Skip to main content

Formation and stability of nano-emulsions in mixed nonionic surfactant systems

  • Conference paper
  • First Online:
Trends in Colloid and Interface Science XV

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 118))

Abstract

The formation of nano-emulsions has been studied in water/ mixed nonionic surfactant/oil systems using two emulsification methods. In one method, the composition was kept constant and the temperature was changed (phase-inversion temperature, PIT, method), while in the other method, water was added dropwise to a solution of the mixed surfactants in oil at constant temperature (method B). The droplet size and stability were determined as a function of surfactant mixing ratio, W1, at 25 °C. The droplet size of nano-emulsions obtained by the PIT method is practically independent of W1 and falls in the range 60-80 nm. In contrast, the droplet size of nano-emulsions prepared by method B, is highly dependent on W1 and varies between 60 and 300 nm. At W1 values where the PIT or the hydrophile—lipophile balance temperature (Thlb) of the system is close to 25 °C, the droplet sizes of the nano-emulsions are similar for both emulsification methods. There are three equilibrium phases of the latter compositions: an aqueous micellar solution or oil-in-water microemulsion (W m), a lamellar liquid-crystalline phase and an oil phase (O) in addition, these nano-emulsions showed higher kinetic stability than those with lower W 1 values (higher T hlb) and consisting of two liquid phases (W m + O).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becher P (1965) Emulsions: theory and practice. Reinhold, New York

    Google Scholar 

  2. Binks BP (1998) In: Binks BP (ed) Modern aspects of emulsion science. The Royal Society of Chemistry, Cambridge, pp 1–55

    Chapter  Google Scholar 

  3. Shinoda K, Arai H (1964) JPhys Chem 68:3485

    Article  CAS  Google Scholar 

  4. Shinoda K, Saito H (1968) J Colloid Interface Sci 26:70

    Article  CAS  Google Scholar 

  5. Kunieda H, Shinoda, K (1985) J Colloid Interface Sci 17:107

    Article  Google Scholar 

  6. Bourrel M, Schechter R (1988) In: Bourrel M, Schechter R (eds) Microemulsions and related systems, vol 30. Dekker, New York, pp 140–148

    Google Scholar 

  7. Shinoda K (1967) J Colloid Interface Sci 24:4

    Article  CAS  Google Scholar 

  8. Saito H, Shinoda K (1970) J Colloid Interface Sci 32:647

    Article  CAS  Google Scholar 

  9. Vinatieri JE (1980) Soc Pet Eng J 20:402

    CAS  Google Scholar 

  10. Kunieda H, Shinoda K (1982) Bull Chem Soc 55:1777

    Article  CAS  Google Scholar 

  11. Kabalnov A, Weers J (1996) Langmuir 12:1931

    Article  CAS  Google Scholar 

  12. Kunieda H (1992) In: Keizo O, Mashiko A (eds) Mixed surfactant systems. Surfactant science series, vol 46. Dekker, New York, pp 235–261

    Google Scholar 

  13. Binks BP, Meunier J, Abillon O, Langevin D (1989) Langmuir 5:415

    Article  CAS  Google Scholar 

  14. Nakajima H (1997) In: Solans C, Kunieda H (eds) Industrial applications of microemulsions, vol 66, Dekker, New York, pp 175–197

    Google Scholar 

  15. Lovell PA, El-Aasser MS (1997) In: Lovell PA, El-Aasser MS (eds) Emulsion polymerization and emulsion polymers. Wiley, Chichester, pp 697–722

    Google Scholar 

  16. Benita S (1998) In: Benita S (ed) Submicron emulsions in drug targeting and delivery. Harwood, Amsterdam, p 338

    Google Scholar 

  17. Taylor P, Ottewill RH (1994) Prog Colloid Polym Sci 97:199–203

    Article  CAS  Google Scholar 

  18. Katsumoto Y, Ushiki H, Mendibourne B, Graciaa A, Lachaise J (2000) J Phys Condens Matter 12:3569–3583

    Article  CAS  Google Scholar 

  19. Lifshitz IM, Slezov VV (1961) J Phys Chem Solids 19:35

    Article  Google Scholar 

  20. Wagner C(1961) Ber Bunsenges Phys Chem 16:581

    Google Scholar 

  21. 21.Kabalnov AS, Pertzov AV, Shchukin ED (1987) Colloids Surf 24:19

    Article  CAS  Google Scholar 

  22. Forgiarini A, Esquena J, Gonzalez C, Solans C (2000) Prog Colloid Polym Sci 115:36–39

    Article  CAS  Google Scholar 

  23. Kunieda H, Fukui Y, Uchiyama H, Solans C (1996) Langmuir 12:2136–2140

    Article  CAS  Google Scholar 

  24. Shinoda K (1967) J Colloid Interface Sci 14:4–9

    Article  Google Scholar 

  25. Kunieda H (1986) J Colloid Interface Sci 114:378–385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag

About this paper

Cite this paper

Forgiarini, A., Esquena, J., González, C., Solans, C. (2001). Formation and stability of nano-emulsions in mixed nonionic surfactant systems. In: Koutsoukos, P.G. (eds) Trends in Colloid and Interface Science XV. Progress in Colloid and Polymer Science, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45725-9_42

Download citation

  • DOI: https://doi.org/10.1007/3-540-45725-9_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42241-9

  • Online ISBN: 978-3-540-45725-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics