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Abstract. Bounded Model Checking (BMC) based on SAT methods
consists in searching for a counterexample of a particular length and
to generate a propositional formula that is satisfiable iff such a coun-
terexample exists. Our paper shows how the concept of bounded model
checking can be extended to deal with TACTL (the universal fragment
of TCTL) properties of Timed Automata.

1 Introduction

Model checking [T3] consists in verifying that a finite state concurrent program
P satisfies a property ¢ (denoted P = ¢). When P is represented by its model
Mp and the property ¢ is given by a temporal logic formula, one checks that
Mp = . Generating Mp for P and checking that Mp = ¢ is automated. The
complexity of model checking methods strongly depends on the translation from
P to Mp and on the temporal logic to which the formula ¢ belongs to.

Recently, the interest in automated verification is moving towards concurrent
real-time systems. The properties to be verified are usually expressed in either
a standard temporal logic like LTL [13] and CTL [I8I1Y], or in its timed ver-
sion like MITL [5] and TCTL [1]. The practical applicability of model checking
is strongly restricted by the state explosion problem. Therefore, many differ-
ent reduction techniques have been introduced in order to alleviate the state
explosion. The major methods include application of partial order reductions
[711426129130131])37/38], symmetry reductions [20], abstraction techniques [15]16],
BDD-based symbolic storage methods [11J27], and SAT-related algorithms
[RI12/221133135].

Bounded model checking (BMC) based on SAT methods has been recently in-
troduced as a complementary technique to BDD-based symbolic model checking

* Partly supported by the State Committee for Scientific Research under the grant
No. 8T11C 01419.

W. Damm and E.-R. Olderog (Eds.): FTRTFT 2002, LNCS 2469, pp. 265-{288] 2002.
© Springer-Verlag Berlin Heidelberg 2002



266 Wojciech Penczek, Bozena Wozna, and Andrzej Zbrzezny

for LTL [8)9]. An extension of the BMC method to verification of the properties
expressed in ACTL has been shown for the first time in [34]. The main modifica-
tion of the original algorithm for LTL consists in the translation of a model M to
several symbolic paths (instead of one), which can start at arbitrary states of the
model. Moreover, the translation for an ACTL formula is simpler than for LTL
as there are no nested path modalities. The basic idea of BMC is to search for
a counterexample of a particular length and to generate a propositional formula
that is satisfiable iff such a counterexample exists. The efficiency of this method
is based on an observation that if a system is faulty, then only a fragment of its
state space is sufficient for finding an error [89134].

In the standard approach to verification of real time systems, Timed Au-
tomata are used as model generators, whereas the properties are expressed as
formulas of TCTL [I]. There are two alternative methods of building an abstract
model for a Timed Automaton. The first one is based on the notion of a clock
region graph [I], which is built by BFS-algorithm. The second method exploits
the partitioning algorithm [2J3l36], which iteratively builds the minimal model
w.r.t. the initial covering of the concrete state space.

The aim of our paper is to generalize the method of bounded model checking
to verification of Timed Automata. Since the application of BMC to the whole
language of CTL (so TCTL) seems to be very difficult, if not impossible, as one
might need to search all the state space of the model, we consider the universal
fragment of TCTL, called TACTL. Using a discretization method of [6], we
translate the validity of a TACTL formula ¢ in the clock region model of a
Timed Automaton A (M4 = ¢) to a propositional formula. This formula is
then tested for satisfiability using ZChaff [28/40] to verify whether M4 | ¢.
Since the length of the propositional formula is polynomial in the size of A and
@, the state explosion problem inherent in model checking is taken care by the
efficient satisfiability solver.

The rest of the paper is organized as follows. The next section contains
the discussion of the related work. Then, in section [ Timed Automata are
introduced. Logics TCTL and TACTL are defined in section [l Section [5] defines
region graphs. Bounded model checking for ACTL and TACTL is presented in
the next two sections. Generalizations and further optimizations are discussed
in Section 8. Section @ contains experimental results, whereas final remarks are
given in Section [I0

2 Related Work

Our paper is an extended and improved version of [33], where a general approach
to applying BMC for a subset of TACTL was described.

The idea of BMC for a temporal logic is taken from the papers by Clarke
et al. [8]9]. Timed Automata have been defined and investigated in many pa-
pers [114)36]. We adopt the definition given in [36]. Model checking for TCTL
was considered by several authors using different approaches: over clock region
models [I], on-the-fly [10], space-efficient [25], and over minimal models [36].
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Our approach is closely related to [4] and [36], from which we draw the idea
of the translation of model checking problem for TACTL to the model checking
problem for fair-ACTL (ACTLY). Motivation for considering only the universal
fragment of CTL can be found in [21/32]. Similar arguments apply to TCTL.

3 Timed Automata

We start with introducing Timed Automata and their runs. Hereafter, IN =
{0,1,2,...} denotes the set of natural numbers and IR, denotes the set of non-
negative real numbers. Let X = {x1,...,2,} be a finite set of variables, called
clocks. A clock valuation is a function v : X — IR, assigning to each clock = a
non-negative value v(z). The set of all the valuations is denoted by R';. For a
subset Y of X by v[Y := 0] we mean the valuation v such that Vo € Y, v'(z) =0
and Vo € X\ Y, v'(x) = v(z). For § € R4, v+ § denotes the valuation v” such
that Vo € X,v”(z) = v(z) + 0. The set Wx of clock constraints over the set of
clocks X is defined inductively as follows:

Yi=xi~ce|lag—xy~e|p Ay

where z;,z; € X, 4,5 € {1,...,n}, ~ € {<,<,=,>,>},and c € IN.
A clock valuation v satisfies the clock constraint ¢ € Wy, if

'U):xiNc lﬁ‘v(x’L)NC
v ):-/I;i —I] NCIﬁ‘U(-’IH,) _U(x7) ~cC

vEYAY iff v =Y andv E ¢

For each ¢ € ¥x by p(v) we denote the set of all the clock valuations satisfying

Y, ie, p(¥) = {v e R | v = ¢} Similarly, P(¥x) = {p(¥) C R} | ¢ € ¥x}.
Now, we are ready to define Timed Automata.

Definition 1. A timed automaton A is a 6-tuple (X, S, s°, E, X, 1), where X is
a finite set of actions, S is a finite set of locations, s° € S is an initial location,
E C S x X xWx x 2% x S is a transition relation, X is a finite set of clocks,
I:S5 — WUx is a state invariant.

FEach element e of E is denoted by e :== s YOX o This represents a transition
from the location s to the location s’ on the input action . The set Y C X
gives the clocks to be reset with this transition, whereas v € Wx is the enabling
condition for e.

. L LY :
Given a transition e i= s 23 s', we write source(e), target(e), guard(e) for s,

s’ and 1), respectively. The clocks of a Timed Automaton allow to express the
timing properties. An enabling condition constrains the execution of a transition
without forcing it to be taken. An invariant condition allows an automaton to
stay at a some state only as long as the constraint is satisfied.

