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Abstract. We address the problem of verifying clique avoidance in the
TTP protocol. TTP allows several stations embedded in a car to com-
municate. It has many mechanisms to ensure robustness to faults. In
particular, it has an algorithm that allows a station to recognize itself
as faulty and leave the communication. This algorithm must satisfy the
crucial ’non-clique’ property: it is impossible to have two or more disjoint
groups of stations communicating exclusively with stations in their own
group. In this paper, we propose an automatic verification method for
an arbitrary number of stations N and a given number of faults k. We
give a faithful abstraction that allows to model the algorithm by means
of unbounded (parametric) counter automata. We have checked the non-
clique property on this model in the case of one fault, using the ALV
tool as well as the LASH tool.

Keywords: Formal verification, fault-tolerant protocols, parametric
counter automata, abstraction.

1 Introduction

The verification of complex systems, especially of software systems, requires the
adoption of powerful methodologies based on combining, and sometimes iter-
ating, several analysis techniques. A widely adopted approach consists in com-
bining abstraction techniques with verification algorithms (e.g., model-checking,
symbolic reachability analysis, see, e.g., [16,1,23]). In this approach, non-trivial
abstraction steps are necessary to construct faithful abstract models (typically
finite-state models) on which the required properties can be automatically ver-
ified. The abstraction steps can be extremely hard to carry out depending on
how restricted the targeted class of abstract models is. Indeed, many aspects
in the behavior of complex software systems cannot (or can hardly) be cap-
tured using finite-state models. Among these aspects, we can mention, e.g.,
(1) the manipulation of variables and data-structures (counters, queues, ar-
rays, etc.) ranging over infinite domains, (2) parameterization (e.g., sizes of
the data structures, the number of components in the system, the rates of
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errors/faults/losses, etc.). For this reason, it is often needed to consider ab-
straction steps which yield infinite-state models corresponding to extended au-
tomata, i.e., a finite-control automata supplied with unbounded data-structures
(e.g., timed automata, pushdown automata, counter automata, FIFO-channel
automata, finite-state transducers, etc.) [1]. Then, symbolic reachability analy-
sis algorithms (see, e.g., [14,7,8,9,18,12,24,10,4,2,3]) can be applied on these (ab-
stract) extended automata-based models in order to verify the desired properties
of the original (concrete) system. Of course, abstraction steps remain non-trivial
in general for complex systems, even if infinite-state extended automata are used
as abstract models.

In this paper, we consider verification problems concerning a protocol used
in the automotive industry. The protocol, called TTP/C, was designed at the
Technical University of Vienna in order to allow the communication between
several devices (micro-processors) embedded in a car, whose function is to control
the safe execution of different driving actions [20,19].

The protocol involves many mechanisms to ensure robustness to faults. In
particular, the protocol involves a mechanism which allows to discard devices
(called stations) which are (supposed to be) faulty. This mechanism must ensure
the crucial property: all active stations form one single group of communicating
stations, i.e., it is impossible to have two (or more) disjoint groups of active
stations communicating exclusively with stations in their own group.

Actually, the algorithm is very subtle and its verification is a real challenge for
formal and automatic verification methods. Roughly, it is a parameterized algo-
rithm for N stations arranged in a ring topology. Each of the stations broadcasts
a message to all stations when it is its turn to emit. The turn of each station
is determined by a fixed time schedule. Stations maintain informations corre-
sponding to their view of the global state of the system: a membership vector,
consisting of an array with a parametric size N , telling which stations are active.
Stations exchange their views of the system and this allows them to recognize
faulty stations. Each time a station sends a message, it sends also the result of a
calculation which encodes its membership vector. Stations compare their mem-
bership vectors to those received from sending stations. If a receiver disagrees
with the membership vector of the sender, it counts the received message as
incorrect. If a station disagree with a majority of stations (in the round since
the last time the station has emitted), it considers itself as faulty and leaves
the active mode (it refrains from emitting and skips its turn). Stations which
are inactive can return later to the active mode (details are given in the paper).
Besides the membership vector, each station s maintains two integer counters
in order to count in the last round (since the previous emission of the station s)
(1) the number of stations which have emitted and from which s has received a
correct message with membership vector equal to its own vector at that moment
(the stations may disagree later concerning some other emitting station), and (2)
the number of stations from which s received an incorrect message (the incorrect
message may be due to a transmission fault or to a different membership vector).
The information maintained by each station s depends tightly on its position in
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the ring relatively to the positions of the faulty stations and relatively to the
stations which agree/disagree with s w.r.t. each fault.

The proof of correction of the algorithm and its automatic verification are
far from being straightforward, especially in the parametric case, i.e., for any
number of stations, and any number of faults.

The first contribution of this paper is to prove that the algorithm stabilizes
to a state where all membership vectors are equal after precisely two rounds
from the occurrence of the last fault in any sequence of faults.

Then, we address the problem of verifying automatically the algorithm. We
prove that, for every fixed number of faults k, it is possible to construct an exact
abstraction of the algorithm (parameterized by the number of stations N) by
means of a parametric counter automaton. This result is surprising since (1) it
is not easy to abstract the information related to the topology of the system
(ordering between the stations in the ring), and (2) each station (in the concrete
algorithm) has local variables ranging over infinite domains (two counters and
an array with parametric bounds). The difficulty is to prove that it is possible
to encode the information needed by all stations by means of a finite number
of counters. Basically, this is done as follows: (1) We observe that a sequence
of faults induces a partition of the set of active stations (classes correspond
to stations having the same membership vector) which is built by successive
refinements: Initially, all stations are in the same set, and the occurrence of each
fault has the effect of splitting the class containing the faulty station into two
subclasses (stations which recognizes the fault, and the other ones). (2) We show
that there is a partition of the ring into a finite number of regions (depending on
the positions of the faulty stations) such that, to determine at any time whether
a station of any class can emit, it is enough to know how many stations in the
different classes/zones have emitted in the last two rounds. This counting is
delicate due to the splitting of the classes after each fault.

Finally, we show that, given a counter automaton modeling the algorithm, the
stabilization property (after 2 rounds following the last fault) can be expressed as
a constrained reachability property (in CTL with Presburger predicates) which
can be checked using symbolic reachability analysis tools for counter automata
(e.g., ALV [13] or LASH [21]). We have experimented this approach in the case
of one fault. We have built a model for the algorithm in the language of ALV,
and we have been able to verify automatically that it converges to a single clique
after precisely two rounds from the occurrence of the fault. Actually, we have
provided a refinement of the abstraction given in the general case which allows
to build a simpler automaton. This refinement is based on properties specific to
the 1 fault case that have been checked automatically using ALV.

The paper is organized as follows. Section 2 presents the protocol. In Section
3, we prove the crucial non-clique property for n stations: the stations that
are still active do have the same membership vector at the end of the second
round following fault k. Considering the 1 fault case, section 4 presents how to
abstract faithfully the protocol parameterized by the number of stations n as
an automaton with counters that can be symbolically model checked. Section 5
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Fig. 1. A TDMA round for 3 stations.

generalizes the approach for a given number of faults k. Section 6 concludes the
paper. By lack of space, all proofs are omitted. They can be found in [11].

2 Informal Description of the Protocol

TTP is a time-triggered protocol. It has a finite set S of N stations and allows
them to communicate via a shared bus. Messages are broadcast to all stations via
the bus. Each station that participates in the communication sends a message
when it is the right time to do so. Therefore, access to the bus is determined
by a time division multiple access (TDMA) schema controlled by the global
time generated by the protocol. A TDMA round is divided into time slots. The
stations are statically ordered in a ring and time slots are allocated to the stations
according to their order. During its time slot, a station has exclusive message
sending rights. A TDMA round for three stations is shown in Figure 1. When
one round is completed, a next one takes place following the same pattern.

TTP is a fault-tolerant protocol. Stations may fail while other stations con-
tinue communicating with each other. TTP provides different services to ensure
robustness to faults, such as replication of stations, replication of communication
channels, bus guardian, fault-tolerant clock synchronization algorithm, implicit
acknowledgment, clique avoidance mechanism, [20,19,5]. Several classes of faults
are distinguished. A symmetric fault occurs when a station is send faulty, i.e.,
no other station can receive it properly, or receive faulty, i.e., it cannot receive
properly any message. Asymmetric faults occur when an emitting station is re-
ceived properly by more than 1 station, but less then all stations. In this paper,
we allow asymmetric faults to occur and consider symmetric faults as a special
case of asymmetric faults. TTP provides special mechanisms to deal with other
failures like processor faults, transient faults, but we do not consider them here.
For the protocol to work well, it is essential that (asymmetric) faults do not
give rise to cliques. In [20,19] cliques are understood as disjoint sets of stations
communicating exclusively with each other. In this paper, we focus on implicit
acknowledgment and clique avoidance mechanism, to be introduced shortly, and
show that they prevent the formation of different cliques, clique is cast in its
graph theoretical meaning. When it is working or in the active state, a station
sends messages in its time slot, listens to messages broadcast by other stations
and carries local calculations.
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2.1 Local Information

Each station s stores locally some information, in particular a membership vec-
tor ms and two counters, CAccs and CFails. A membership vector is an array
of booleans indexed by S. It indicates the stations that s receives correctly (in
a sense that will be made precise below). If s received correctly the last mes-
sage, also called frame, sent by s′, then ms[s′] = 1, otherwise ms[s′] = 0. A
sending station is supposed to receive herself properly, thus ms[s] = 1 for a
working station s. The counters CAccs and CFails are used as follows. When it
is ready to send, s resets CAccs and CFails to 0. During the subsequent round,
s increases CAccs by 1 each time it receives a correct frame (this includes the
frame it is sending itself) and it increases CFails by 1 each time it receives an
incorrect frame. When no frame is sent (because the station that should send is
not working), neither CFails nor CAccs are increased.

2.2 Implicit Acknowledgment

Frames are broadcast over the bus to all stations but they are not explicitly
acknowledged. TTP has implicit acknowledgment. A frame is composed of a
header, denoted by h in Figure 1, a data field, denoted by data and a CRC
field denoted by crc. The data field contains the data, like sensor-recorded data,
that a station wants to broadcast. The CRC field contains the calculation of the
Cyclic Redundancy Check done by the sending station. CRC is calculated over
the header, the data field and the individual membership vector. When station
s is sending, it puts in the CRC field the calculation it has done with its own
membership vector ms. Station s′ receiving a frame from station s recognizes
the frame as valid if all the fields have the expected lengths. If the frame is valid,
station s′ performs a CRC calculation over the header and the data field it has
just received, and its own membership vector ms′ . It recognizes the frame as
correct if it has recognized it as valid and its CRC calculation agrees with the
one put by s in the CRC field. Therefore, a correct CRC implies that sender s and
receiver s′ have the same membership vector. We also assume a converse: if s and
s′ do not have the same membership vector, the CRC is not correct. The CRC
check justifies implicit acknowledgment. Receiver s′ has ms′ [s′] = 1. A correct
CRC implies ms′ = ms, thus ms[s′] = 1. Hence s has correctly received the last
frame sent by s′, i.e., s′ is implicitly acknowledged by s. Implicit acknowledgment
in TTP contains an additional feature involving first and second successors [19].
Our result on cliques is established for a version where these complications are
not present.

2.3 Clique Avoidance Mechanism

The clique avoidance mechanism reads as follows: Once per round, at the be-
ginning of its time slot, a station s checks whether CAccs > CFails. If it is the
case, it resets both counters as already said above and sends a message. If it is
not the case, the stations fails. It puts its own membership vector bit to 0, i.e.,
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ms[s] = 0, and leaves the active state, thus will not send in the subsequent
rounds. The intuition behind this mechanism is that a station that fails to rec-
ognize a majority of frames as correct, is most probably not working properly.
Other working stations, not receiving anything during the time slot of s, put the
bit of s to 0 in their own membership vector.

2.4 Re-integration

Faulty stations that have left the active state can re-integrate the active state [19,5].
The integration algorithm works as follows. An integrating station s copies the
membership vector from some active station. As soon as the integrating station
has a copy, it updates its membership vector listening to the traffic following
the same algorithm as other working stations. During its first sending slot, it
resets both counters, CAccs and CFails to 0, without sending any frame. During
the following round, it increases its counters and keeps updating its membership
vector as working stations do. At the beginning of its next sending slot, s checks
whether CAccs > CFails. If it is the case, it puts ms[s] to 1 and sends a frame,
otherwise it leaves the active state again. Receiving stations, if they detect a
valid frame, put the membership of s to 1 and then perform the CRC check as
described above.

2.5 Example

Consider a set S composed of 4 stations and suppose that all stations received
correct frames from each other for a while. This means that they all have identical
membership vectors and CFail = 0. After station s3 has sent, the membership
vectors as well as counters CAcc and CFail look as follows. Remember that there
is no global resetting of CAcc and CFail. Resetting is relative to the position of
the sending station.

stations m[s0] m[s1] m[s2] m[s3] CAcc CFail
s0 1 1 1 1 4 0
s1 1 1 1 1 3 0
s2 1 1 1 1 2 0
s3 1 1 1 1 1 0

We suppose that a fault occurs while s0 is sending and that no subsequent
fault occurs for at least two rounds, calculated from the time slot of s0. We
assume also that the frame sent by s0 is recognized as correct by s2 only. So the
set S is split in two subsets, S1 = {s0, s2} and S0 = {s1, s3}.

1. Membership vectors and counters after s0 has sent:
stations m[s0] m[s1] m[s2] m[s3] CAcc CFail

s0 1 1 1 1 1 0
s1 0 1 1 1 3 1
s2 1 1 1 1 3 0
s3 0 1 1 1 1 1
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2. Membership vectors and counters after s1 has sent. Notice that, because s0
and s2 do not have the same membership vector as s1, the CRC check does
not pass, so they don’t recognize the frame sent by s1 as correct.
stations m[s0] m[s1] m[s2] m[s3] CAcc CFail

s0 1 0 1 1 1 1
s1 0 1 1 1 1 0
s2 1 0 1 1 3 1
s3 0 1 1 1 2 1

3. Membership vectors and counters after s2 has sent:
stations m[s0] m[s1] m[s2] m[s3] CAcc CFail

s0 1 0 1 1 2 1
s1 0 1 0 1 1 1
s2 1 0 1 1 1 0
s3 0 1 0 1 2 2

4. Memberships and counters after the time slot of s3, which cannot send by
the clique avoidance mechanism and leaves the active state:
stations m[s0] m[s1] m[s2] m[s3] CAcc CFail

s0 1 0 1 0 2 1
s1 0 1 0 0 1 1
s2 1 0 1 0 1 0
s3 0 0 0 0 0 0

5. Memberships and counters after s0 has sent again:
stations m[s0] m[s1] m[s2] m[s3] CAcc CFail

s0 1 0 1 0 1 0
s1 0 1 0 0 1 2
s2 1 0 1 0 2 0
s3 0 0 0 0 0 0

6. Memberships and counters after the time slot of s1, which cannot send by
the clique avoidance mechanism and leaves the active state:
stations m[s0] m[s1] m[s2] m[s3] CAcc CFail

s0 1 0 1 0 1 0
s1 0 0 0 0 0 0
s2 1 0 1 0 2 0
s3 0 0 0 0 0 0

Membership vectors are coherent again at this point of time.

3 Proving Clique Avoidance

In this section, we prove that if k faults occur at a rate of more than 1 fault per
two TDMA rounds and if no fault occur during two rounds following fault k, then
at the end of that second round, all active stations have the same membership
vector, so they form a single clique in the graph theoretical sense.
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Let us denote by W the subset of S that contains all working stations. We
may write ms = S′ for a station s with S′ ⊆ S as a short hand for ms[s′] = 1 iff
s′ ∈ S′. To prove coherence of membership vectors we start with the following
situation. We suppose that stations of W have identical membership vectors and
all have CFails = 0. Because ms[s] = 1 for any working station, this implies that
ms = W for any s ∈ W . Faults occur from this initial state.

Let us define a graph as follows: the nodes are the stations, and there is an
arc between s and s′ iff ms[s′] = 1. We recall that, in graph theory, a clique is
a complete subgraph, i.e., each pair of nodes is related by an arc. Thus initially,
W forms a single clique in the graph theoretical sense.

3.1 Introductory Example

Let us illustrate how things might work in the case of two faults. The first fault
occurs when s0 sends. We suppose that only s1 fails to receive correctly the
frame sent by s0. S is split as S1 = {s0, s2, s3} and S0 = {s1}. Membership
vectors and counters after s0 has sent:

stations m[s0] m[s1] m[s2] m[s3] CAcc CFail
s0 1 1 1 1 1 0
s1 0 1 1 1 3 1
s2 1 1 1 1 3 0
s3 1 1 1 1 2 0

Membership vectors and counters after s1 has sent:
stations m[s0] m[s1] m[s2] m[s3] CAcc CFail

s0 1 0 1 1 1 1
s1 0 1 1 1 1 0
s2 1 0 1 1 3 1
s3 1 0 1 1 2 1

Membership vectors and counters after s2 has sent. At this point, we suppose
that a second fault occurs. Neither s3 nor s0 recognize the frame sent by s2 as
correct. S1 is split in S11 = {s2} and S10 = {s0, s3}:

stations m[s0] m[s1] m[s2] m[s3] CAcc CFail
s0 1 0 0 1 1 2
s1 0 1 0 1 1 1
s2 1 0 1 1 1 0
s3 1 0 0 1 2 2

Membership vectors and counters after the time slot of s3, which is prevented
from sending by the clique avoidance mechanism:

stations m[s0] m[s1] m[s2] m[s3] CAcc CFail
s0 1 0 0 0 1 2
s1 0 1 0 0 1 1
s2 1 0 1 0 1 0
s3 0 0 0 0 0 0

One notices that s0, then s1 are prevented from sending by the clique avoid-
ance mechanism. Membership vectors and counters after the time slot of s1:
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stations m[s0] m[s1] m[s2] m[s3] CAcc CFail
s0 0 0 0 0 0 0
s1 0 0 0 0 0 0
s2 0 0 1 0 1 0
s3 0 0 0 0 0 0

Coherence is achieved again after the time slot of s1, where s2 remains the
only active station. Though S11 is smaller that S10, the position of s2 in the ring
as the first station of the round with the second fault allows it to capitalize on
frames accepted in the round before and to win over the set S10.

3.2 Proving a Single Clique after k Faults

The proof proceeds as follows. First we show a preliminary result. If W is di-
vided into subsets Si is such a way that all stations in a subset have the same
membership vector, then stations inside a subset behave similarly: if there is no
fault, they recognize the same frames as correct or as incorrect. Then we show
that the occurrence of faults does produce such a partitioning, i.e., after fault
k, W is divided into subsets Sw, where w ∈ {0, 1}k. Indeed, as illustrated by
the example at the end of section 2, after 1 fault, W is split in S1, the stations
that recognize the frame as correct, and S0, the stations that do not recognize
the frame as correct. Because any station recognizes itself as correct, S1 is not
empty. Now, suppose that a second fault occurs. Assume that the second fault
occurs when a station from set S1 sends. As before, set S1 splits into S11, the
stations that recognize the frame as correct, and S10, the stations that do not
recognize the frame as correct, as illustrated in the example in Subsection 3.1.
Again S11 is not empty. And the process generalizes. If a station s from a set Sw

sends when fault k occurs, Sw splits into Sw1 and Sw0 with Sw1 �= ∅. Then, we
show that two stations s and s′ have the same membership vector if and only if
they belong to the same set Sw. Using the preliminary lemma, we have a result
about the incrementation of the counters CAcc and CFail, namely, all stations
from a set Sw increment CAcc if a station from Sw sends, and increment CFail
if a station from Sw′ sends, where w �= w′. From this, we can deduce our main
result: in the second round after fault k, only stations from a single set Sw can
send. It follows that, at the end of the second round, there is only one clique
and it is not empty.

The preliminary result reads as follows.

Lemma 1 Suppose that W is divided into m subsets S1, . . . , Sm such that s and
s′ have the same membership vector iff s and s′ belong to the same subset Si,
1 ≤ i ≤ m. Let s ∈ Si, 1 ≤ i ≤ m. Suppose no fault occurs. Then, each time
some other station s′ from Si is sending, s increases CAccs by 1 and keeps the
membership bit of s′ to 1. Each time some station s′ ∈ Sj, j �= i is sending, s
increases CFails by 1 and puts the membership bit of s′ to 0.

Now we show how faults partition the set W .
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Proposition 2 At the end of the time slot of sk, the station where fault k occurs,
k ≥ 1, W is divided into subsets Sw, with w ∈ {0, 1}k, such that:

1. there exists at least one w with Sw �= ∅,
2. any two stations s ∈ Sw and s′ ∈ Sw′ have the same membership vector iff

w = w′,
3. for any w ∈ {0 | 1}k with Sw �= ∅, for any s, s′ ∈ Sw, ms[s′] = 1.

Now, observe that in the second round following fault k, the last fault, at
least one station can send.

Lemma 3 In the second round following fault k, at least one station is sending.

Finally, we show that only stations from a unique set Sw are able to send in
the second round following fault k.

Theorem 1. Let s ∈ Sw be the first station to send in the second round following
fault k. Then, only stations from set Sw can send in the second round following
fault k.

From Theorem 1, one deduces that, at the end of the second round following
fault k, for any station s ∈ Sw: ms = Sw. This gives our safety property about
cliques.

Corollary 4 At the end of the second round following fault k, all working sta-
tions form a single clique in the graph theoretical sense.

By Lemma 3, we know that the clique formed at the end of the second round
is not empty. This implies that faults never prevent all stations from sending.

Corollary 5 At the end of the second round following fault k, the set of working
stations is not empty.

3.3 Integrating Stations

Proposition 2 and Theorem 1 can be generalized to the case where integrating
stations are allowed. Indeed, an integrating station s copies the membership
vector from some active station s′ which belongs to some Sw and updates it as
active stations do. So it keeps having the same membership vector as stations
of some set Sw′ , with w being a prefix of w′, as faults occur. This is shown in
Proposition 6, which is a sharper version of Proposition 2.

Proposition 6 At the end of the time slot of sk, the station where fault k occurs,
k ≥ 1, W is divided into subsets Sw, with w ∈ {0, 1}k, such that:

1. there exists at least one w with Sw �= ∅,
2. any two stations s ∈ Sw and s′ ∈ Sw′ have the same membership vector iff

w = w′,
3. for any w ∈ {0 | 1}k with Sw �= ∅, for any s, s′ ∈ Sw, ms[s′] = 1.
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4. This partition stays stable till the occurrence of fault k + 1.
5. The station sk+1 ready to send when fault k + 1 occurs belongs to some set

Sw, w ∈ {0, 1}k, or has its membership vector identical to a station of some
set Sw, w ∈ {0, 1}k.

At its first time slot, an integrating station s resets its counters but does not
send. During the subsequent round, it increments CAccs and CFails as working
stations do.When its time slot comes again, s, having the same membership
vector as stations of Sw, performs the clique avoidance mechanism. CAccs >
CFails means that stations from Sw, without s, have emitted more than stations
from any other set. Thus s can emit and, that way, contributes to reinforce Sw. If
CAccs ≤ CFails, then s cannot emit and nothing will be changed concerning the
size of Sw. This argument is used to prove Theorem 1 in the case of integrating
stations. Corollaries 4 and 5 hold as well.

4 Automatic Verification: The 1 Fault Case

In the case of a single fault, the set W of active stations is divided into two
subsets, S1 and S0. The set S1 is not empty as it contains s1, the station that
was sending when the fault occurs. We assume that no other fault occurs for
the next two rounds, a round is taken with the beginning of the time slot of
s1. We want to prove automatically for an arbitrary number N of stations that,
at the end of the second round following the fault, all working stations form a
single non-empty clique. To achieve this goal, we need a formalism to model the
protocol and a formalism to specify the properties that the protocol must satisfy.
To model the protocol, we take an automaton with parameters and counters. To
specify the properties, we take the temporal logic CTL.

We have seen that each station maintains two counters, CAcc and CFail and
a membership vector m. To be able to model the protocol with an arbitrary
number N of stations by an automaton, we need an abstraction that allows us
to forget all individual membership vectors and counters, and, at the same time,
allows us to represent correctly the emission of frames.

We divide the presentation in two main parts: first round, and second and
later rounds following the fault.

4.1 First Round Following the Fault: Abstraction

In the case of 1 fault, Propositions and Lemmata of section 3 take a simpler
form given by the Corollaries below. Essentially, stations from S1 increment
CAcc when stations from S1 send, and they increment CFail and do m[s] = 0
when some station s from S0 sends. Stations from S0 behave similarly.

Corollary 7 At the end of the time slot of s1, all stations in S1 have the same
membership vector, namely W and all stations in S0 have the same membership
vector, namely W \ {s1}.
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Corollary 8 In the round following the time slot of s1, after a station s of
S0 has sent, any station s′ of S1 which is still in the active state, puts the
membership bit of s to false, i.e. ms′ [s] = 0, and increases CFails′ by 1.

Corollary 9 In the round following the time slot of s1, after a station s of
S1 has sent, any station s′ of S1, which is still in the active state, keeps the
membership bit of s to true and increases CAccs′ by 1.

With these corollaries, it is equivalent to know which set, S1 or S0, a station
belongs to, or to know its membership vector. Hence, we may abstract away
individual membership vectors and keep only the two sets.

Let us see now that we can abstract away all individual counters CAcc and
CFail. Let d1 be a counter to count how many stations of S1 have sent so far
in the round since the fault occurred. Let d0 be a similar counter for S0. These
two global counters are enough to calculate CAccs and CFails for each station
s ready to send. Indeed, let s be a station ready to send. Assume s ∈ S1. How
much is CFails? It is exactly given by d0. How much is CAccs? Generally, it is
more than d1. One has to add all stations that have emitted before the fault
since the last time slot of s, because s has recognized them all as correct, see
Figure 2. However, this number can be calculated exactly with the help of d1
and d0 only as Proposition 2 shows.

s s

acc−s, C fail−s

s1

C

d1 : accepted
d0 : not acceptedall accepted

Fig. 2. Illustrating proof of Theorem 2.

Theorem 2. Let s a station ready to send in the round following fault 1.

1. If s ∈ S1, then CAccs =|W | −d0 and CFails = d0.
2. If s ∈ S0, then CAccs =|W | −d1 and CFails = d1.

Corollaries 7 to 9 and Theorem 2 give us a powerful abstraction: we abstract
away the N individual membership vectors, we abstract away the statical order
and the individual CAcc and CFail. Instead we fix two sets, S1 and S2, and two
counters d1 and d0, and we can model correctly stations sending and failing.

