>!local-1

c´= <<q1´,σ1´,γ1´,ν1´>,<q2´,σ2´,γ2´,ν2´ >>
iff

– <q2,σ2>=<q2´,σ2´>
– ν2´= {}
– ∃(q1,<τ,a>,q1´)∈T1 ∧ [[τ]](σ) = true ∧

(∃j∈ω a≡ αj ∧ σ1´=[[αj]](σ1) ∧ γ1´=γ1 ∧ν1´={}∧ γ2´=γ2)
∨ (∃e∈E a≡e! ∧ γ2´= γ2•eσ1´=σ1 ∧ γ1´=γ1∧ν1´={})
∨ (∃e∈E a≡self!e ∧ γ1´=γ1•e∧ σ1´=σ1 ∧ γ2´=γ2∧ν1´={})
∨ (∃e∈E a≡env!e ∧ γ1´=γ1∧ γ2´=γ2∧ σ1´=σ1 ∧ ν1´={e})

There are four cases to consider for actions a. For a local action αj, we evalu-
ate its semantics [[αj]] on the current valuation of data variables σ1, leading
to an updated valuation σ1´, while leaving both queues unchanged. The other
cases deal with emitting events, which are either placed in the queue of M2, or
in the queue of M1, depending on the appearance of the qualifier self, or sim-
ply emitted without side-effect on the current configuration if addressed to the
environment.

Dispatch-1
c = <<q1,σ1,γ1,ν1>, <q2,σ2,γ2,ν2>>!dispatch-1

c´= <<q1´,σ1´,γ1´,ν1´>,<q2´,σ2´,γ2´,ν2´ >>
iff

– <q2,σ2>=<q2´,σ2´ >
– ν2´= {}
– stable(q1,σ1) γ1´=tail(γ1)
– ∃(q1,<e?[τ],a>,q1´)∈T1 e=head(γ1) ∧ [[τ]](σ) = true ∧

((∃j∈ω a≡ αj ∧ σ1´=[[αj]](σ1) ∧ γ1´=tail(γ1) ∧ γ2´=γ2∧ν1´={})
∨ (∃e∈E a≡e ∧ γ2´= γ2•e∧ σ1´=σ1 ∧ γ1´= tail(γ1) ∧ν1´={})
∨(∃e∈E a≡self!e ∧ γ1´=tail(γ1)•e∧ σ1´=σ1 ∧ γ2´=γ2∧ν1´={})
∨(∃e∈E a≡env!e ∧ γ2´=γ2∧ σ1´=σ1 ∧ γ1´=tail(γ1) ∧ν1´={e}))

In a stable configuration, the first event of the queue is dispatched. If there is a
transition originating from the current state whose trigger matches the dis-
patched event, and whose associated local condition evaluates to true, then
one of these is picked, and its action part is evaluated as above. The case of a
trigger without local condition is understood to be subsumed by this clause, by
assuming the local condition true.

380 Werner Damm and Bengt Jonsson

Discard-1
c = <<q1,σ1,γ1,ν1>, <q2,σ2,γ2,ν2>>!discard-1

c´= <<q1´,σ1´,γ1´,ν1´>,<q2´,σ2´,γ2´,ν2´ >>
iff

– <q2,σ2,γ2>=<q2´,σ2´,γ2´ >
– stable(q1,σ1) ∧ γ1´=tail(γ1)
– ν1´=ν2´ ={}
– <q1,σ1>=<q1´,σ1´>
– ∀(q1,<e?[τ],a>,q1´)∈T1 e=head(γ1) → [[τ]](σ) = false

If no transition from the current state matches the dispatched event, then the
event is discarded: it is deleted from the event-queue, and has no other effect
on the current state configuration. UML actually allows the specification of so-
called deferred events for each state; if in the above situation, e would have
been in the defer-set of q1, then e would remain in the queue, and the dis-
patcher would consider the subsequent event. We do not consider handling of
deferred events.

Env-1
c = <<q1,σ1,γ1,ν1>, <q2,σ2,γ2,ν2>>!env-1

c´= <<q1´,σ1´,γ1´,ν1´>,<q2´,σ2´,γ2´,ν2´ >>
iff

– <q2,σ2,γ2>=<q2´,σ2´,γ2´ >
– ν1´=ν2´ ={}
– <q1,σ1>=<q1´,σ1´>
– ∃e∈E γ1´=γ1•e

At any point in time, the environment may choose to insert some arbitrary
event into the event queue associated with machine M1.

We finally define the transition relation !S associated with system S, or ! for short,
as the union of the above transition relations:

!
S

 = !
local-1

 ∪ !
local-2

∪ !
dispatch-1

 ∪!
dispatch-2

 ∪!
discard-1

 ∪!
discard-2

 ∪!
env-1

 ∪!
env-2

Figure 1 shows an artificial example system to illustrate our approach, together
with a possible computation sequence of this system. The example shows on the top
the architecture of the system, consisting of components M1 and M2, which commu-
nicate using the associations shown. The behaviour of the components is defined by
the two state-machines depicted below M1 and M2, respectively. If triggered to take a
move, controller M2 chooses arbitrarily the direction d of the move of the robot, and
signals controller M1 in charge of engine control the selected direction. It then checks
its sensors for detecting possible obstacles; if the chosen direction is clear of obsta-
cles, the interlock for moves is removed, by emitting the corresponding clear event to
M1. M2 initiates the step motor depending on the chosen direction, and awaits clear-
ance of the interlock before emitting a go, causing the actual move. The check event
generated by the environment models a cyclic scheduler, while the move command is
intended to be issued by some operator, and is thus not synchronized to steps of the
system.