A (concrete) state of A is a pair ¢ = (s,v), where s € S and v € R",. The
set of all the concrete states is denoted by @, i.e., @ = S x IR'}. The initial state
of A is defined as ¢° = (s°,v°) with v°(z;) = 0 for all z; € X.
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Let [ € ¥ and § € Ry. A timed consecution relation in A is defined by
action- and time-successors as follows:

— (s,v) LN (s',0) iff there is a transition s "Y' ¢ € E such that v = ¢ and
v =v[Y :=0] and v' = L(s'),

Let ¢ € Q. A g-run p of A is a maximal sequence of concrete states:
G 2% g0+ 00 2 g T g+ 8 gr 2 -, where go = ¢, ; € 5 and
d; € Ry for each i > 0.

A state ¢ of A is a deadlock if there is no delay § € R4 and an action

| € X such that ¢ LN q LN q', for some ¢',q” € Q. A run p has a deadlock
iff there is a deadlock state in p. A run p is said to be progressive iff X;cNd;
is unbounded. A run p is said to be mazimal iff p is infinite and progressive or
p has a deadlock. A Timed Automaton is progressive iff all its infinite runs are
progressive. For simplicity of presentation, we consider only progressive Timed
Automata. Progressiveness can be checked using the sufficient conditions of [36].
In Section [§] we discuss unrestricted Timed Automata.

4 Logics TCTL and TACTL

This section defines the logic TCTL [I] and two its sublogics: TACTL and
TECTL interpreted over concrete models of Timed Automata. As usual let
PV = {p1,p2,...} be a set of propositional variables.

Definition 2. A (concrete) model for a Timed Automaton A is a pair M =
(@, £,4"), V), where @ = S x R} is a set of the concrete states of A, f is
a function returning a set of all the mazimal g-runs for each concrete state
q € Q, q" is the initial state, V : S — 27V is a valuation function.

The formulas of TCTL are defined inductively as follows:
a,f:=p|-alavB|anB|EaUB)|EGa,

where p € PV and I is an interval in IR; with integer bounds of the form [n, m],
[n,m), (n,m], (n,m), (n,00), and [n,o0), for n,m € IN.

Intuitively, E means there exists a run, U is true in a run if 8 is true for
some state within interval I and always earlier a holds.

The logic TECTL is the restriction of TCTL such that the negation can be
applied only to propositions, i.e., =« is replaced by —p above. The set of all
the TECTL formulas is denoted by 7F. TACTL is the language, which can be
defined by replacing each occurrence of the path quantifier E by A in the set T F.

Let p = qo % qo + 00 = g1 % g1 + 61 5 g2 2 - be a go-run,
qo = (S0,v0), and |p| be the length of p, i.e., the number of §;’s if finite and oo,
otherwise.
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q Ep iff p € V(so), g F o iff g £ a,
gpFEaVvpiff gFaorqERL qFEanB iff ¢ aand g =G,
q0 = E(@UB) iff 3 p € f(q0)Jic|pi+1 [Zj<id; € I and (g; + ;) = B and
(Vj <i)(V6 < 905) ¢+ = a Vi,
g FEGra iff 3p € f(qo) (Vicpj1) (V6 < 8;)with Xj<id; € I, (q; +9) F a.

Note that without a loss of generality we can define the length of a run p taking
into account the number of time delays (;) only. The action step (I;) can be
seen as a time step with §; = 0, for 7 € IN.

For model M4 and a TCTL formula ¢, we say that M4 = ¢ iff M4, ¢° = ¢.
The model checking problem for TCTL is defined as follows: given a TCTL
formula ¢ and a Timed Automaton A together and a valuation function V,
determine whether M4 = .

Since M 4 is usually infinite, we need to define its finite abstraction, which
preserves TCTL or TACTL. Such an abstraction is a region graph, which is
defined in the next section.

5 Region Graphs

Given a Timed Automaton A. Let ¥ C Wx be a non-empty set containing all
the clock constrains occurring in any enabling condition used in the transition
relation F or in a state invariant of A. Moreover, let ¢4, be the largest constant
appearing in ¥. For 0 € R4, frac(o) denotes the fractional part of o, and |o]
denotes its integral part.

Definition 3 (Equivalence of clock valuations). For two clock valuations
v and v" in RY, v g v iff for all x,y € X the following conditions are met:

1. v(x) > Cmax tmplies V' (x) > Cmax

2. if v(x) < ¢mas then
a.) [v(@)] = [¢/(2)], and
b.) frac(v(xz)) =0 implies frac(v'(x)) =0,

3. for all clock constraints of the form x —y ~ ¢ with ¢ € N and ¢ < ¢maq,
viEx—y~cimpliesv Ex—y~c.

We use [v] to denote the equivalence class of the relation ~y to which v
belongs. Such a class is called a zone. The set of all the zones is denoted by
Z(n). A zone [V'] is final iff v(x) > Cpaq for all v € [v'] and z € X. A zone [v'] is
open if there is a clock z € X such that v(x) > ¢pqq for all v € [v7].

A zone [v] satisfies the clock constraint ¢ € U, if [v] ¢ iff Yo' € [v], v | 9.
A region is a pair (s, [v]), where s € S and [v] € Z(n). Note that the set of all
the regions is finite.

Definition 4 (Time successor). Let [v] and [w] be two distinct zones. The
zone [w] is said to be the time successor of [v], denoted 7([v]), iff for each v’ € [v]
there exists 6 € Ry such that v' + 6 € [w] and v' + §' € [v] U [w] for all &' < 4.
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The time successor exists for every zone except for the final one.

Definition 5 (Action successor). The zone [w] is said to be the action suc-

cessor of [v] by a transition e : s W g e E, denoted e([v]), iff [v] E ¢ and
[w] = [o[Y = 0]].

Definition 6. The region graph of a Timed Automaton A is a finite structure
RG(A) = W, —,uw), where W = S x Z(n), w® = (s°,[v°]) and - C W x (EU
{1}) x W is defined as follows:

1. (s,[v]) = (s,[v']) iff '] = e([v]), s = source(e), s = target(e), and
[v'] EL(s), fore € E,
2. (s,[v]) = (s, [v']) iff '] = I(s) and (V'] = 7([v]) or [v'] = [v] if [v] is final).

The model based on the region graph of A and a valuation function V is defined
as (RG(A),V"), where V' : W — 2FY such that V'((s, [v])) = V(s).

6 Bounded Model Checking for TACTL

In this section we describe a method of BMC for TACTL, and show its correct-
ness. The main idea of our method consists in translating the TACTL model
checking problem to the ACTL model checking problem [IJ36] and applying the
bounded model checking for ACTL [34].

In general, the model checking problem for TACTL can be translated to the
model checking problem for ACTLY [I]. However, since we have assumed that we
deal with progressive Timed Automata only, this translation can be made to the
ACTL model checking [36]. The idea is as follows. Given a Timed Automaton
A, a valuation function V, and a TACTL formula 1. First we extend A with a
set of new clocks, to obtain a new automaton A’. Then we construct the region
graph for A’ and 1, and augment the valuation function V. Finally we transform
1 to the ACTL formula 1)’

More precisely, let X be the set of clocks of A, and {I1,..., I} be a set of
the non-trivial intervals appearing in 1. The automaton A’ is like A except for
the set of clocks X', which is defined as follows. X’ = X U {zp41,...,Tntm}s
ie, X' = {z1,...,Znym}. Let RG(A',¢¥) = (W, —,w’) be a region graph for
A’ and 1. The set of propositional variables PV’ and the valuation function
V' augments PV and V as follows. By p,,.,—o and p,, e, we denote the new
propositions for every interval I; appearing in ¥ and by PVx the set of these
propositions. The proposition p,,,,—o is true at a state (s, [v]) of RG(A’,1))
if (30" € [v])v'(2p4i) = 0. The proposition p,, ,e1, is true at a state (s, [v]) of
RG(A ) if (Fv' € [v]) v'(xnys) € I;. Let Vx be the function labeling each
state of the graph RG(A’, ) with the set of propositions from PV x true at that
state. Let PV’ = PV U PVx. We define the valuation function V' : W — 2PV’
as follows: V'((s, [v])) = V(s) U Vx((s, [v])).