4.2 First Round Following the Fault: The Model

The protocol with N stations including the first round following 1 fault is mod-
eled by the automaton with parameters and counters shown in the TOP part of
Figure 3. Let us read it from left to right.
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/ CF=0, CW=N,
  Cp=0, d=0, dF=0  C1−−,dF++,CF++, Cp++

 d1++, Cp++

Cp=N/

  d1++, Cp++

  C1−−,CF++,dF++, Cp++

dF++, Cp++
dF<CF/

Cp=N /

d=0, dF=0

init normal

later
rounds

Cp=0, d=0, dF=0
Cp=N/ 

dF++,Cp++
df<CF/

dF<CF/dF++,Cp++

assert never taken−−

   dF=0,Cp=1

round1

1fault/C1>=1,C0>=0,
   C1+C0=CW,d1=1,d0=0  d0++, Cp++

 C0−−,dF++,CF++, Cp++

d1=0, d0=0,dF=0,Cp=0     −− assert !(C1=C0)

d1<C1 & C1>C0/

d1<C1 & C1<=C0/

d0<C0 & C0>C1/
  d0++, Cp++

d0<C0 & C0<=C1/
  C0−−,CF++,dF++, Cp++

Cp=N & !(C1=0) & !(C0=0)/
 d1=0, d0=0, dF=0,Cp=0

assert C1=0 | C0=0 −−
CW = C1+C0, Cp=0,

d<CW/
d++,CP++

T

O

P

B
O

T
T
O
M

d1<C1 & C1+C0−2d0>0/

d1<C1 & C1+C0−2d0<=0/

d0<C0 & C1+C0−2d1>0/

d0<C0 & C1+C0−2d1<=0/

Fig. 3. The automaton with parameters and counters modeling N stations.

Transition from initial state init to state normal initializes counters. The
counter of working stations, CW , takes as initial value the parameter N which
is the total number of stations. The counter of stations that are not working
anymore, or have failed, CF is set to 0 as well as three other counters, Cp, d
and dF . Cp counts how many time slots in total have elapsed in the round. d
counts how many working stations have sent in the round. dF counts how many
slots of non-working stations have elapsed in the round.

State normal models the protocol when there are no faults. Transition with
guard d < CW models the sending of a frame by a working station while transi-
tion with guard dF < CF corresponds to the time slot of a non-working station,
where no frame is sent. Notice the non-determinism as we abstract the statical
order among stations. Transition with guard Cp = N is the starting of a new
round.

Transition with guard 1fault from normal to round1 is taken when a fault
occurs. The input 1fault can be seen as a signal that can have the value true
at random. This transition sets the items defined in the abstraction: C1 is the
number of stations belonging to S1, i.e., the number of stations that recognize the
frame of the faulty station as correct and C0 is similar for S0. These parameters
must fulfill 3 constraints as given in the abstraction: C1 ≥ 1, as the faulty
station recognizes itself as correct, C0 ≥ 0 and C1 + C0 = CW . The counter
d1, to count how many stations of the set S1 have sent in the round, is set to 1
and its counterpart d0, for S0, is set to 0. Finally, Cp is reset to 1 as the round
is now taken from the slot of the faulty station.
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Transitions of state round1 model the sending of frames, or the failing of
stations by the clique avoidance mechanism. For instance, transition with guard
d1 < C1 & CW −2d0 > 0 models a station of the set S1 which passes the clique
avoidance mechanism and sends, while d1 < C1 & CW − 2d0 ≤ 0 models a
station from set S1 which leaves the active state because of the clique avoidance
mechanism. These guards make use of Theorem 2 to check whether CAccs −
CFails > 0. Notice again the non-determinism. State round1 has one outgoing
transition with guard Cp = N to state later rounds. The guard is true when
the first round is completed. This transition is annotated with an assertion that
we want to prove.

4.3 First Round Following the Fault: Properties

A first property, called P1, that has been proved as true, is that whenever control
leaves state round1:

!(C1 = C0) (P1).

P1 means that, when the first round after the fault is over, either |S1 |>|S0 |
or | S0 |>| S1 |, whatever the original partition {S1, S0} was when the fault
occurred.

We have analyzed what leads to C1 > C0, or C0 > C1 upon leaving round1.
First, we have shown that, if |S1 |>|S0 | when the fault occurs, then C1 > C0

when control leaves round1, and vice-versa. Let us denote by InS1, InS0, the
initial number of stations in the set S1, respectively in the set S0, when a fault
occurs. Adding the constraint InS1 > InS0, we have proved that whenever
control leaves state round1:

(InS1 = C1) (P2).

Since counters C1 and C0 may not increase, this implies C1 > C0 when
control enters state later rounds. It also implies that all stations from S1 did
send in the first round.

Then we have investigated the case |S1 |=|S0 | when the fault occurs. If set
S1 comes first in the statical order, then C1 > C0, and vice versa if S0 comes
first. Adding the constraint InS1 = InS0 we have proved:

AG (d1 = InS1 and d0 < InS1) ⇒ AG(C1 = InS1)) (P3),

AG ((d1 = InS1 and d0 < InS1) ⇒ (C1 + C0 − 2 ∗ d1 <= 0)) (P4).

Again, this implies C1 > C0 when control leaves state round1. It also implies
that all stations from S1 did send in the first round.

4.4 Second and Later Rounds Following the Fault: Abstraction

From Theorem 2, we deduce CAccs1 and CFails1 for the faulty station s1 at the
end of the first round.
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Corollary 10 At the end of the first round CAccs1 =|S1 | and CFails1 =|S0 |.
From Corollaries 8 and 9, we deduce that at the end of the first round, all

stations in S1 have the same membership vector, namely S1. A similar result
holds for stations in S0.

Corollary 11 Let s be any station and consider ms at the end of the first round
following the fault.