Note. that states 1,2,3 of M2 are instable, while all its other states are stable. Thus,
an example of a run-to-completion step of M2 from state 6 is the one which is trig-

Eliminating Queues from RT UML Model Representations 381

gered by consuming a move command, followed by the local processing steps passing
through states 1,2,3, possibly iterating in state 3 waiting for an obstacle to move, and
finally passing to state 4. The only instable state of M1 is state 4. The sample configu-
ration sequence shows purely local computation steps (such as reading sensors in
c3!c4), environment steps (such as emitting the spurious move command in c7!c8),
discarding events (such as the older move command in c10!c11), and dispatching
events (such as ack in c11!c12).

Configurations provide a fine grained view of a systems execution semantics. In
the context of system design, we are typically only interested in a grey box view of
the systems behaviour, where observability is restricted to message exchange between
system components themselves, as well as between system components and the envi-
ronment, such as typically captured by scenarios or message sequence charts. We
define this view as follows. For a configuration sequence from an initial configuration

π = c0 !
S

 c1 !
S

 …

 !

S
 cn ,

label the jth transition c(j-1) !
S

 cj by <source, e , dest> if it involves emission of event
e from source to dest, where source and dest are either M1, M2, or env. Let obs(π) be
the sequence of such labels in π.. We then define the observational semantics [[S]]
of S as the set of seuqences of labels associated with such configuration sequences:

[[S]]= { obs(π) | π is a finite configuration sequences of S }

c0: <<1,[],{}>,<6,<l,nok,nok>,[move,move] ,{}>>
c1: <<1,[],{}>,<1,<l,nok,nok>,[move] ,{}>>
c2: <<1,[right],{}>,<2,<r,nok,nok>,[move] ,{}>>
c3: <<1,[right] ,{}>,<3,<r,nok,nok>,[move] ,{}>>
c4: <<1,[right,right_clear] ,{}>,<4,<r,ok.ok>,[move] ,{}>>
c5: <<3,[right_clear],{init_R}>,<4,<r,ok,ok>,[move,ack] ,{}>>
c6: <<4,[],{go}>,<4,<r,ok,ok>,[move,ack],{}>>
c7: <<5,[] ,{}>,<4,<r,ok,ok>,[move,ack,move_completed],{}>>
c8: <<5,[check],{}>, <4,<r,ok,ok>,[move,ack,move_completed,move],{}>>
c9: <<5,[check],{}>, <4,<r,ok,ok>,[move,ack,move_completed,move],{}>>
c10: <<1,[],{}>, <4,<r,ok,ok>,[move,ack,move_completed,move],{}>>
c11: <<1,[],{}>, <4,<r,ok,ok>,[ack,move_completed,move],{}>>
c12: <<1,[],{}>, <5,<r,ok,ok>,[move_completed,move],{}>>
c13: <<1,[],{}>, <6,<r,ok,ok>,[move],{}>>
c14: <<1,[],{}>, <1,<r,ok,ok>,[],{}>>

M1 M2

check

go
init_L

init_R

left
right

move_completed

right_clear
left_clear

ack

move

3

check?

/move_completed!

left_clear?
/env!go

right?/
env!init_R;ack

left?/
env!init_L;ack

right_clear?
/env!go

move?

move_
completed?

ack?

d=l∧s-l=ok
/left_clear

/read_
sensors

/right!;d:=r/left!;d:=l

d=r∧s-r=ok
/right_clear

1

1

2 3

4

5

2

4

5

6

/read_
sensors

Fig. 1. Example system with robot M1 and controller M2 with possible computation sequence
at bottom left.

382 Werner Damm and Bengt Jonsson

3 Symbolic Evaluation of Events

The aim of this section is to define a finite state representation of a given system S
which induces the same observational semantics as the standard representation of S as
defined in the previous section. The central idea has already been elaborated in the
introduction: rather than storing an event in the receivers queue, we directly evaluate
the effect of emitting the event on the receivers state machine. Concretely, this effect
is that transitions which previously required consumption of an event now become
only locally guarded or unguarded, and can be performed without event dispatching.
We refer to such transitions as pending.

We will introduce a simple colouring scheme to classify transitions in a state ma-
chine. Let us paint the current state red. Transitions that are reachable from the cur-
rent state by taking only locally guarded or unguarded transitions are also red. A
pending transition is painted green if it can be reached from the initial state, or from
another green transition, by taking only locally guarded or unguarded transitions. All
other transitions remain uncoloured. We must define rules for recolouring of transi-
tions during computation steps. Intuitively, such rules will either extend the green
region to represent reception of events into the event queue, or turn green regions red
to represent dispatching of events from the event queue, while red regions turn uncol-
oured. Our construction thus eliminates unbounded FIFO buffers by the green-set –
just another representation of the effect of emitting events.

There are a number of caveats to this intuitive idea, and we take the simple exam-
ple of Figure 2 to illustrate these. The left box below the state-machine shows the
sequence of events received by this state-machine in a possible computation se-
quence. The right box shows a suggestion for the set of transitions that should be
coloured green, a transition being represented by its source and destination state.