Since the bounded model checking method consists in searching for coun-
terexamples, in practice we check the validity of the negation of a tested for-
mula. Therefore, here we give a translation of a TECTL formula ¢ to an ECTL
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formula (instead of the TACTL formula ¢) = —p). Then, we show the semantics
of the formula ¢ defined over a model based on the region graph RG(A’, ¢).

A TECTL formula ¢ is translated inductively to the ECTL formula ¢’ as
follows:

— p € PV is translated to p,

— aV fis translated to o/ V [,

— a A fis translated to o/ A 3,

— EGj, a is translated to EG(a’ V =g, .e1,),

— E(aUy, ) is translated to E((¢/ V (8 A pe,.,er,.)U(B Ape,.er))-

Definition 7 (Semantics). Let M = (W, —,w),V’) be a model based on the
region graph RG(A', p) and ¢ be TECTL formulas. A path in M is a mazimal
sequence ™ = (wo, w1, ) of states such that w; — w;41 for each i < ||, where
|| is the length of w, i.e., the number of its states when finite and co when infi-
nite. For a path m = (wo, w1, - -), let w(i) = w;, for each i € |w|. M, (s, [v]) = ¢
denotes that ¢ is true at the state (s, [v]) of M. M is omitted if it is implicitly
understood. Let [v,] denote [v[Xnir :=0]], for r € {1,...,m}. The relation |= is
defined inductively as follows:
(s;[v]) Ep iff p € V((s,[v]), (s,[v]) E eV B uff (s,[v]) E e or (s,[v]) =8,
(s;[v]) E-piffp V'((s,[v]), (s, [v]) = a ABiff (s, [v]) = a and (s,[v]) =5,
(s,[v]) E EGr.a0  iff Im [71'[(02 T 8,([’(),_[]) ]c;nd Vj<|w|7r(€') ():) (|a \(/ﬂ_'pwnwEh)]j

. Im|m(0) = (s, [vr]) and Fj< |z (7(J) E (B A DPeporel,
i B9 i) = SR B

Definition 8 (Validity). A TECTL formula ¢ is valid in M =((W,—,w°), V")
(denoted M = @) iff M,w° = .

It is easy to show that the validity over the model based on the region graph is
equivalent to the validity over the concrete model, i.e., M | ¢ iff M4 = ¢, for
each ¢ € TECTL (see [36]).

In order to deal with the bounded model checking method, we have to define
the bounded semantics, which allows us to interpret the formulas over a fragment
of the considered model only. For that purpose we need the definitions of a
k—path, a loop, and a k—model.

Definition 9 (k—path). Let M = (W, —,w?),V’) be a model based on the re-
gion graph RG(A', ) and k € IN. A k-path is a finite sequence 7 = (wp, -+, wg)
of states of W such that w; — w;41 for each 0 < i < k.

Though a k—path is finite, it still can represent an infinite path if there is a back
loop from the last state of the k—path to any of the previous states.

Definition 10 (loop). We call a k—path 7 a loop if w(k) — w(l) for some
0<I<k.

Definition 11 (k—model). Let M = (W, —,w"),V’) be a model and k € IN.
The k—model for M is a structure My = ((W, Pathy,w"),V"), where Pathy is
the set of all the k—paths of M.
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For a subset Path’ C Path;, we define
States(Path') = {w € W | (3r € Path’)(3i < k) 7(i) = w}.

Definition 12. Let My = (W, Pathy,w),V’) be a k-model of M. A structure
M} = (W', Path},,w®),V'|w) is a submodel of My if Path) C Pathy, W' =
States(Path),).

Similarly to the ACTL case, described in [35], we define the bounded semantics
for TECTL formulas ¢ over k-models M}, of M (submodels Mj, of Mj).

Definition 13 (Bounded semantics). Let My be a k—model and o, be
TECTL formulas. My, (s, [v]) E « denotes that « is true at the state (s, [v]) of
My,. My, is omitted if it is implicitly understood. Let [v,] denote [v][Zp1, := 0]],
ar = (aV e, ,e1.), and Br = (BAps,,.e1.), forr € {1,...,m}. The relation
= is defined inductively as follows:
(s, [0]) Ep wlfp € V(s [v]), (s, [v]) = VB iff (s, [v]) = a or (s,[v]) =6,
(s, [v]) = —piffp & V'((s, [0])), (s, [v]) = e A B iff (s, [v]) = o and (s, [v]) = 5,

3w € Pathy, [7r(0)=(s7 [vr]) and Vo< j<km(j) = ar],
(s,[v])) E EGr.a  iff ¢ if wis aloop or w(k) is a deadlock,

false, otherwise,

L [ 3m€ Pathy, [7(0)=((s, [v,]) and Jo<j<i (7(j) = Br and

(37 [U]) ): E(aUITﬁ) Zﬁ{vo<i<j77(7:) ): (a vV ﬁr)} )

Definition 14 (Validity for Bounded Semantics). A TECTL formula ¢ is
valid in a k-model My, (denoted M =y @) iff My, w® |= .

Hereafter, let |M| denote the number of states of the model M.
The main theorem of this section states that we can always find a bound k of
M such that M =g ¢ is equivalent to M = .

Theorem 1. Let M be a model and ¢ be a TECTL formula. M = ¢ iff there
is k € {0,...,|M|} such that M =y .

Proof (Sketch). Follows from the following facts:

— The model checking problem of TECTL can be translated to the model
checking problem for ECTLY [1136].

— Since we have assumed that we deal with progressive Timed Automata only,
the above translation can be made to the ECTL model checking.

— By Theorem 1 of [35] we can always find a bound k& < |M| such that the
bounded and unbounded validity for ECTL are equivalent.

Now, we define a function fi, which determines the number of the k-paths
of a submodel Mj,, which is sufficient for checking a TECTL formula.

Definition 15. Define a function fi : TF — IN as follows:

— fe(p) = fr(=p) =0, where p € PV’
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= fi(aVv B) = maz{fx(a), fx(B)}
— fulanp) = fula )+fk(ﬁ)
— fe(EGra) = (k+1) - fi(a) +
— f(E(Uf)) =k - fr(a )+fk( )+

Now, we can present a BMC method for TACTL.
Let M = (W, —,uw),V’) be the model based on RG(A’,) for a TACTL for-
mula 1. To answer the question whether M [~ v, we use the following algorithm:

Let ¢ = =9 be a TECTL formula,

Iterate for k :=1 to |[M].

Select the k—model My of M.

Select the submodels M, of M}, with |Path)| < fi(¢), where f is a function
of k and ¢ (see Definition [15]).

5. Translate the transition relation of the k—paths of all of the submodels M;,

=W

to a propositional formula [M“O’wo]k.
6. Translate ¢ over all M}, to a propositional formula ]/

7. Check the satisfiability of [M, ¢]j := [M*”’wo]k A @)y -

[

Hence, checking ¢ over My, is translated to checking the satisfiability of the
propositional formula [M#*"];, A [¢] M, - S0 that one can use the most efficient
algorithms for solving the SAT-problem.

We assume that W C {0,1}™ and n = [log2(|[W])]. So, each state can be
represented by a vector of state variables w = (w[1],..., w[n]), where w[i] is a
propositional variable for i = 1,...,n. Moreover, a finite sequence wo, ..., ws
of vectors of state variables we call a symbolic k—path.

Hereafter, let SV be a set of the state variables containing the symbols true
and false, and let SF be a set of propositional formulas built over SV. Moreover,
let LL¥Y C IN, be a finite set of natural numbers. The elements of LL¥ are used
as the indices of the symbolic k—paths used for translating the transition relation
of the submodels Mj..

To construct [M, @], we first define a propositional formula [M%*"],, that
constrains |LL¥| symbolic k-paths to represent k-paths of My. For j € LL?, the
Jj-th symbolic k—path is denoted by wq j, ..., wy j, where w; ;, fori =1,... k,
are vectors of state variables. Then, we translate the TECTL formula ¢ to a
propositional formula that constrains the sets of |LL?| symbolic k-paths that
satisfy ¢.

Let lit : SV x {0,1} — SF be a function defined as follows: lit(r,0) = —r
and lit(r,1) = r. Furthermore, let w, w’ be vectors of state variables. We define
the following propositional formulas:

— dead(w) iff w is a deadlock,

— I,(w) iff A\, lit(w]i], w[i]); encodes a state w of the model M,
— T(w,w’) iff w— w’ or (dead(w) AN w = w’),

— p(w) iff p € V'(w), for p € PV,

— Hw,w') iff w=w’,
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— Ly (1) iff T(wy ;,w; ;); encodes a backward loop from the k—th state to the
l—th state in the symbolic k—path j, for 0 < < k.

Definition 16. Let M be a model, w be a state of M and ¢ be a TECTL
formula. The propositional formula [M% "]y, for |LL¥| = fi(p), is defined as

follows:
[Mw’w]k = wOO /\ ( /\ wi’j,wiJrl,j))
JELL¥ =0
where wo o and w;; fori=0,...,k and j € LLY are vectors of state variables.

The above formula encodes all the k-paths generated by the transition relation
T, as well as the initial vector wg g to be equal to w.

By wp,, n, we denote the vector of state variables representing the states that
are like the ones represented by w,y, , except for the value of the clock .,
which is reset to 0. The translation of a TECTL formula is similar to the untimed
case, since all the temporal subformulas of ¢ are interpreted at the initial states
of the considered new k-paths starting at states wy,, ,,.. This means that no
loop can return to a state preceding the present state.

We use [w]Lm’"] to denote the translation of a TECTL formula ¢ at w,, ., to a
propositional formula.

(1) Translation of a TECTL formula

Pl = plwmn). oA B = [l A (AR

" i= plaw) Ty A = v (A
[B(aUs I i= et 8 i= 5 Apsy.,er,)

Vierze (B, w0 ) Vo817 AN [ v 8107 ).

[EGI, ][m ] = (let o =aV —\pznwen,) vieLLv’ (H(wmmnr7w07i)/\
(Vo Lii(1) V dead(wy.;)) A /\] ol ][37 )

Let [¢]ar, denote [(p]gco’o].

The following theorem shows the correctness of our translation.

Theorem 2. Let M = (W, —,w°),V’) be a model, My, be a k—model of M,
and ¢ be a TECTL formula. Then, M = ¢ iff [¢]ar, A [M#*°], is satisfiable.

Proof (Sketch). Follows from the following facts:

— The model checking problem of TECTL can be translated to the model
checking problem for ECTLY [1136].

— Since we deal with progressive Timed Automata only, the above translation
can be made to ECTL model checking. Our definition of the Translation (1)
is based on this translation.

— Theorem 2 of [35] shows that the translation of the model checking problem
for ECTL to the SAT problem is correct.

Corollary 1. M =i —¢ iff [¢]ar, A [M“"’“’O]k is unsatisfiable for k = |M|.



Towards Bounded Model Checking for the Universal Fragment of TCTL 275

7 Implementation of BMC for Timed Automata

In this section we show how BMC can be applied to verification of Timed Au-
tomata. Following [6], we consider Timed Automata satisfying the following two
conditions (**): the space of clocks valuations is bounded by some ¢ € IN| (i.e.,
range over C™ = [0,¢)™) and there is at most one transition associated with
every pair of states. The readers can convince themselves that it costs few states
to convert any Timed Automaton into one satisfying these properties [6].

Two clock valuations v = (|v1] + frac(vy),..., |vn] + frac(v,)) and v/ =
([vi] + frac(v)),..., v, ] + frac(v))) are zone-equivalent, written v ~ o', if

Ni=i (i) = [wi]) A (Frac(v)) = 0) < (frac(vi) = 0)))A

Nijeqr,...ny ((fracvi) < frac(vy)) < (frac(v)) < frac(v})))

Since the clock valuations are bounded by ¢, it is obvious that the above
definition is equivalent to the Definition [3]

To implement BMC for Timed Automata we have to encode both the transi-
tion relation of the region graph of a Timed Automaton and the TECTL formula
by propositional formulas. The encoding of the formula was discussed in the pre-
vious section. This section shows the encoding of the transition relation.

The method is based on the discretization scheme of [6]], which preserves the
qualitative behaviour of the automaton. Below, we present the above scheme
consisting in representing each region of the region graph by one or more appro-
priately chosen representative states. The set of the representatives of a region
is obtained by discretizing the space of clock valuations as follows.

Let A = 1/(2n) be a discretization step and C = {mA | 0 < m < 2nc}.
In other words, we cut every unit interval into 2n equal segments and pick the
endpoints. The discretized clock space (the domain over which discretized clocks

range) is B" =Cnn {(v1, .. csv0) | Vijeq,.. ny|vi — vj] = 2mA, m > 0} .
Note that we take from C™ only points such that the difference between any
pair of clock valuations is an even multiple of A (see Figure [I)).

3/4
2/4
1/4

0" /4 2/4 3/4

Fig. 1. Left: discretizing [0,1)?: the circle points are the elements of B while the

squared points belong to C\IB™. Right: illustration of the Definition[I7]land Lemmal[2l
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For any zone Z, its discretization is defined as Z = ZNB". A discretized zone
is called a d—zone. It is not hard to see that, for every zone Z, we have Z # ()
iff Z # (). Another important property of this scheme is the following:

Lemma 1 ([6]). Let v =10 +¢, for some v € B" and le| < A. Then, v € Z =
(veZVvo+AeZ). (Hence at least one of them belongs also to Z ).

Note that this fails to be true for points outside IB". Consider v = (0,2) and
ZoneZ:(0<:c< DAO0<y<1)A(y>z). Here v + € € Z but neither v nor
v+ A= (1) belong to Z.

The Discrete Time Successor of Z, denoted by 7(Z), is the restriction of 7(Z)
to points in B" and times values in C.

Definition 17 (Discrete Time Successor). Let Z, 7' be two distinct d-zones.

The d-zone 7' is the discrete time successor on iff for each v € Z there exists
§€C such thatv+6€ 2 andv+6 € ZUZ for all ' € C with § < 6.

Lemma 2 ([6]. Discretization Preserves Time Successor). For every zone
Z and Z' if Z' = 7(Z), then Z' = 1(Z).

Obviously, the reverse of Lemma [2] also holds.
Below we show that it is sufficient to represent each zone by one representative.

Lemma 3. Let Z 7' be two distinct d-zones and v € Z /_be any representative
of Z. Z’—T( Z) iff there exists 6 € C such that v+ 0 € Z' andv+68 € ZUZ
for all §' € C with §' < 6.

Proof. (=>) The proof is obvious.

(<=) Let v = (v1,...,vn) € Z and there exists 6 € C such that v+ € Z/ and
v+68 €ZUZ for all (5’ € C with 8’ < 6. We show, that Z/ = 7(Z).
Let u = (u1,...,up) € Z and u # v. Since u and v belong to the same d-

zone Z, then their integral parts are equal and also the ordering of the fractional
parts is the same. Moreover, for all i € {1,...,n} we have 0 <| v; —u; |< 1 (i.e.,
0 <| frac(v;) — frac(u;) |< 1) and frac(v;) — frac(u;) = mA for m € {—2n +
1,...,2n—1}. Hence, frac(v;) = frac(u;)+mA for alli € {1,...,n}. Therefore,
v+6—(v1+6 SUn+0) = (u+mA+9,... up +mA+0) = u+ (mA+9).
Since v+ 8 € Z', then u + (mA +96) € Z. Let 91 = (mA +9). It is obvious,
that u + 97 € ZUZ for all o € C with o) < 51 Since u has been an arbitrary
valuation different from v, we conclude that Z/ = 7(2).

This discretization is not closed under the reset of the values of the clocks - for
example, resetting the first coordinate of (A, A) € B we obtain (0, A) € C2\IB2.
This is important, because Lemma [2] does not hold on év", but only on B". In
order to calculate the Discrete Action Successors of a d-zone Z we delete points
of Z that went out of IB” and add one or more zone-equivalent points from IB".
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Before we give the definition of the discrete action successors, we define the
following operations on zones and its discretization: _
ZY =0={w)Y :=0]|ve Z}, Z[Y:=0={v[Y:=0]|veZ}

Note that Z[Y := 0] is a subset of C™, but not necessarily a subset of IB".

Definition 18 (Discrete Action Successor). Let Z, 7' be two d-zones. The

d-zome Z' is said to be the discrete action successor of d-zome A by transition

L Y (denoted e(Z)) iff Z C I[;(E) and e(Z) = {v' € B" | v/ ~

vandv € Z[Y = 0]}.
Note that e(Z) = e(Z) NB".

Lemma 4 (Discretization for Action Successor). For every zone Z and
Z'if Z' = e(Z), then Z' = e(Z).

Proof. Let Z' = e(Z). By the definition of the Action Successor, Z’ is the action
successor of Z by the transition e : s ELA GRS E,ift Z Cp(y) and Z' = Z[Y =
0]. Since, Z C Z and ]p’(\QZ) C p(v), it is obvious that Z C ]p(ib) Now, we show
that 2/ = e(2).

(e(Z) C 27) Let v’ € e(Z). By Definition [[8 there is v € Z[Y := 0] such that
v >~ v'. Hence, by discretization v € z.

(Z' C e(Z)) Let v/ € Z'. By discretization and by assumption Z' = e(Z), we
have that v € e(Z) N B Thus, v € e(Z) and V' € B". Since v/ € e(2),
v' = w[Y = 0] for some v € Z. So, it is clear that v’ € Z[Y := 0]. Therefore,
from v’ € B” and v’ € Z|Y := 0], it follows that v' € Z[Y := 0] N B". So,
v € e(Z).

Obviously, the reverse of Lemma @] also holds.

We are given a Timed Automaton A = (X, S,s°, E,X, 1), a valuation func-
tion V, and a TECTL formula ¢. We assume that A is progressive and satisfies
the conditions (**). Let .A” be the Timed Automaton like A’ defined in Section [6]
but converted to satisfy the conditions (**) [

Hereafter, we assume that A" has altogether n clocks and A" denotes the
automaton A” with the discretized clock space. Let M be the model based on
the region graph of A" and ¢.

Definition 19. The reglon graph for the Timed Automaton A" and @ is a finite
structure ’RQ(A” p) = (W — wo) , where W = {(s, Z) | (s,2) € S x Z(n)},
wd = (s° ZO), where Z° = [1°] and —C W x (EU{r}) x W is defined as follows:

- (As/,Z) 5 (8, Z’) iff 7' = = e(Z), s = source(e), s = target(e), and
Z' CpI(s))n ]B" foree B,
— (s,2) 5 (s, 2") zﬁ? C p(I(s))NB" and Z' = 7(Z).

! This conversion is usually not necessary as we state in Section 8]
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The discretized model based on the region graph OLJZT’ and a TECTL formula ¢
is defined as M = (RG(A”, ), V"), where V"' : W —s 2PV with V" ((s, Z)) =
V"((s, 7)), where V" is the valuation function for A”, defined like V' for A’ in
Section

Since the discretized model M is isomorphic with the model M for A” and o,
we have M |y, ¢ iff M i ¢, for TECTL formula .

Now, we can construct a propositional formula [1\7 , ]k that is satisfiable iff
M = . An implementation of [M, @], is shown in the appendix.

8 Generalizations and Further Optimizations

As to unrestricted Timed Automata we can reduce the verification of TECTL
formulas to progressive runs only, by defining the translation from TECTL to
ECTLY, i.e., the fair version of ECTL, and adapting the translation from ECTL
to SAT to deal with the fair paths.

While we construct the automaton A’ we add the new m clocks, which corre-
spond to the non-trivial intervals appearing in . Since these clocks are never re-
set the valuations of them are unbounded. It is however not necessary to convert
A’ to an automaton with the bounded clock space. Note that in our bounded
semantics the valuations of the clocks are always bounded. However, dealing
directly with the unconverted A’ has a problem of not closing loops by time
successors. This can be compensated by using one of the following two methods.

The first method relies on freezing the value of each new clock x; when
x; exceeds the maximal integer bound of the interval I;. An alternative so-
lution can be applied when checking formulas indexed with intervals of the
form (a,b), (a,b],[a,b) or [a,b]. To each location of A" we add the self-loop with
the enabling conditions ¢ defined as follows. Let b; be the right bound of the
interval I;, and Nx,\x be a set of indices of the clocks from X'\ X. Then,
P = /\iENx/\x x; > b;. For our example, we have used the latter solution.

In the final version of the implementation we are going to use the former
method, which allows to encode and discretize open zones. Then, we would not
need to convert Timed Automata to satisfy the conditions (**), avoiding an
increase in the number of state variables.

It is known that some aggregation of time successors can be made in the
region graph model [25] without influencing the validity of a tested formula.
This allows to find counterexamples on shorter paths.