1. If s ∈ S1 then ms[s′] = 1 iff s′ ∈ S1.
2. If s ∈ S0 then ms[s′] = 1 iff s′ ∈ S0.

Let us notice that S1 and S0 form two cliques in the graph theoretical sense.
If none of this set is empty, at the end of the first round, stations are split in
two cliques. This is illustrated at the end of section 2, after the time slot of s3.

Using Properties P1 as well as Corollaries 10 and 11, one can deduce that
|S1 | and |S0 | give good approximations of CAcc and CFail in subsequent rounds.
Indeed, suppose first that |S1 |>|S0 | at the end of the first round. Stations in S1
continue sending, while stations in S0 are not able to send. CAccs stays stable
for any station s ∈ S1 during the second round, while CFails decreases. For a
station s′ ∈ S0, the contrary happens. A dual result holds when |S1 |<|S0 |.
Lemma 12 Consider the sets A and F with A = S1 and F = S0 at the end of
the first round and let s be any station about to send in the second round.

1. Suppose |A |>|F |.
(a) If s ∈ S1 then CAccs ≥|A | and CFails ≤|F |.
(b) Let s ∈ S0 then CAccs ≤|F | and CFails ≥|A |.

2. Suppose |F |>|A |.
(a) If s ∈ S0 then CAccs ≥|F | and CFails ≤|A |.
(b) If s ∈ S1 then CAccs ≤|A | and CFails ≥|F |.

4.5 Second and Later Rounds: The Model and Properties

We use lemma 12 to model the full protocol in later rounds as shown in the
BOTTOM part of Figure 3. Transition with guard d1 < C1 & C1 > C0 models
stations from S1 that are sending, while d1 < C1 & C1 ≤ C0 corresponds to
stations from S1 which leave the active state because of the clique avoidance
mechanism. Similar transitions correspond to stations from S0.

If membership vectors are coherent again at the end of the second round,
transition with guard Cp = N & !(C1 = 0) & !(C0 = 0), that models the start
of a new round with both sets non empty, should never be taken. Indeed, the
invariant below at state later rounds is true:

AG !(!(C1 = 0) and !(C0 = 0) and (Cp = N)) (P6).

P6 is annotated as an assertion in Figure 3. P6 proves that the corresponding
transition is never enabled, thus control leaves state later rounds as soon as
Cp = N , i.e., after 1 round.
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Further the following property is also verified as true when control moves
from state later rounds to state normal:

AG (C1 = 0 or C0 = 0) (P7).

P7 means that either S1 or S0 is empty at the end of the second round.
Hence, all active stations have the same membership vectors at the end of the
second round and form again a single clique in the graph theoretical sense.

4.6 Implementation

The automaton in Figure 3 has been translated in the formalism of Action
Language and If, and automatically verified using the corresponding verifier
[13], [21] respectively. Verification has been conducted modularly. First, the TOP

part with properties P1 to P4 have been verified, then the BOTTOM part with
properties P6 and P7. The transition system construction took 0.84 sec. and
the verification of P1 took 0.41 sec. using 16572416 bytes of memory with ALV,
and LASH needed 27643969 byte(s) for the same property.

5 Automatic Verification: The k Faults Case

To model the protocol for an arbitrary number N of stations and a given number
k of faults, as for the case of 1 fault, we use a fixed (but proportional to k) number
of counters to abstract the individual membership vectors and the individual
CAcc and CFail. However, we will see that the case of k faults is not a mere
generalization, it is more complex than the case of 1 fault.

5.1 First Round

Let 1 ≤ i ≤ k. By Proposition 2, after the occurrence of fault i, W is divided
into sets Sw with w ∈ {0, 1}i. We find it handy for the following to indicate
the length of the string w with the superscript i. We associate two counters
Cwi and dwi to each set Swi that is formed after the occurrence of any fault
i. The counters Cwi counts how many stations belong to set Swi when fault i
occurs. The counters dwi count how many stations from the set Swi have sent
between fault i and fault i + 1 in case i < k, and counts how many stations
from the set Swi have sent so far in the first round following fault k in case
i = k. Again because of Proposition 2, we assume that, for any w ∈ {0, 1}i−1,
Cwi1 + Cwi0 = Cwi, Cwi1 ≥ 1 and dwi1 ≥ 1. For each fault i, we associate a
counter Cp(i) that counts how many time slots have elapsed since fault i.

These counters are almost enough to know CAccs and CFails for any station
s in the first round following fault k. Indeed, let s be a station ready to send. s
belongs to some set Swk . In the rounds preceding fault k and during the round
following fault k, s recognizes as correct frames sent by stations from Sw′ , where
w′ is a prefix of wk, and recognizes as incorrect all other frames. This information
is recorded with the counters dwi, w ∈ {0, 1}i and 1 ≤ i ≤ k.
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There is one more subtlety. The clique avoidance mechanism needs that
CAccs and CFails count one round only, the round being relative to the po-
sition of the sending station s. To do so properly, we distinguish two cases.

s s s s s s

dw d , dAi

i i+1 k i

w wk kF

kdw

acc−s, C fail−sC

Fig. 4. Evaluating CAccs and CFails after fault k.

The first case is when fault k occurs in the first round following fault 1 and
the time slot of s still belongs to that round. One must take into account that
s has recognized as correct all stations that have sent before fault 1, which is a
generalization of Theorem 2.