Fig. 2. Example system with sequence of received events at left, and possible green-set at right.

Eliminating Queues from RT UML Model Representations 383

Initially, we start with an empty queue, represented symbolically by an empty
green set. Now consider the effect of emitting event e, with state 1 painted red. Recall,
that this colouring also extends to transition <1,2>. Hence, adjacent to the red region,
we have two transitions willing to consume the emitted event, <1,3> and <2,4>, and
we colour them green. Next, event e2 becomes emitted – and we find the transition
<3,2> adjacent to the green region, waiting to consume e2, and include it in the green
set. The next occurrence of e makees <4,5> green. Next, consider the arrival of yet
another event e3. With state 3 being green, we find a transition matching the emitted
event, and include it in the green set.

There are two flaws with this construction, when striving for exactness. First, no-
tice that by introducing transition <3,2> in the green set, the pragmatics of having
transition <2,4> in the green set becomes ambiguous: is it because we have received
messages corresponding to the “slow” path <1,3> <3,2> to state 2, and that actually
<2,4> represents the second occurrences of e being emitted, or is it because we have
performed the local step <1,2> and are about to swallow the first occurrence of e ?
This highlights the need to cater for non-determinism by keeping the green sets for
the different alternatives separated. This separation can come for free if the choices
are processed in state disjoint regions of the state-machineö otherwise it can be en-
forced artificially, by adding primed copies of a state in confusion situations such as
above.

The second flaw can be observed when processing event e3. By now colouring
transition <3,4> green, the symbolic representation can actually choose, whether to
pick this transition, once state 3 becomes the current state, or whether to follow the
already green <3,2>-transition. Thus our representation has lost ordering information
– and consuming the wrong event could easily spoil the capability of imitating a real-
computation sequence. We cater for this by never extending the green set with transi-
tions, which are in conflict to an already taken global choice.

We now turn to defining our symbolic representation, in which some main ideas
are to use copies of states to maintain separation of alternative computations, and to
delete sets of “dead” transitions. Let Qω denote the set Q together with an unbounded
supply of numbered copies of Q. The k-th copy of state q is denoted q(k); we identify
q with q(0). For a given state q of machine M its local post-set q* is defined to be the
set of states reachable from q by taking only locally guarded or unguarded transitions.
We extend this function to copies of state q. Symbolic configurations SCS of our sys-
tem S take the form

sc = << q1 , σ1, Γ1, ν1>, < q2 , σ2 , Γ2, ν2 >>

where Γj ⊆ Qjω × G × A × Qjω denotes the current set of red and green transitions
or copies thereof in machine Mj. The set Γj satisfies the property that its locally
guarded and unguarded transitions generate a graph, whose connected components
form the nodes a tree, where the green transitions are arcs. The current state qj is in
the root component of this tree. In other words, for all reachable states q, all paths
from qj to q contain the same sequence of event-consuming transitions. Moreoever,
the set Γj has no unreachable states.

We now define a transition relation on symbolic configurations. The transition re-
lation relies on two key operations extend(e,Γj, qj), and reduce(Γj,qj) on the sets Γj of
red and green transitions. Intuitively, extend spreads the green colour from the current
potential leaves of Γj by evaluating symbolically the effect of consuming e in each of

384 Werner Damm and Bengt Jonsson

these leaves. The function reduce acts like a garbage collector: it removes from Γj all
transitions which are no longer reachable once the actual state has progressed to qj. In
an actual implementation, reduce should incorporate a reclaiming scheme of indices
for state-copies.

Define a potential leaf of Γj as a state-copy q(k) such that the disjunction of local
guards of (local and non-local) transitions from q(k) is not true. The function ex-
tend(e,Γj,qj), takes as parameters the emitted event, the current set Γj of red and green
transitions, and the current state of Mj. It extends Γj as follows.

• For each potential leaf q(k) in Γj we add, for each transition <q,<e[τ],a>,q´>
from q triggered by e, a transition of form <q(k),<e[τ],a>,q´(l)> from q(k) to a
copy of q´ which is not previously in Γj.

• If there are transitions from q labeled by other events than e, we add one transi-
tion of form <q(k),<e[¬ ρ],>,q(l)> from q(k) to a fresh copy of itself, guarded
by the negation ¬ ρ of the disjunction ρ of local guards of all e-consuming tran-
sitions that emanate at q. This is an explicit representation of a discard step,
which must be added to avoid the order confusion observed in the previous ex-
ample.

Thereafter Γj is extended by adding appropriate copies of locally guarded and un-
guarded transitions that are reachable from the destinations of added green transitions.

The function reduce(Γj,qj´) takes as parameters the current set Γj of red and green
transitions, and a new current state of Mj. It deletes from Γj all transitions, which are
not reachable from qj´.

The initial symbolic configuration starts with Γj being the set of unguarded and
locally guarded transitions that are reachable from the initial state of Mj.