9 Experimental Results

We have implemented a model checker BBMC based on bounded model checking
for TACTL. For input consisting of a description of a Timed Automaton .4 and
a TACTL formula v expressing some desired specification, BBMC first negates
the formula v obtaining the TECTL formula ¢. Then, it builds the propositional



Towards Bounded Model Checking for the Universal Fragment of TCTL 279

formula, 1 = [p]ar, A[M#*" ], which is satisfiable iff the formula ¢ is valid in the
model of A’. Given the formula i, the model checker outputs the set of clauses C.
Each clause is a set of literals, where each literal is either a positive or a negative
propositional variable. Notice, that the size of the set C' can be exponential with
respect to the size of u. In order to avoid the exponential explosion we use a
structure preserving transformation, such that the resulting set C' is satisfiable iff
the formula p is satisfiable, although C' is not logically equivalent to the original
formula u.

The output format for the set of clauses C' generated by our model checker
is in the DIMACS format [23] for satisfiability problems. We have made use of
the satisfiability solver ZChaff [28/39/40], which uses the DIMACS format. It is
an implementation of the Chaff solver, maintained by Lintao Zhang. ZChaff is
known to solve problems with more than one million variables and 10 million
clauses.

We have performed our experiments on the IBM PC compatible computer
equipped with the processor AMD Duron 800 MHz, 256 MB main memory
and the operating system Windows 98. We have tested the Timed Automaton
describing the standard railroad crossing system (RCS, for short).

Controller

Fig. 2. Timed Automaton for Train, Gate, and Controller

This is a well-known example in the literature of real-time verification (see
[24]). The system consists of three components, Train, Gate and Controllers,
as shown in Figure 2] which execute in parallel and synchronize through the
events: approach, exit, lower and down. When a train approaches the crossing,
Train sends an approach signal to Controller and enters the crossing at least 300
seconds later. When a train leaves the crossing, Train sends an ezit signal to
Controller. The exit signal is sent within 500 seconds after the approach signal.
Controller sends a signal lower to Gate exactly 100 seconds after the approach
signal and sends a raise signal within 100 seconds after exit. Gate responds to
lower by moving down within 100 seconds and responds to raise by moving
up between 100 and 200 seconds. The product Timed Automaton composed of
Train, Gate and Controllers is shown in FigureBl A node (4, j, k) represents that
Train, Gate, and Controllers are at nodes ¢, j and k, respectively. The invariant
of a node is the conjunction of the invariants of the three components. For input,
our model checker takes the encoded transition relation of the product Timed
Automaton of Figure 3l
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e/ 31,2
x<=500 )y<=100, down|
0 \y<=100

Fig. 3. Timed Automaton for Railroad Crossing System (RCS)

Let Mgrcs be the model of the Timed Automaton for RCS. For the railroad
crossing system, we want to verify the following utility property: whenever the
gate is down, it is moved back up within K seconds for some K. This property
is given by the TACTL formula: ¢ = AG(p = AF . kq) with the proposition p
true at the states of Mrcs when the gate is down, and the proposition g true
at the states of Mrcs when the gate is moved back up.

Without loss of generality we can assume that the time unit is equal to
100 seconds. So, this means that we test ¥ = AG(p = AF<%Q) instead of
¥ = AG(p = AF_.kq), and each value ¢, which appears in the guards and the
invariants, is divided by 100.

Note that, for each k£ > 0 the value of the function fj for the formula ¢ = =)
(i.e., EF(pAEG <k —q)) is equal to 2. This means that a counterexample, if exists,
can be found on two symbolic k—paths. Moreover, it is easy to see, that the length
of a counterexample, i.e., the value of k, depends on K. In Table[l] we show the
experimental results for two symbolic k—paths. The first column of Table[l]shows
the right bound of the interval appearing in the subscript of our formula, (i.e.,
the interval [0, K) ); the second shows the length of the symbolic k—paths, (i.e.
the value k); the third and fourth show the numbers of propositional variables
and clauses generated by BBMC respectively; the fifth and sixth show the time
and memory consumed by BBMC to generate the set of clauses; the next two
columns show the time and the memory consumed by ZChaff, and the last shows
the solution of our problem, i.e., satisfiable iff Mgcgs i ¢ (i-e., satisfiable if
Mgcs = ).

Since our method is devoted for finding an error, for the subscript K >=7
we do not present the results, because the property: whenever the gate is down,
it is moved back up within 700 seconds, i.e., 7 time unit, is true [24].
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Table 1. Experimental results for RCS system on two symbolic k—paths

BBMC ZChaff

K| k |variables|clauses| sec | MB | sec | MB |Solution
1)1 9697 28828 | 4.8 | 3.88 | 0.6 | 2.75 |unsatisfiable
14| 26275 79060 | 40.6 |[33.06| 6.8 | 9.06 |unsatisfiable
1|5] 31801 95804 | 64.5 | 57.06 | 24.3 | 11.06 |satisfiable
211 9701 28840 | 4.8 | 5.31 | 0.3 | 2.63 |unsatisfiable
214 26285 79090 | 40.6 |26.50 | 23.7 | 9.81 |unsatisfiable
25| 31813 95840 | 64.7 |49.38 | 7.5 | 9.75 |satisfiable
301 9685 28792 | 4.8 | 5.25 | 0.3 | 2.63 |unsatisfiable
35| 31765 95696 | 64.8 | 53.50 | 54.0 | 14.62 [unsatisfiable
316| 37285 |112422| 97.0 |69.31 | 63.0 | 15.69 |satisfiable
411 9703 28846 | 4.8 | 4.94 | 0.3 | 2.63 |unsatisfiable
416| 37353 |112626| 97.3 |61.38 | 312.6 | 39.75 |unsatisfiable
48| 48413 |146138|191.0|106.90| 178.0 | 42.62 |satisfiable
5|1 9689 28804 | 4.8 | 6.38 | 0.4 | 2.69 [unsatisfiable
56| 37299 |112464| 97.1 | 62.88 | 234.7 | 39.88 [unsatisfiable
5112| 70431 | 212856 |622.3 |175.70(3593.0{144.00|satisfiable
61 9693 28816 | 4.8 | 5.38 | 0.4 | 2.69 |unsatisfiable
68| 48361 |145982 |203.3 |108.60| 502.7 | 74.69 |unsatisfiable
6 (16| 92553 | 279886 [1527.0|154.80({5054.0|147.80|satisfiable

10 Final Remarks

We have shown that the BMC method for the logic TACTL is feasible. Our
method has been implemented and checked on several examples. In Section
we gave experimental results for the system RCS finding counterexamples on
paths of length up to 16. This experiment is maybe not sufficiently convincing
to the reader about the efficiency of our method since the model of RCS is only
of degree 3, i.e., the maximal branching of its states is equal to 3. However, we
believe that using our method will allow us to search for errors in timed systems,
for which complete minimal bisimulation state spaces cannot be generated (e.g.
the mutual exclusion protocol for 7 processes [36]). This is motivated by the fact
that we do not need to generate the whole model and can encode the transition
relation in a very efficient way.

So far the transition relation of the product automaton has been an input for
our implementation. This solution is obviously not efficient for Timed Automata
composed of many components, like the above mentioned MUTEX, since the
explosion in states and transitions is already present in the product automaton
itself. Therefore, we are planning to change the input so that the translation
of the transition relation of the product automaton is obtained from the local
transition relations of the components.