The second case is when the time slot of the sending station s lies between
station si and si+1 and fault k occurs in the first round following fault i, i ≥ 1.
After fault i, s belongs to some set Swi and the number of frames accepted as
correct by s is given by dwi. However, to count correctly CAccs, dwi is too much.
One has to withdraw all stations accepted by s whose time slots are between si

and s. This is illustrated in Figure 4. We introduce auxiliary counters dAwk and
dF wk. These counters are set to 0 when fault k occurs. Counter dAwk counts how
many stations from set Swk have sent so far, as counters dwk do, and counter
dF wk counts how many stations from set Swk were preventing from sending so
far by the clique avoidance mechanism and moved to the set of non-working
stations. The difference with dwk is that these counters are reset to 0 each time
a counter Cp(i) reaches N after fault k. Thus dwi − Σw′kdAw′k − Σw′kdF w′k,
with wi a prefix of w′k, gives exactly how many frames between s and si+1

the station s has recognized as correct in the round, and dwi − Σw′kdAw′k −
Σw′kdF w′k + dwi+1 + · · · + dwk gives exactly how many frames in total s has
recognized as correct in the round, i.e., CAccs. A similar idea works for CFails.

Proposition 13 Let s ∈ Swk a station ready to send in the round following
fault k.

1. If Cp(1) ≤ N at the time slot of s, then:
CAccs =|W | −Σw′dw′, and CFails = Σw′dw′,
where w′ must not be prefix of wk.

2. Let i < k such that Cp(i) ≥ N and Cp(i + 1) < N at the time slot of s.
Then:
CAccs = (Σj=k

j=i dwj) − Σw′kdAw′k − Σw′kdF w′k, wj are prefixes of wk and
of w′k, and
CFails = (Σj=k

j=i Σw′j dw′j)−Σw′′kdAw′′k −Σw′′kdF w′′k , w′j, w′′k must not
be prefixes of wk.



328 Ahmed Bouajjani and Agathe Merceron

5.2 Later Rounds and the Model

At the end of the first round, counters dwk are kept as they are while counters
dF wk are reset to 0 and incremented during the second round as before, i.e.,
dF wk counts how many stations from set Swk were preventing from sending
so far by the clique avoidance mechanism and moved to the set of non-working
stations. For the second round following fault k, CAccs and CFails are calculated
with these counters only.

Proposition 14 Let s ∈ Sk
w a station ready to send in the second round follow-

ing fault k. Then:
CAccs = dwk − dF wk, and
CFails = Σw′kdw′k − Σw′kdF w′k with w′k �= wk.

The proof of this lemma uses the fact that if a station sends in the second
round following fault k, then it has sent also in the first round following fault k.

Using all these counters, an automaton similar to the one given in Figure 3
can be designed and, in theory1, automatically verified. Properties analogous to
P6 and P7 have to be checked to prove that after the second round following
fault k, there is only 1 clique.

6 Conclusion

We have proposed an approach for verifying automatically a complex algorithm
which is industrially relevant. The complexity of this algorithm is due to its very
subtle dynamic which is hard to model. We have shown that this dynamic can
be captured faithfully by means of unbounded (parametric) counter automata.
Even if the verification problem for these infinite-state models is undecidable in
general, there exists many symbolic reachability analysis techniques and tools
which allow to handle such models.

Our approach allows to build a model (counter automaton) for the algorithm
with an arbitrary number n of stations, but for a given number k of faults. We
have experimented our approach by verifying in a fully automatic way the model
in the case of one fault, using the ALV tool and the LASH tool.
Related Work: [5] provides a manual proof of the algorithm in the 1 fault case.
Theorem 1 generalizes this result to the case of any number of faults. On the
other hand, [5] considers the first and second successor feature in the implicit
acknowledgment algorithm, which is omitted in our work.

As far as we know, all the existing works on automated proofs or verifications
of the membership algorithm of TTP concern the case of one fault, and only sym-
metric fault occurrences are assumed. In our work, we consider the more general
framework where several faults can occur, and moreover, these faults can be
asymmetric. In [22], a mechanised proof using PVS is provided. [17,6,15] adopt
an approach based on combining abstraction and finite-state model-checking.
1 In the case of 2 faults, we got memory problems, both with ALV and LASH.
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[17] has checked the algorithm for 6 stations. [6,15] consider the parametric ver-
ification of n stations; [15] provides an abstraction proved manually whereas
[6] uses an automatic abstraction generation technique, both abstractions lead-
ing to a finite-state abstraction of the parameterized network. The abstractions
used in those works seem to be non-extensible to the case of asymmetric faults
and to the k faults case. To tackle this more general framework, we provide
an abstraction which yields a counter automaton and reduce the verification of
the algorithm to the symbolic reachability analysis of the obtained infinite-state
abstract model. Moreover, our abstraction is exact in the sense that it models
faithfully the emission of frames by stations.

Future Work: One future work is to consider the feature involving first and
second successor in the implicit acknowledgment algorithm. Our work indicates
that this feature could be left out, as far as clique avoidance and coherence
of membership vectors is concerned, since without it, stabilization occurs after
two rounds following the last fault in the general case of k asymmetric faults.
However, this feature allows a quicker detection of send-faulty stations. We con-
jecture that all results of Section 3 go through. However the abstraction issue
seems more tricky. Another interesting direction is to automatize, for instance
using a theorem prover, the abstraction proof which allows to build the counter
automaton modeling the algorithm. More generally, an important issue is to de-
sign automatic abstraction techniques allowing to produce infinite-state models
given by extended automata. Finally, a challenging problem is to design an algo-
rithmic technique allowing to verify automatically the algorithm by taking into
account simultaneously both of its parameters, i.e., for any number of stations
and for any number of faults.
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