Slocal-1
sc = <<q1,σ1,Γ1,ν1>, <q2,σ2,Γ2,ν2>>!slocal-1

sc´= <<q1´,σ1´,Γ1´,ν1´>,<q2´,σ2´,Γ2´,ν2´ >>
iff

– <q2,σ2>=<q2´,σ2´>
– ν2´= {}
– ∃(q1,<τ,a>,q1´)∈T1 ∧ [[τ]](σ) = true

 (∃j∈ω a≡ αj ∧ σ1´=[[αj]](σ1) ∧ Γ1´=Γ ∧ν1´={}∧ Γ2´=Γ2)
 ∨ (∃e∈E a≡ e! ∧ Γ2´=extend(e,Γ2,q2)∧ σ1´=σ1 ∧ Γ1´=Γ∧ν1´={})
 ∨ (∃e∈E a≡ self!e ∧ Γ1´=extend(e,Γ,q1)∧ σ1´=σ1 ∧ Γ2´=Γ2∧ν1´={})
 ∨ (∃e∈E a≡env!e ∧ Γ2´=Γ2 ∧ Γ1´=Γ ∧ σ1´=σ1 ∧ ν1´={e})

 where

 Γ = reduce(Γ1,q1´)

There are four sub-cases to consider, corresponding to the four disjuncts in the
definition of local computation steps. The first disjunct does not involve event-
processing and hence leaves both queues unchanged. However, the green-set
Γ1 of M1 may contain alternatve sub+trees that are no longer reachable after
the transition to q1´, hence the function reduce(Γ1,q1´) should be applied first.
In the third case, we note that emitting the event to itself is handled by setting

Eliminating Queues from RT UML Model Representations 385

Γ1 to extend(e, Γ, q1), and that in the final case of emitting an event to the en-
vironment the green set remains unchanged.

Green-1
sc = <<q1,σ1,Γ1,ν1>, <q2,σ2,Γ2,ν2>>!green-1

sc´= <<q1´,σ1´,Γ1´,ν1´>,<q2´,σ2´,Γ2´,ν2´ >>
iff

– <q2,σ2>=<q2´,σ2´ >
– ν2´= {}
– stable(q1,σ1)
– ∃(q1,<e?[τ],a>,q1´(r))∈Γ1 [[τ]](σ) = true ∧

 (∃j∈ω a≡ αj ∧ σ1´=[[αj]](σ1) ∧ Γ1´=Γ ∧ν1´={}∧ Γ2´=Γ2)
∨ (∃e∈E a≡ e! ∧ Γ2´=extend(e,Γ2,q2)∧ σ1´=σ1 ∧ Γ1´=Γ∧ν1´={})
∨ (∃e∈E a≡ self!e ∧ Γ1´=extend(e,Γ,q1)∧ σ1´=σ1 ∧ Γ2´=Γ2∧ν1´={})
∨ (∃e∈E a≡ env!e ∧ Γ2´=Γ2 ∧ Γ1´=Γ∧ σ1´=σ1 ∧ ν1´={e})

where

 Γ = reduce(Γ1,q1´)

Green-steps intuitively correspond to dispatch or discard steps and thus may
only be taken if there is no locally enabled transition leaving the current state
q1. They move the current state forward along one of the adjacent green tran-
sitions, thus possibly also resolving choices. All other concepts have been
elaborated before.

Senv-1
sc = <<q1,σ1,Γ1,ν1>, <q2,σ2,Γ2,ν2>>!senv-1

sc´= <<q1´,σ1´,Γ1´,ν1´>,<q2´,σ2´,Γ2´,ν2´ >>
iff

– <q2,σ2,Γ2>=<q2´,σ2´,Γ2´ >
– ν1´=ν2´ ={}
– <q1,σ1>=<q1´,σ1´>
– ∃e∈E Γ1´= extend(e,Γ1,q1)

As before, the environment can choose at any time to emit some event e, which
in the symbolic computation model is then evaluated by updating the green-set.

We finally define the symbolic transition relation !sS associated with system S, as the
union of the above transition relations:

!
sS

 = !
slcal-1

 ∪ !
slocal-2

∪ !
green-1

 ∪ !
green-2

 ∪ !
senv-1

 ∪ !
senv-2

Figure 3 shows how the symbolic transition relation operates, and in particular how
the problems highlighed for the system in Figure 2 are handled. As before, we repre-
sent emitting e by including <1,3> and <2,4> in the green set. The subsequent emis-
sion of e2 would - as noted before – cause a duplication of state 2 in the green set,
hence we use a primed copy of this state when painting transition <3,2>. This allows
us to nicely separate the two alternatives when processing the subsequent emittance of
event e: the left hand choice leads to the inclusion of <4,5> , which has no bearing on
the computation path following the other alternative to the copy 2´ of state 2, which in
its turn can now move forward to a fresh copy of state 4, by including <2´,4´> in the

386 Werner Damm and Bengt Jonsson

green set. The subsequent emittance of e3 is ignored: the global choice between the
two transitions originating from state 3 has already been decided in favour of <3,2>.
The subsequent emittance of event e causes a copy <4´,5´> of transition <4,5> to be
included in the green set.

e2?

e?

e?

e[c2][c1]

e3?

1

2 3

4

5
e2?

<1,[]> !
<1,[e]> !
<1,[e,e2]> !
<1,[e,e2,e]> !
<1,[e,e2,e,e3]> !
<1,[e,e2,e,e3,e]> !
<2,[e,e2,e,e3,e]> !
<4,[e2,e,e3,e]> !
<4,[e2,e,e3,e,e2]> !
<4,[e2,e,e3,e,e2,e]> !
<4,[e,e3,e,e2,e]>!
<5,[e3,e,e2,e]> !
<5,[e3,e,e2,e,e2]> !
<5,[e3,e,e2,e,e2,e]> !
<5,[e,e2,e,e2,e]> !
<5,[e2,e,e2,e]> !
<1,[e,e2,e]> !
<3,[e2,e]> !
<2,[e]> !
<4,[]> !