Obviously exploiting region graph models for model checking of TCTL is
not the best possible option, even if only parts of models are used, as we do
it. Therefore, we are working on replacing region graphs with minimized bisim-
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ulation graphs. This is, however, far non-trivial due to the fact that minimal
bisimulation models cannot be built by the DFS or BFS algorithm on which the
translation of the transition relation is based. Moreover, it seems likely that our
method can be efficiently used for detecting deadlocks and checking reachability
in Timed Automata using surjective (simulating) models.
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11 Appendix

Here, we give a detailed description of the implementation of the propositional
formula [M, ¢]. Let’s start with introducing the following auxiliary functions.

— 0, :[0,...,2—1] — {0,1} is a function, which converts each natural number
smaller than 2! to the bit-vector of the length t.

— BP :{0,1} — SV is an injective function, which converts a bit to the (const)
state proposition such that BP(0) = false and BP(1) = true.

— sumy : SV' x {0,1} — SF' is a function that adds a bit-vector to a vector
of state variables in the binary way, defined as follows.

Let u = (u[l],...,u[t]) be a vector of state variables, b = (b[1],...,b[t]) be
a bit-vector and a = (a[l],...,a[t]) be an auxiliary vector of propositional
formulas, which encodes the move-bits for the vectors u and b, defined as:
o a[l] := false,
e afi] := (u[i—1JABP(b[i—1]))V(u[i—1]Aa[i—1])V(BP(b[i—1]) Aa[i—1]),
fori=2,...,t.

Let p,q € SF. Define the operator @ as p @ ¢ := —(p < ¢q). Then,

sumy(u,b) = (u[l] ® BP(b[1]) @ a[l],...,ult] ® BP(b[t]) ® a[t])

— neg; : {0,1}* — {0,1}" is an one-to-one function encoding the negation of a
bit-vector, defined as follows: neg:((b[1],...,b[t])) = (=b[1],...,-b[t]), where
—-1=0and -0=1.

— minus; : SF' x{0,1} — SF" is a function encoding the binary subtraction,
defined as follows. Let u be a vector of propositional formulas, b be a bit-
vector, and let the value encoded by u be greater than the value encoded
by b.

minus(u, b) = sumy(u, sum}(neg,(b), ©¢(1)))

where sumj is like sum; except for the t’th move-bit, which is removed. The
definition of the function minus; is written on the basis of the standard
algorithm of the subtraction of the binary numbers, which is used by digital
circuits (see [17]).

— Let @ C ¥y be a set of clock constraints only of the form x ~ ¢ and x—y ~ ¢,
where z,y € X' and ~ € {<,<,=,>,>}, and ¢ € IN. Define the function
scc: Wy — 2% (a straight condition calculating) as follows:

o sccPx~")={"x~"}

o sccPx—y~c)={"x—y~}

o sce(gr A d2) = sce(pr) U sce(pz)
The function scc returns the set of clock constraints of the form = ~ ¢ and
x —y ~c, (ie., from the set @) for all the clock’ constraints.
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— Let & C W¥x/ be a set of clock constraints of the form z ~ ¢ only, where
x € X, ~ e {<,<,=> 2>} and ¢ € IN. Moreover, let INT be the set
of the intervals of the form [a,b], [a,b), (a,b], (a,b), (a,o0), and [a, 00), for
a,b € IN. We define the function inter : INT x X’ — 2= as follows:

inter((a,00),z) ={"x > da"},
inter([a,00),x) = {"x > a"},
inter([a,b],z) = {"x > a”, "x <V},
inter([a,b),z) = {"x > a”, "z <V"},
inter((a,b],z) = {"z > a”, "x <V},
inter((a,b),z) = {7z >a”, "z < b’}

The function inter returns the set of clock constraints of the form z ~ ¢,
(i.e., from the set =) for each interval and clock = € X'.

Let a, b be vectors of propositional formulas over SF. Define the following aux-
iliary operator:

— a="b:=Vici<s a[i] = b[i],

and the following auxiliary propositional formulas:
— zero(a) :== N\'_, —ali]

gez(a) = \/i_, ali]

— eq(a,b) = Ni_; ali] & bl
ge(a,b) == Vi (ali] A =bli] A Nj_iy alj] € blj])

- geq(a,b) == 6Q(a b) v ge(a, b)

— le(a,b) := —geq(a,b)

leg(a,b) := —ge(a,b)

Note that above definitions are also correct when a or b are bit-vectors.

To construct the formula []T/f , ®]k we have to implement the following propo-
sitional formulas:

— I encoding the initial state of M,
— T encoding the transition relation of M, and

— [¢]a, encoding the translation of the formula ¢ to a propositional formula,
which has been already defined in Section [A.
Let M be a model based on the region graph of A” and the TECTL formula ©.
By m = logs(|S|) we denote the number of state variables sufficient to encode
the locations of A", where |S] is the number of locations of A7 We encode the
clements of W by subsets of {0,1}™ x {0, 1} ([leg2(e)1+[log2(4m)1) This means
that a state of W can be represented by a pair of vectors of state variables
(s,v) = ((s[1],...,s[m]), (v[1],...,v[r])), where r = n- ([log2(c)| + [loga(4n)])
and s[i], v[j] are propositional variables, for i € {1,...,m} and j € {1,...,r}.
Moreover, we require that the values of clocks are given in the binary system as
the sum of the integral and the fractional part, but we encode only the integral
part and the numerator of the fractional part.
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Hereafter, by s, s1, and s2 we mean vectors of state variables representing
locations of A", and by vj (i.e., v, v1,v2) we mean a vector of state variables
representing clock valuations. _

Each vector vj consists of n "subvectors” Z;” with [logs(c)] state variables
representing the integral part of the value of the clock z;, and n ”subvectors”
F!? with [loga(4n)] state variables representing the fractional part of the value
of the clock z;, for i € {1,...,n}.

By u we mean a vector of propositional formulas over SF. The vector u like
v consists of n "subvectors” I with [loga(c)| propositional formulas represent-
ing the integral part of the value of the clock z;, and n ”subvectors” F;* with
[log2(4n)] propositional formulas representing the fractional part of the value of
the clock z;, for i € {1,...,n}.

Moreover, let idz : S x {0,1} — 2{1+=m} be a function defined as follows.
idx(s,) returns the set of indices of the bits of the bit-vector representing s,
which are set to 4, for i € {0, 1}.

Now, we define the following propositional formulas:

— It follows from Lemma 3] that we can assume each d—zone to be represented
by its arbitrary point. So, let z € Z be any representative of Z. The formula
I is implemented as follows:

I(Si)((s, v)) = Nicigus,1) S A Niciaw(s,0) 78li] A eq(v, vee(z)), where

vec : B" — {0,1}" is an injective function converting each clock valuation
(v1,...,v,) to the bit-vector b = (br,,bp,,...,br, ,br,) of the length r,
where b consists of 2n bit-vectors: b;,, bp, for i € {1,...,n}. Each by, is
the binary representation of the integral part of v; and bp, is the binary
representation of the numerator of the fractional part of v;.

To implement the formula T, we first implement the formula AS encoding the
discrete action successor relation, and then implement the formula T'S encoding
the discrete time successor relation. To implement the formula AS we have to
define the function reset and the formulas Guard, Inv, and adjust. To simplify
the notation of the above formulas we start with defining the formulas Bool and
even.

