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Abstract. A new method is developed to solve the condensation equa-
tion as it relates to Air Quality Models using both semi-Lagrangian and
Lagrangian fluxes to increase resolution and perform accurately under
stringent conditions that occur in the atmosphere. The new method,
Partitioned Flux Integrated Semi-Lagrangian Method (PFISLM), can
be used with lower-order interpolators and they produce highly accurate
results. PFISLM is positive definite, peak retentive, mass conservative,
and suppresses oscillations. Research indicates the differences between
PFISLM and other traditional flux integrated semi-Lagrangian methods
are significant when solving the aerosol condensation/evaporation equa-
tion. PFISLM is created to handle specific difficulties associated with
the time and space discretization of the aerosol operator in air quality
models.

1 Introduction

Air quality models that include aerosol dynamics often employ the continuous
distribution approach (Pilinis, 1990) to represent aerosols undergoing evapora-
tion and condensation. The fundamental equation governing the condensation
process for an internally mixed aerosol is derived in Pilinis (1990). The equation
is given as

∂pi

∂t
= Hip − 1

3
∂Hpi

∂µ
, (1)

where pi, Hi, µ, p =
∑n

i pi, and H =
∑n

i Hi are the mass distribution of
species i, mass transfer rate of species i, log of the diameter of the particle,
total concentrations, and total mass transfer rates respectively with n being the
number of aerosol compounds.

Typically, Equation (1) is solved by means of operator splitting into two
parts: the growth,

∂pi

∂t
= Hip, (2)

and the redistribution,
∂pi

∂t
= −1

3
∂Hpi

∂µ
. (3)
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Section 2 describes a new algorithm to solve the aerosol condensa-
tion/evaporation equation. Numerical tests are presented in Section 3.

2 The Algorithm

2.1 Aerosol Redistribution

PFISLM uses both semi-Lagrangian fluxes and Lagrangian positions to resolve
the space discretization. A graphical representation of the new scheme is shown
in Figure 1. A typical semi-Lagrangian flux is the mass that is contained from
the semi-Lagrangian position of the cell interface, (µ1) to the cell interface, (µ2).
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Fig. 1. Partitioned Flux Integrated Semi-Lagrangian Method uses both the Semi-
Lagrangian and Lagrangian position of cell interfaces in its computation. The flux
leaving cell interface I is not averaged into cell I+1 but is recorded into the partition
defined from µ2 and µ3.

The evacuated semi-Lagrangian flux enters the partition defined by the cell
interface, (µ2) and the Lagrangian position, (µ3). This area from (µ2) to (µ3)
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is known as a partition. Since, the total mass in cell I + 1 is known, the dis-
tribution inside each cell is further resolved. Namely, the mass occupied by the
first partition, µ2 to µ3, is p1 = FI , the mass occupied by the second partition,
µ3 to µ4, is p2 = pi(t), and the mass occupied by the third partition from µ4
to µ5 is p3 = FII . In the next time step, the mass distribution inside cell I + 1
is interpolated (using both linear and quadratic interpolators) more accurately
because more information is available to describe the mass partitioning inside
the cell due to the Lagrangian partitioning. Depending on the mass transfer rate,
each cell can have up to three partitions.

2.2 Aerosol Growth

The growth term given in Equation (2), is computed from a mass balance and
the growth law. The growth is computed for the entire cell and is distributed to
the enclosed partitions accordingly. The growth for the entire cell is found by a
direct integration of the growth equations,

∂pi

∂t
= Hip (4)

∂p

∂t
= Hp. (5)

The solution to those two simultaneous equations is given as

pi(t + ∆t, µ) = pi(t, µ) +
Hi

H
p(t, µ)

[
eH∆t − 1

]
. (6)

The mass increase or decrease in each partition is computed by solving a
simple set of equations that represents mass conservation, the solution to the
growth equation, and the contribution of the cell growth from each partition in
accordance to its relative mass to the entire cell. That set of equations is given
as

pi∆µ = p1∆µ1 + p2∆µ2 + p3∆µ3 (7)

growth =
Hi

H
p(t, µ)

[
eH∆t − 1

]
(8)

massgrowthj = massgrowth
massj

mass
(9)

Here the massgrowth is the growth of the mass in the entire cell, growth
is the growth of concentration in the entire cell, massj is the mass occupied
by partition j, massgrowthj is the growth of the mass in partition j, pi is
the concentration in the entire cell, and pj is the concentration in partition j.
Substituting massgrowthj = growthj∆µj , massgrowth = growth∆µ,
and massj = pj∆µj into Equation (12), the solution to the growth term in each
partition is obtained as,

growthj = growth
pj

pi
. (10)
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3 Numerical Test

There were hundreds of test perform in order to gauge the accuracy of the solver.
For the sake of brevity, here we will report on one of them. The test consists on
200 iterations of back and forth condensation and evaporations of a given aerosol
distribution using 12 fixed bins. The rate of evaporation and condensations is
constant. Therefore, the final solution is expected to equal the initial conditions.
Figure 2 shows that results are significantly less diffusive than those produced by
Bott’s solver (Bott, 1989) which is currently used in several air quality models.

The numerical test uses the following initial conditions:

pi(µ) =
{

i
20 (1 + cos[µ−5

4 ]) if |µ − 5| ≤ 4
0 otherwise
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Fig. 2. Numerical tests show that the Bott solver is diffusive while the PFISLM with
linear and quadratic interpolators preserve the peaks within 10%.

4 Conclusions

A new approach to solving the condensation equation is developed to handle
these difficult characteristics of the aerosol operator. The new method is mass
conservative, positive definite, peak retentive, and suppresses oscillations. The
approach is a super set of flux integrated semi-Lagrangian methods using both
semi-Lagrangian and Lagrangian fluxes. It effectively increases the resolution
of the bins by keeping information about the partitions inside each bin. This
increased resolution permits accurate representation of the actual dynamics of
aerosols, especially with limited number of bins.
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