<1,{}>
<1,{<1,3>,<2,4>}>
<1,{<1,3>, <3,2´>, <2,4>}> made copy of state 2
<1,{<1,3>, <3,2´>,<2´,4´>,<2,4>,<4,5>}> made copy of state 4
<1,{<1,3>, <3,2´>,<2´,4´>,<2,4>,<4,5>}> discarded e3 – no matching front state
<1,{<1,3>, <3,2´>,<2´,4´>,<4´,5´>,<2,4>,<4,5>}> made copy of state 5
<2,{<2,4>,<4,5>}> deleted unselected subtree
<4,{<4,5>}>
<4,{<4,5>,<5,1>}>
<4,{<4,5>,<5,1>, <2,4´>,<1,3>}> created copy of state 4 – overrun of state 4
<4,{<4,5>,<5,1>, <2,4´>,<1,3>}> discard steps have already been catered for
<5,{<5,1>, <2,4>,<1,3>}> reduce prime count on state 4
<5,{<5,1>, <2,4>,<1,3>,<3,2´>}> created copy of state 2
<5,{<5,1>, <2,4>,<4,5´>,<1,3>,<3,2´>,<2´,4´>}> created copies of 5 and 4 – overrun of state 5
<5,{<5,1>, <2,4>,<4,5´>,<1,3>,<3,2´>,<2´,4´>}> discard steps have already been catered for
<5,{<5,1>, <2,4>,<4,5´>,<1,3>,<3,2´>,<2´,4´>}> discard steps have already been catered for
<1,{<2,4>,<4,5>,<1,3>,<3,2´>,<2´,4´>}> reduce prime count for state 5
<3,{<3,2>,<2,4>}> eliminate isolated components – reduce prime count for 2 and 4
<2,{<2,4>}>
<4,{}>

Fig. 3. Symbolic transition sequence of the example system of Figure 2.

We now mimic a state configuration resolving the initial choice of transitions origi-
nating from state 1 in favour of transition <1,2>. In general, configuration steps ad-
vancing the current state are modelled by deleting those components from the green
set no longer reachable from the current state, thus the complete sub-tree
{<1,3>,<3,2´>,<2´,4´>,<4´,5´>} induced by the alternate choice is deleted. By the
same policy, just advancing the current state will cause the taken transition to be de-
leted from the green set, as shown in the subsequent computation step reaching state
4. This artificial example is too loosely synchronised to avoid state-overrun – the
partner machine being able to now emit events e2 and e causes a state overrun for
state 4: if including <2,4,> in the green-set, we could no longer separate behaviour
induced by the current and the subsequent visit of this state. By using a fresh copy of
state 4, we avoid this problem – at the price of loosing boundedness of the green-set.

For a sequence of symbolic configurations

sπ = sc0 !
sS

 sc1 !
sS

 …

 !

sS
 scn

where sc0 is an initial symbolic configuration, label the jth transition cj-1 !
S

 cj by <source,
e , dest> if it involves emission of event e from source to dest, Let obs(sπ) be the

Eliminating Queues from RT UML Model Representations 387

sequence of such labels in sπ.. The key property of our construction is the preserva-
tion of the observational semantics.

Theorem 1
[[S]] = {obs(sπ) | sπ is a finite sequence of symbolic configurations of S }

Proof:
⊆ In this direction, the theorem states that the symbolic semantics is a safe ap-

proximation of the possible computation sequences of each protocol machine.
The theorem follows by composition if for each protocol machine we prove that
each computation sequence in the concrete semantics corresponds to a computa-
tion sequence in the symbolic semantics, with the same external behaviour. Let
us specialize the notation to machine M1. We establish a simulation relation
between configurations <q1,σ1,γ1,ν1> in the concrete semantics, and symbolic
configurations <q1,σ1,Γ1,ν1> in the symbolic semantics. The simulation rela-
tion identifies the state q1, valuation σ1, and set of emitted events ν1. A (con-
crete) configuration <q1,σ1,γ1,ν1> is simulated by a symbolic configuration
<q1,σ1,Γ1,ν1> under the following condition:

if M1 can perform a sequence π of transitions from q1 to a state qf while con-
suming the events γ1 in dispatch and discard transitions, then the sequence π
(possibly with states replaced by their appropriate copies) can be performed
in Γ1 from q1 to a potential leaf which is (possibly a copy of) qf.

In order to prove that this simulation relation is preserved by the transitions, we
note that the definition of the concrete and symbolic semantics differ only on the
following points:

1. Each extension of the input queue (γ1´= γ1•e) correspond to an application
of the function extend(e,Γ1,q1).

2. Each change of control state, from q1 to q1´ say, corresponds to deleting the
corresponding root of Γ1 and resizing it with respect to q1´ using re-
duce(Γ1,q1´(r)). If the transition consumes an element of the input queue in
a dispatch or discard transition, then that element is removed from the input
queue (γ1´ = tail(γ1)) .

We should thus check that

1. the function extend(e,Γ1,q1) extends Γ1 by adding paths that correspond to
the paths that consume e starting from a potential leaf of Γ1;

2. shrinking of Γ1 by moving to a child of the previous root corresponds ex-
actly to following the first step of paths that start with this transition.

Both properties should be clear by construction.

⊇ We prove this direction by establishing, that the “inverse” of the preceding
simulation relation,

Each path in Γ1 from q1 to a potential leaf qf(k) corresponds to a sequence of
transitions in M1 from q1 to qf, possibly with discard transitions added, that
consume the events γ1 in dispatch and discard transitions

388 Werner Damm and Bengt Jonsson

is also a simulation relation in the other direction. This follows form the fact that
each state in Γ1 can be reached from the root by a unique sequence of consumed
events from the input buffer, and that Γ1 contains no “spurious” potential leaves.

c0:<<1,[],{}>,<6,<l,nok,nok>,[move,move] ,{}>> sc0:<<1,{},{}>,<6,<l,nok,nok>,{<6,1>},{}>
c1:<<1,[],{}>,<1,<l,nok,nok>,[move] ,{}>> sc1:<<1,{},{}>,<1,<l,nok,nok>,{},{}>>
c2:<<1,[right],{}>,<2,<r,nok,nok>,[move] ,{}>> sc2:<<1,{<1,3>},{}>,<2,<r,nok,nok>,{},{}>>
c3:<<1,[right] ,{}>,<3,<r,ok,ok>,[move] ,{}>> sc3:<<1,{<1,3>},{}>,<3,<r,ok,ok>,{},{}>>
c4:<<1,[right,right_clear] ,{}>,<4,<r,ok.ok>,[move] ,{}>> sc4:<<1,{<1,3>,<3,4>},{},<4,<r,ok,ok>,{},{}>>
c5:<<3,[right_clear],{init_R}>,<4,<r,ok,ok>,[move,ack] ,{}>> sc5:<<3,{<3,4>},{init_R}>,<4,<r,ok,ok>,{<4,5>},{}>>
c6:<<4,[],{go}>,<4,<r,ok,ok>,[move,ack],{}>> sc6:<<4,{},{go}>,<4,<r,ok,ok>,{<4,5>},{}>>
c7:<<5,[] ,{}>,<4,<r,ok,ok>,[move,ack,move_c],{}>> sc7:<<5,{},{}>,<4,<r,ok,ok>,{<4,5>,<5,6>},{}>>
c8:<<5,[check],{}>, <4,<r,ok,ok>,[move,ack,move_c],{}>> sc8:<<5,{<5,1>},{}>,<4,<r,ok,ok>,{<4,5>,<5,6>},{}>>
c9:<<5,[check],{}>, <4,<r,ok,ok>,[move,ack,move_c,move],{}>> sc9:<<5,{<5,1>},{}>,<4,<r,ok,ok>,{<4,5>,<5,6>,<6,7>},{}>>
c10:<<1,[],{}>, <4,<r,ok,ok>,[move,ack,move_c,move],{}>> sc10:<<1,{},{}>,<4,<r,ok,ok>,{<4,5>,<5,6>,<6,7>},{}>>
c11:<<1,[],{}>, <4,<r,ok,ok>,[ack,move_c,move],{}>>
c12:<<1,[],{}>, <5,<r,ok,ok>,[move_c,move],{}>> sc11:<<1,{},{}>,<5,<r,ok,ok>,{<5,6>,<6,7>},{}>>
c13:<<1,[],{}>, <6,<r,ok,ok>,[move],{}>> sc12:<<1,{},{}>,<6,<r,ok,ok>,{<6,7>},{}>>
c14:<<1,[],{}>, <1,<r,ok,ok>,[],{}>> sc13:<<1,{},{}>,<1,<r,ok,ok>,{},{}>>

M1 M2

check

go
init_L

init_R

left
right

move_completed

right_clear
left_clear

ack

move

check?

/move_completed!

left_clear?
/env!go

right?/
env!init_R;ack

left?/
env!init_L;ack

right_clear?
/env!go

1

2 3

4

5

3

move?

move_
completed?

ack?

d=l∧s-l=ok
/left_clear

/read_
sensors

/right!;d:=r/left!;d:=l

d=r∧s-r=ok
/right_clear

1

2

4

5

6

/read_
sensors

Fig. 4. Symbolic representation (right) of corresponding computation sequence (left).

In Figure 4, we illustrate the practical value of the construction using the example
of the previous section.The symbolic configuration sequence is paired up with the
original computation sequence. The example exhibits a number of properties typical
for well structured protocols: separation of alternatives comes for free, and the proto-
col is free from state overrun. As a consequence, the symbolic representation is finite
state.

We conclude this section by proposing an approach to selectively over-
approximate the set of observations. The idea is that in the case that our symbolic
construction grows unboundedly, by potentially creating an unbounded number of
copies of a given state q, we will allow the symbolic representation to blur the dis-
tinction between different copies of state q. We may then over-approximate the set of
possible behaviours, including behaviours which are not feasible in S, but we can
guarantee finiteness of the resulting symbolic transition system. As an example, this

Eliminating Queues from RT UML Model Representations 389

technique can be used to deal with “inessential loops”, in which a state machine re-
ceives copies of events without being dependent on the number of copies received. In
general, by allowing the user to over-approximate the behaviour for a selected set of
states, the user can tune the trade-off between succinctness and exactness of the sym-
bolic representation.

We now describe how to modify the symbolic representation when states in the
subset Rj are not copied in the symbolic transition rules. A first effect is that the set
of potential leaves can no longer be uniquely deduced from the green-set Γj. In order
to increase precision, we therefore extend our symbolic representation by explicitly
including a set of potential leaves. Formally, relaxed symbolic configurations of our
system S take the form

rsc = << q1 , σ1, Γ1, F1,ν1>, < q2 , σ2 , Γ2, F2, ν2 >>

where Fj ⊆ Qj denotes the current set of potential leaves of machine Mj. The effect
of an event emission is, as before, computed using the function extend(e,Γj,Fj,qj),
which now takes the set of potential leaves as an explicit argument, but otherwise is
defined as previously. After following a transition <q,<e[τ],a>,q´>, the set Fj is
updated. As before, it will contain state or state-copies, for which the disjunction of
local guards of outgoing transitions is not true, but additionally it will contain states
(or state copies) which are reachable from q´ by local transitions and from which the
disjunction of guards of local transitions is not true. The rationale for including these
extra states is that they may correspond to revisits of relaxed states, and therefore
outgoing transitions that consume events should be ignored when determining
whether they can now be potential leaves. To illustrate the modified construction, in
Figure 4 we revisit the artificial example of Figure 2, assuming states 2,4 and 5 to be
relaxed. The set of potential leaves is listed as third component of the symbolic state.

We conclude this section by stating that the relaxed symbolic representation yields
a safe approximation of the queue-based semantics.

Theorem 2
Let R1, R2 be sets of relaxed sates of machines M1, M2, respectively. Then

[[S]] ⊆ {obs(rsπ) | rsπ is a finite sequence of symbolic configurations of S }

Proof
The construction in the first half of the proof of Theorem 1 can still be carried out
without modification

4 About Exact Finite Symbolic Representations

In the symbolic analysis method outlined in the previous section, we may need to
designate certain states as relaxed in order to keep the symbolic state space finite. At
the same time, relaxed states induce an over-approximation of the state-space. In this
section, we will give conditions under certain combinations of exact and relaxed
states yield a finite and exact analysis of (properties of) a protocol. A central idea is to
identify a core skeleton of the protocol in each machine, such that the synchronization
between the machines is “sufficiently tight'' so that the symbolic analysis is faithful, at
least with respect to this skeleton.

390 Werner Damm and Bengt Jonsson

Fig. 5. The artificial example of Figure 2 revisited, assuming states 2,4, and 5 to be relaxed.

As inspiration, we observe that in many protocols, it is possible to identify a certain
subset of “important'' control states in each protocol machine. These states represent
stable situations, associated with certain functionality of the protocol, and typically
represent knowledge about the global system state. We use the term modes to denote
such “important” states of a machine. Furthermore, the occupancy of modes is typi-
cally synchronized between the machines, i.e., if at some point in time machine M1
occupies a certain mode, then M2 occupies a unique corresponding mode, except
possibly during a mode-change. Mode-changes are then synchronized between proto-
col machines, typically by exchanging a pair of request and grant messages.

We consider, as previously, a system S consisting of protocol machines M1 and
M2. We will in addition assume that the message alphabet E is finite, and that there
are no local actions or guards, i.e., transitions are labeled only by event emissions and
consumptions. Moreover, we forbid any reception of events from the environment
(i.e., there are no computation steps generated by rule Env-i). Let D be a subset of
the messages exchanged between M1 and M2 (the intuition is that they should include
request and grant messages used to synchronize mode changes). Let a D-emission be
a transition which emits an event in D. Let a D-reception be a transition which con-
sumes an event in D. Let a D-transition be a D-emission or a D-reception. The terms
non-D-emission, non-D-reception, and non-D-transition are defined analogously.

Definition We say that a state machine Mj is mode-separated by a set D of messages
if along any sequence of transitions from the initial state, the number of D-emissions
is at most one more than the number of D-receptions.

Eliminating Queues from RT UML Model Representations 391

The intuition is that the potentially extra D.emession is a request for a mode change,
which will be acknowledged by a grant message in the other direction.

In our first result, Theorem 3, we assume all states to be exact, implying that the
symbolic semantics coincides with the actual semantics (by Theorem 1), and define
conditions under which the symbolic semantics is finite-state.

Theorem 3
Let the protocol machines M1 and M2 be mode-separated by the set D of
messages. If each loop in any of the protocol machines M1 and M2 contains
a D-transition, then there is a finite number of distinct reachable symbolic
configurations.

Proof
The proof relies on the observation that, due to mode-separation, any green-
set in a symbolic configuration may not contain more than two subsequent
D-receptions. By the condition in the theorem, this restriction gives a uni-
form bound on the size of any symbolic configuration.

The conditions in Theorem 3 are quite restrictive. They essentially entail that there
is a uniform bound on the number of messages in the channels, implying that the
entire protocol is finite-state. We will therefore, in Theorem 4, introduce a less re-
strictive condition, which allows control loops involving emission and reception of
messages not in D, e.g., for the purpose of retransmission. To obtain a finite symbolic
semantics, we must designate the control states in such loops as relaxed, since they
otherwise run the risk of being copied unboundedly. This relaxation may induce an
over-approximation of the behavior; hence we will state conditions under which such
an over-approximation does not affect the core protocol, as defined by its D-
transitions.