— Let ¢ € &, t = [log2(c)] and a denote the bit-vector of the length ¢, which
is the binary representation of a € {0,...,c}. Bool(¢,u):=

le(Z}, a), if p=mzi <a
le(Z,a) v (eq( Loa) A zero(]—"f*)), if p=z;<a
ge(Izu, ) ( (Izuv )/\gez(}—iu))v if p=xzi>a
geq(Z{, a), if g=x;>a
eq(Zi, a) A zero(]—"“), if ¢ = (z;=a)
le(Zi, sumy (T \/(eq i sume (I3, a)) Ale(F Ff ), ifp=zi—z;<a
le(Z, sum(Z \/(eq i sume (I3, a)) Nleq(F, F})), if o=z —x;<a
ge(,,sumt(7 )V if p=zi—x;>a

))
(e Z,sumt (Z},a)) A ge(F, F}) ),
ge(Z; ,sumt(IJ“,a )V (eq i sume (L), a)) N geq(Fi, F}' )), if p=z;—2; >a
eq(Z;', sumi(Z3, a)) N eq(F}, Fj'), if p=ai—z;=0a
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—even(u):= N, jepn oy (Fi 1) & F1).
The formula even encodes all the clocks valuations satisfying the conditions
Vijeq1,...n}vi — vj| = 2m for some m > 0.

— Guard(e,u):= N ycsee(guarae)) Bool(d, u) A even(u).
Guard is a propositional formula, which encodes the enabling conditions for
a transition e of A”.

— Inv(s,u):= Ayesecqmu(s)) Bool(d, w) A even(u).
The above formula encodes the invariant of a location s of A”.
Let Y. C {1,...,n} be a finite set of the indices of the clocks to be reset with
the transition e. For e € E, let reset, : SV" — SV be a function defined as
follows: reset.(v) = vl, where: V;cy, (VJ[Z?(C)]IZ’I[]’] = false and
v i) = false) and Vieqr,.. apvy, (T3 = TIP and FP* = FP).
The function reset, returns the vector of the state variables that constrains
all the clock valuations reset with the transition e € E, to be valid valuations
in C™, for each vector of state variables.

In order to calculate the action successors we need to define a propositional
formula, called adjust, based on the ”adjustment” function « from [6]. After
applying the reset function, adjust replaces each vector of state variables v1,

representing values of clocks went out of I I’B\H, by the vector of state variables
v2, representing values of clocks from IB", equivalent to v1.
(eq(v1,v2) A even(vl))V
(( VL adjust,, (v1, v2)) A meven(vl)),
where adjust,, is defined as follows. Let I = Ofyg, (4n)1 (1), for I € {0,...,2n}.

Ny eq(ZPY, IP?) A (zero(}";’l) A zero(FP2)V
adjustm (v1,v2) == ¢ /70" (eq(FPL, 20 4 1) A eq(FP2, 21 + 2))V

i (ca(F, 20+ 1) Aeq(F:2,20)) )

VeGE (/\ieidr(source(e),l) 81[2] A
/\iGidx(source(e),O) "31[2] N

- AS((SL ’U].), (82’ 02)):: /\ieidw(tm'get(e),l) 82[7“] A
i€idz(target(e),0) ﬁ82[2] A Guard(ewl) A

Inv(target(e),v2) A adjust(reset.(vl), 'v2)) .

— adjust(vl,v2) := {

To implement the formula T'S, encoding the discrete time successor relation, we
have to first define the formulas equiv and cleverSum.

~ equiv(u,v) = {/\?_1 (eq(I}’,I}L) A (zero(FY) < zero(}"ﬁ)))/\
/\i,je{l,‘..,n} (leq(ff,ff) Ang leq(.ﬁ”,f}’)).
The formula equiv encodes the equivalence relation of the clock valuations,
i.e., the relation ~.
Let t1 = [loga(c)], t2 = [log2(4n)], d = Ofiog,(any1(d) for d € {0,...,2n — 1},
0 = Oriog, (4n)1(0): 21 = Ofiog, (an)1 (21), 1 = Oriog, (e (1)-
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Ay ((eq(sumt2 (FPL d), 2n) A eq(FP2,0)A
cleverSum(vl, d, v2):=< eq(sumy, (Z'*,1),Z7%)) V (le(sumy, (FP*, d), 2n)A
eq(ZPY,IV?%) A eq(sumy, (FPL, d), _7:;’2)))
The formula clever Sum encodes the addition of the bit-vector d to all vectors

FPY and ZP! representing the value of the clock x; € X/, for i = 1,...,n

K3
The result of the addition is put in the vector v2, i.e., v2 contains either the

value zone-equivalent to the value vl or its time SUCCEessor.

eq(sl, s2) A (\/d o ' cleversum(vl, d 1;2))

—equiv(vl, v2)A ( Vies (eq(s2,s) A Inv(s, v2))>.
Now, we are ready to implement the formula T'.
T((s1,v1),(s2,v2)):= AS((sl,v1),(s2,v2)) VTS((s1l,v1),(s2,v2)).

TS((s1,01), (s2,02)):=

Next, we implement the formulas to be used in the definition of [¢]as
H((sl,v1),(s2,v2)) := eq(sl, s2) A eq(vl,v2).

Let Vs : PV — 29 be a function returning the set of locations of which a
proposition p is true, for each p € PV, defined as Vg(p) = {s € S | p € V(s)}.
The formula encoding all the states labeled by the proposition p; € PV is
defined as p;((s,v)) = V ey €a(S; ).

The formula encoding all the states labeled by the proposition p;,er € PVx
is defined as pa,er((s,v)) = A¢, cinter(1,0,) Bo0U(&i, v), where §; denotes an
inequality over x; € X'.

p((sw)) iff {pi((svv))7 if pi € PV

D, e1((8,0)), otherwise.

K

Below, we implement the formula dead encoding the deadlock.
Let add : SV" x {0, 1}1*92(4n)]1 5 ST be a function, which returns a vector
of propositional formulas such that each vector u; (i.e., the vector consisting
of T and F}*) encodes the sum of the values represented by d and v; (i.e., the
vector consisting of Z! and F}) as the proper fractions, defined as follows.
Let d € {0,...,2n — 1}. Then, add(v,d) = u, where for all i = 1,...,n.
Tulj] = {(le(sumtz(]—'” d),2n) NIP[j]) V (eq(sumtz(]—'” d),2n)A
L=\ (sume, (22, 1)) V (ge(sume, (72, d), 2n) A (sum, (T2, 1)) 1])

9 ”092( )—|7

(le sumy, (F7,d), 2n) A (sumy, (F, d))[j])V
Frlil =< (eq(sumy, (FP,d),2n) A (zero(F}))[5])V

(ge sumy, (F7,d), 2n) A (minusy, (sumy, (FY, d), 2n))[j])
for all j =1,. fl0g2(4nﬂ

ﬁ[vses (eq(s s) A VI (Inv(s, add(v, d))A

dead((s,v)):=1 cleversum(v,d, add(v, d)) A —equiv(add(v, d), v))) \Y

Veer (eq(s, source(e)) A Guard(e, v) A Inv(source(e), v))}

forall j=1,..
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