Definition Say that a protocol machine M is D-robust if whenever (q, e?,q') is a non-
D-reception in M, then
1. there is no path from q to q' which contains a D-transition,
2. there is a locally enabled path from q' to q in M without D-transitions
3. any path from q' reaches q without containing any D-transitions, using only lo-

cally enabled transitions.

Let us turn to the main result of this section. Let us lift the restriction that all states be
exact, and assume that some partitioning of states into exact and relaxed states is
performed.

Theorem 4
Let D1 and D2 be sets of events with D1 ⊆ D2. Let S be a system of two commu-
nicating D2-robust protocol machines M1 and M2., both mode-separated by
D1,such that in both M1 and M2:

(a) each loop containing an exact state also contains a D1-transition,
(b) whenever there are two different paths from some state q to a relaxed state

q', at least one of which contains a D2-transition, then one of the paths must
contain at least 3 D1-receptions.

392 Werner Damm and Bengt Jonsson

Then there is a finite number of distinct reachable symbolic configurations.
Moreoever, the symbolic semantics generates the same sequences of D2-
transitions as the exact semantics.

Proof
By induction over computation sequences of S, we prove that the potential over-
approximation given by the green-sets is limited to loops that start by a non-D2-
reception, and contain only non-D2-transitions. The proof of that depends on the
following observations.

1. Any path in a green-set may contain at most two D1-receptions. Hence, the
symbolic representation may not contain two different paths to a relaxed
state, except for loops of non-D2-transitions.

2. Condition (a) implies that there is a bound on the number of exact states in
any path in the induced symbolic representation, hence (as in Theorem 3) the
symbolic semantics is finite.

5 Conclusions

We have considered the analysis of protocols, consisting of asynchronously commu-
nicating state+mahcines, as arising in UML based models of distributed real time
systems. We have proposed a symbolic semantics, which replaces explicit representa-
tion of buffer contents by a representation of their effects on the receiving agent. The
representation can be tuned to give a balance between succinctness and exactness. For
certain classes of protocols, the representation is guaranteed to be both finite-state and
exact.. Automatic verification of protocols governing coordination of autonomous
systems can therefore be performed by constructing a finite state representation of the
system using the techniques of this paper. A potential application of the ideas of the
paper could be in code generation for multiple asynchronously communicating tasks
allocated on the same processor, replacing event based communication by shared
memory communication.

References

1. Euro-Interlocking Requirements, September 2001, see www.eurolock.org
2. W. Damm and J. Klose. Verification of a Radio-based Signaling System Using the

Statemate Verification Environment. Formal Methods in System Design, Vol 19(2), 2001.
3. D. Harel and E. Gery. Executable Object Modelling with Statecharts. IEEE Computer, July

1997, 31-42
4. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM,

2(5):323--342, April 1983.
5. A.P. Sistla and L.D. Zuck. Automatic temporal verification of buffer systems. in Larsen and

Skou, editors, Proc.3rd Int. Conf. on Computer Aided Verification, volume 575 of Lecture
Notes in Computer Science, Springer Verlag, 1991.

6. M.G. Gouda, E.M. Gurari, T.-H. Lai, and L.E. Rosier. On deadlock detection in systems of
communicating finite state machines. Computers and Artificial Intelligence, 6(3):209-228,
1987.

Eliminating Queues from RT UML Model Representations 393

7. J.K. Pachl. Protocol description and analysis based on a state transition model with chan-
nel expressions. In Protocol Specification, Testing, and Verification VII, May 1987.

8. P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems with un-
bounded, lossy FIFO channels. In Proc. 10th Int. Conf. on Computer Aided Verification,
volume 1427 of Lecture Notes in Computer Science, pages 305-318, 1998.

9. W. Peng and S. Purushothaman. Data flow analysis of communicating finite state machines.
ACM Trans. on Progr. Languages and Systems 13(3):399-442, July 1991.

10. 10. B. Boigelot and P. Godefroid. Symbolic verification of communication protocols with
infinite statespaces using QDDs. In Alur and Henzinger, editors, Proc. 8th Int. Conf. on
Computer Aided Verification, volume 1102 of Lecture Notes in Computer Science, pages
1-12. Springer Verlag, 1996.

11. B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of QDDs. In Proc. 4th
Int. Static Analysis Symposium, Lecture Notes in Computer Science. Springer Verlag,
1997.

12. A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO channel systems
with nonregular sets of configurations. in Proc. ICALP 97, volume 1256 of Lecture Notes
in Computer Science, 1997.

13. 13.P.A. Abdulla and B. Jonsson. Channel representations in protocol verification. in Proc.
CONCUR 2001, 12th int. Conf. on Concurrency Theory, volume 2154 of Lecture Notes in
Computer Science, pages 1-15, 2001.

14. B. Westphal Exploiting Object Symmetry in Verification of UML-Designs, Diplomarbeit,
Carl von Ossietzky Universität, 2001

15. W. Damm and A. Pnueli. An Active Object Model. Technical Report, OFFIS, Oldenburg,
FRG, 2002.

	Introduction
	Formal Model of UML State Machines
	Symbolic Evaluation of Events
	About Exact Finite Symbolic Representations
	Conclusions
	References

